#version 420 #extension GL_ARB_texture_gather : enable #ifdef VULKAN #define ATTR_LAYOUT(__vkSet, __location) layout(set = __vkSet, location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation) #define SET_POSITION(_v) gl_Position = _v; gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0 #define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale.xy,gl_FragCoord.zw) #define gl_VertexID gl_VertexIndex #define gl_InstanceID gl_InstanceIndex #else #define ATTR_LAYOUT(__vkSet, __location) layout(location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation) #define SET_POSITION(_v) gl_Position = _v #define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale,gl_FragCoord.zw) #endif // This shader was automatically converted to be cross-compatible with Vulkan and OpenGL. // shader c92c1c4c0a2fb839 // Used for: Camera Depth of Field Blur const float resXScale = float($width)/float($gameWidth); const float resYScale = float($height)/float($gameHeight); #ifdef VULKAN layout(set = 1, binding = 3) uniform ufBlock { uniform ivec4 uf_remappedPS[5]; uniform vec4 uf_fragCoordScale; }; #else uniform ivec4 uf_remappedPS[5]; uniform vec2 uf_fragCoordScale; #endif TEXTURE_LAYOUT(0, 1, 0) uniform sampler2D textureUnitPS0; TEXTURE_LAYOUT(1, 1, 1) uniform sampler2D textureUnitPS1; TEXTURE_LAYOUT(2, 1, 2) uniform sampler2D textureUnitPS2; layout(location = 0) in vec4 passParameterSem2; layout(location = 0) out vec4 passPixelColor0; // uf_fragCoordScale was moved to the ufBlock int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; } void main() { ivec4 R0i = ivec4(0); ivec4 R1i = ivec4(0); ivec4 R2i = ivec4(0); ivec4 R3i = ivec4(0); ivec4 R4i = ivec4(0); ivec4 R123i = ivec4(0); ivec4 R127i = ivec4(0); int backupReg0i, backupReg1i, backupReg2i, backupReg3i, backupReg4i; ivec4 PV0i = ivec4(0), PV1i = ivec4(0); int PS0i = 0, PS1i = 0; ivec4 tempi = ivec4(0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; bool activeMaskStack[2]; bool activeMaskStackC[3]; activeMaskStack[0] = false; activeMaskStackC[0] = false; activeMaskStackC[1] = false; activeMaskStack[0] = true; activeMaskStackC[0] = true; activeMaskStackC[1] = true; vec3 cubeMapSTM; int cubeMapFaceId; R0i = floatBitsToInt(passParameterSem2); if( activeMaskStackC[1] == true ) { R1i.w = floatBitsToInt(texture(textureUnitPS0, intBitsToFloat(R0i.xy)).x); R1i.z = floatBitsToInt(texture(textureUnitPS2, intBitsToFloat(R0i.xy)).x); } if( activeMaskStackC[1] == true ) { // 0 R123i.x = floatBitsToInt((mul_nonIEEE(intBitsToFloat(R1i.w),intBitsToFloat(uf_remappedPS[0].x)) + intBitsToFloat(uf_remappedPS[1].x))); R123i.x = clampFI32(R123i.x); PV0i.x = R123i.x; // 1 R0i.z = floatBitsToInt(max(intBitsToFloat(R1i.z), intBitsToFloat(PV0i.x))); PV1i.z = R0i.z; // 2 R1i.y = ((intBitsToFloat(PV1i.z) != 0.0)?int(0xFFFFFFFF):int(0x0)); PV0i.y = R1i.y; // 3 if( (PV0i.y == 0)) discard; } if( activeMaskStackC[1] == true ) { activeMaskStack[1] = activeMaskStack[0]; activeMaskStackC[2] = activeMaskStackC[1]; // 0 predResult = (R1i.y != 0); activeMaskStack[1] = predResult; activeMaskStackC[2] = predResult == true && activeMaskStackC[1] == true; } else { activeMaskStack[1] = false; activeMaskStackC[2] = false; } if( activeMaskStackC[2] == true ) { // 0 PV0i.w = floatBitsToInt(intBitsToFloat(uf_remappedPS[2].y) + -(1.0)); // 1 R123i.z = floatBitsToInt((mul_nonIEEE(intBitsToFloat(PV0i.w),intBitsToFloat(R0i.z)) + 1.0)); PV1i.z = R123i.z; // 2 tempResultf = log2(intBitsToFloat(PV1i.z)); PS0i = floatBitsToInt(tempResultf); // 3 R127i.x = floatBitsToInt(intBitsToFloat(PS0i) + -(1.0)); PV1i.x = R127i.x; // 4 R2i.z = PV1i.x; R1i.w = PV1i.x; PS0i = floatBitsToInt(exp2(intBitsToFloat(PV1i.x))); // 5 PV1i.z = floatBitsToInt(intBitsToFloat(PS0i) + intBitsToFloat(uf_remappedPS[3].w)); R3i.w = R127i.x; R4i.w = R127i.x; PS1i = R4i.w; // 6 backupReg0i = R127i.x; R127i.x = floatBitsToInt(mul_nonIEEE(intBitsToFloat(PV1i.z), intBitsToFloat(uf_remappedPS[4].y))); PV0i.x = R127i.x; PV0i.y = floatBitsToInt(mul_nonIEEE(intBitsToFloat(PV1i.z), intBitsToFloat(uf_remappedPS[4].x) / resXScale)); R127i.z = floatBitsToInt(mul_nonIEEE(intBitsToFloat(PV1i.z), intBitsToFloat(uf_remappedPS[4].w) / resYScale)); R127i.w = floatBitsToInt(mul_nonIEEE(intBitsToFloat(PV1i.z), intBitsToFloat(uf_remappedPS[4].z))); PV0i.w = R127i.w; R2i.w = floatBitsToInt(intBitsToFloat(backupReg0i) + 1.0); R2i.w = clampFI32(R2i.w); PS0i = R2i.w; // 7 R1i.x = floatBitsToInt(intBitsToFloat(R0i.x) + intBitsToFloat(PV0i.y)); R1i.y = floatBitsToInt(intBitsToFloat(R0i.y) + intBitsToFloat(PV0i.x)); R3i.z = floatBitsToInt(intBitsToFloat(R0i.x) + intBitsToFloat(PV0i.w)); R2i.x = floatBitsToInt(intBitsToFloat(R0i.x) + -(intBitsToFloat(PV0i.y))); PS1i = R2i.x; // 8 R3i.x = floatBitsToInt(intBitsToFloat(R0i.y) + intBitsToFloat(R127i.z)); R2i.y = floatBitsToInt(intBitsToFloat(R0i.y) + -(intBitsToFloat(R127i.x))); R4i.z = floatBitsToInt(intBitsToFloat(R0i.x) + -(intBitsToFloat(R127i.w))); R4i.y = floatBitsToInt(intBitsToFloat(R0i.y) + -(intBitsToFloat(R127i.z))); PS0i = R4i.y; } if( activeMaskStackC[2] == true ) { R1i.xyz = floatBitsToInt(textureLod(textureUnitPS1, intBitsToFloat(R1i.xy),intBitsToFloat(R1i.w)).xyz); R2i.xyz = floatBitsToInt(textureLod(textureUnitPS1, intBitsToFloat(R2i.xy),intBitsToFloat(R2i.z)).xyz); R3i.xyz = floatBitsToInt(textureLod(textureUnitPS1, intBitsToFloat(R3i.zx),intBitsToFloat(R3i.w)).xyz); R4i.xyz = floatBitsToInt(textureLod(textureUnitPS1, intBitsToFloat(R4i.zy),intBitsToFloat(R4i.w)).xyz); } if( activeMaskStackC[2] == true ) { // 0 PV0i.y = floatBitsToInt(intBitsToFloat(R1i.z) + intBitsToFloat(R2i.z)); PV0i.y = floatBitsToInt(intBitsToFloat(PV0i.y) / 2.0); PV0i.z = floatBitsToInt(intBitsToFloat(R1i.y) + intBitsToFloat(R2i.y)); PV0i.z = floatBitsToInt(intBitsToFloat(PV0i.z) / 2.0); PV0i.w = floatBitsToInt(intBitsToFloat(R1i.x) + intBitsToFloat(R2i.x)); PV0i.w = floatBitsToInt(intBitsToFloat(PV0i.w) / 2.0); // 1 R123i.x = floatBitsToInt((intBitsToFloat(R3i.x) * 0.5 + intBitsToFloat(PV0i.w))); PV1i.x = R123i.x; R123i.z = floatBitsToInt((intBitsToFloat(R3i.z) * 0.5 + intBitsToFloat(PV0i.y))); PV1i.z = R123i.z; R123i.w = floatBitsToInt((intBitsToFloat(R3i.y) * 0.5 + intBitsToFloat(PV0i.z))); PV1i.w = R123i.w; // 2 R2i.x = floatBitsToInt((intBitsToFloat(R4i.x) * 0.5 + intBitsToFloat(PV1i.x))/2.0); R2i.y = floatBitsToInt((intBitsToFloat(R4i.y) * 0.5 + intBitsToFloat(PV1i.w))/2.0); R2i.z = floatBitsToInt((intBitsToFloat(R4i.z) * 0.5 + intBitsToFloat(PV1i.z))/2.0); } activeMaskStackC[1] = activeMaskStack[0] == true && activeMaskStackC[0] == true; // export passPixelColor0 = vec4(intBitsToFloat(R2i.x), intBitsToFloat(R2i.y), intBitsToFloat(R2i.z), intBitsToFloat(R2i.w)); }