#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable // shader bbf87e1769bdcea3 //foreground blur? const float dither = $dither ; const float scaleShader = $scaleShader; const float scaleBlur = ($scaleBlur*$internalRes); const int sampleScale = 2; const float lightBloom = 0.95; uniform ivec4 uf_remappedPS[1]; layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0x1aa0b000 res 320x180x1 dim 1 tm: 4 format 0820 compSel: 0 1 2 3 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 0 layout(location = 0) in vec4 passParameterSem128; layout(location = 0) out vec4 passPixelColor0; uniform vec2 uf_fragCoordScale; // FabriceNeyret2 CC, single shader gaussian by intermediate MIPmap level. www.shadertoy.com/view/ltScRG const int samples = 8 * sampleScale, //8 or 4 balances xy position LOD = 2, // gaussian done on MIPmap at scale LOD sLOD = 1 << LOD; // tile size = 2^LOD const float sigma = float(samples) * .25; float gaussian(vec2 i) { return exp(-.5* dot(i /= sigma, i)) / (6.28 * sigma*sigma); } vec4 blur(sampler2D sp, vec2 U, vec2 scale) { vec4 O = vec4(0); int s = samples / sLOD; for (int i = 0; i < s*s; i++) { vec2 d = vec2(i%s, i / s)*float(sLOD) - float(samples) / 2.; O += gaussian(d) * textureLod(sp, U + scale * d, float(LOD)); } return O / O.a; } int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){return mix(0.0, a*b, (a != 0.0) && (b != 0.0));} void main() { vec4 R0f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem128; vec2 coord = passParameterSem128.xy*textureSize(textureUnitPS0, 0); // vec2 ps = vec2(1.0) / textureSize(textureUnitPS0, 0); vec2 uv = coord * ps; R0f.xyz = blur(textureUnitPS0, R0f.xy, ps*scaleBlur).xyz; //1.0 4k //.66 2k //0.075 1k //.51 4kx2 //R0f.xyzw = (texture(textureUnitPS0, R0f.xy).xyzw); // 0 PV0f.x = R0f.z * intBitsToFloat(0x3dea747e); PV0f.w = intBitsToFloat(uf_remappedPS[0].x); PV0f.w = clamp(PV0f.w, 0.0, 1.0); // 1 backupReg0f = R0f.x; backupReg1f = R0f.y; tempf.x = dot(vec4(backupReg0f,backupReg1f,PV0f.x,-0.0),vec4(intBitsToFloat(0x3e990abb),intBitsToFloat(0x3f162c13),1.0,0.0)); PV1f.x = tempf.x; PV1f.y = tempf.x; PV1f.z = tempf.x; PV1f.w = tempf.x; PS1f = -(PV0f.w) + intBitsToFloat(0x3f800054); // 2 PV0f.z = PV1f.x + -(intBitsToFloat(uf_remappedPS[0].x)); PS0f = 1.0 / PS1f; // 3 PV1f.w = PV0f.z * PS0f; PV1f.w = clamp(PV1f.w, 0.0, 1.0); // 4 backupReg0f = R0f.x; backupReg1f = R0f.y; backupReg2f = R0f.z; R0f.x = mul_nonIEEE(backupReg0f, PV1f.w); R0f.y = mul_nonIEEE(backupReg1f, PV1f.w); R0f.z = mul_nonIEEE(backupReg2f, PV1f.w); // export passPixelColor0 = vec4(R0f.x, R0f.y, R0f.z, R0f.w); }