#version 420 #extension GL_ARB_texture_gather : enable // shader ff71dcd2ad4defdc //AA ps uniform vec2 uf_fragCoordScale; const float hazeFactor = $hazeFactor; const float gamma = $gamma; // 1.0 is neutral Botw is already colour graded at this stage const float exposure = $exposure; // 1.0 is neutral const float vibrance = $vibrance; // 0.0 is neutral const float crushContrast = $crushContrast; // 0.0 is neutral. Use small increments, loss of shadow detail const float contrastCurve = $contrastCurve; vec3 RGB_Lift = vec3($redShadows, $greenShadows , $blueSadows); // [0.000 to 2.000] Adjust shadows for Red, Green and Blue. vec3 RGB_Gamma = vec3($redMid ,$greenMid, $blueMid); // [0.000 to 2.000] Adjust midtones for Red, Green and Blue vec3 RGB_Gain = vec3($redHilight, $greenHilight, $blueHilight); // [0.000 to 2.000] Adjust highlights for Red, Green and Blue //lumasharpen const float sharp_mix = $sharp_mix; const float sharp_strength = 2.0; const float sharp_clamp = 0.75; const float offset_bias = 1.0; float Sigmoid (float x) { return 1.0 / (1.0 + (exp(-(x - 0.5) * 5.5))); } #define px (1.0/1920.0*uf_fragCoordScale.x) #define py (1.0/1080.0*uf_fragCoordScale.y) #define CoefLuma vec3(0.2126, 0.7152, 0.0722) float lumasharping(sampler2D tex, vec2 pos) { vec4 colorInput = texture(tex, pos); vec3 ori = colorInput.rgb; // -- Combining the strength and luma multipliers -- vec3 sharp_strength_luma = (CoefLuma * sharp_strength); // -- Gaussian filter -- // [ .25, .50, .25] [ 1 , 2 , 1 ] // [ .50, 1, .50] = [ 2 , 4 , 2 ] // [ .25, .50, .25] [ 1 , 2 , 1 ] vec3 blur_ori = texture(tex, pos + vec2(px, -py) * 0.5 * offset_bias).rgb; // South East blur_ori += texture(tex, pos + vec2(-px, -py) * 0.5 * offset_bias).rgb; // South West blur_ori += texture(tex, pos + vec2(px, py) * 0.5 * offset_bias).rgb; // North East blur_ori += texture(tex, pos + vec2(-px, py) * 0.5 * offset_bias).rgb; // North West blur_ori *= 0.25; // ( /= 4) Divide by the number of texture fetches // -- Calculate the sharpening -- vec3 sharp = ori - blur_ori; //Subtracting the blurred image from the original image // -- Adjust strength of the sharpening and clamp it-- vec4 sharp_strength_luma_clamp = vec4(sharp_strength_luma * (0.5 / sharp_clamp), 0.5); //Roll part of the clamp into the dot float sharp_luma = clamp((dot(vec4(sharp, 1.0), sharp_strength_luma_clamp)), 0.0, 1.0); //Calculate the luma, adjust the strength, scale up and clamp sharp_luma = (sharp_clamp * 2.0) * sharp_luma - sharp_clamp; //scale down return sharp_luma; } vec3 LiftGammaGainPass(vec3 colorInput) { //reshade BSD https://reshade.me , Alexkiri port vec3 color = colorInput; color = color * (1.5 - 0.5 * RGB_Lift) + 0.5 * RGB_Lift - 0.5; color = clamp(color, 0.0, 1.0); color *= RGB_Gain; color = pow(color, 1.0 / RGB_Gamma); return clamp(color, 0.0, 1.0); } vec3 contrasty(vec3 colour){ vec3 fColour = (colour.xyz); //fColour = LiftGammaGainPass(fColour); fColour = clamp(exposure * fColour, 0.0, 1.0); fColour = pow(fColour, vec3(1.0 / gamma)); float luminance = fColour.r*0.299 + fColour.g*0.587 + fColour.b*0.114; float mn = min(min(fColour.r, fColour.g), fColour.b); float mx = max(max(fColour.r, fColour.g), fColour.b); float sat = (1.0 - (mx - mn)) * (1.0 - mx) * luminance * 5.0; vec3 lightness = vec3((mn + mx) / 2.0); fColour = LiftGammaGainPass(fColour); // vibrance fColour = mix(fColour, mix(fColour, lightness, -vibrance), sat); fColour = max(vec3(0.0), fColour - vec3(crushContrast)); return fColour; } const float resScale = 2.0; uniform ivec4 uf_remappedPS[4]; layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf5807800 res 1920x1080x1 dim 1 tm: 4 format 0019 compSel: 0 1 2 3 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 1 layout(binding = 1) uniform sampler2D textureUnitPS1;// Tex1 addr 0xf4000800 res 1920x1080x1 dim 1 tm: 4 format 0001 compSel: 0 4 4 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 2 2 2 border: 1 layout(location = 0) in vec4 passParameterSem2; layout(location = 0) out vec4 passPixelColor0; //uniform vec2 uf_fragCoordScale; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); vec4 R4f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R126f = vec4(0.0); vec4 R127f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; bool activeMaskStack[2]; bool activeMaskStackC[3]; activeMaskStack[0] = false; activeMaskStackC[0] = false; activeMaskStackC[1] = false; activeMaskStack[0] = true; activeMaskStackC[0] = true; activeMaskStackC[1] = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem2; if( activeMaskStackC[1] == true ) { R1f.xyzw = (textureGather(textureUnitPS1, R0f.xy).wzxy); R2f.xyzw = (texture(textureUnitPS0, R0f.xy).xyzw); } if( activeMaskStackC[1] == true ) { activeMaskStack[1] = activeMaskStack[0]; activeMaskStackC[2] = activeMaskStackC[1]; // 0 PV0f.x = R1f.y + R1f.x; R127f.y = intBitsToFloat(uf_remappedPS[0].z) * 0.25; PV0f.z = R1f.w + -(R1f.x); PV0f.w = R1f.z + -(R1f.y); R127f.z = mul_nonIEEE(R2f.x, intBitsToFloat(uf_remappedPS[1].x)); PS0f = R127f.z; // 1 R127f.x = PV0f.w + -(PV0f.z); PV1f.x = R127f.x; R126f.y = PV0f.w + PV0f.z; PV1f.y = R126f.y; PV1f.z = R1f.z + PV0f.x; R127f.w = min(R1f.z, R1f.x); R126f.w = min(R1f.w, R1f.y); PS1f = R126f.w; // 2 PV0f.x = R1f.w + PV1f.z; PV0f.y = max(PV1f.x, -(PV1f.x)); PV0f.z = max(PV1f.y, -(PV1f.y)); PV0f.w = max(R1f.z, R1f.x); PS0f = max(R1f.w, R1f.y); // 3 PV1f.x = min(PV0f.z, PV0f.y); R123f.y = (mul_nonIEEE(R2f.y,intBitsToFloat(uf_remappedPS[1].y)) + R127f.z); PV1f.y = R123f.y; R127f.z = min(R127f.w, R126f.w); PV1f.z = R127f.z; R123f.w = (mul_nonIEEE(R127f.y,PV0f.x) + intBitsToFloat(uf_remappedPS[0].w)); PV1f.w = R123f.w; R127f.w = max(PV0f.w, PS0f); PS1f = R127f.w; // 4 PV0f.x = mul_nonIEEE(PS1f, intBitsToFloat(uf_remappedPS[2].x)); PV0f.y = max(PV1f.y, PS1f); PV0f.z = min(PV1f.y, PV1f.z); PV0f.w = max(PV1f.w, PV1f.x); R4f.z = -(PV1f.z) + PS1f; PS0f = R4f.z; // 5 R3f.x = max(PV0f.x, intBitsToFloat(uf_remappedPS[2].y)); R3f.y = -(PV0f.z) + PV0f.y; R4f.w = R127f.z + R127f.w; PS1f = 1.0 / PV0f.w; // 6 PV0f.x = mul_nonIEEE(R127f.x, PS1f); //p PV0f.y = mul_nonIEEE(R126f.y, PS1f); // 7 PV1f.z = max(PV0f.x, -(intBitsToFloat(uf_remappedPS[0].y))); //p PV1f.w = max(PV0f.y, -(intBitsToFloat(uf_remappedPS[0].y))); // 8 R1f.x = min(PV1f.w, intBitsToFloat(uf_remappedPS[0].y)); R1f.y = min(PV1f.z, intBitsToFloat(uf_remappedPS[0].y)); // 9 predResult = (R3f.y > R3f.x); activeMaskStack[1] = predResult; activeMaskStackC[2] = predResult == true && activeMaskStackC[1] == true; } else { activeMaskStack[1] = false; activeMaskStackC[2] = false; } if( activeMaskStackC[2] == true ) { // 0 R3f.x = (mul_nonIEEE(R1f.x,-(intBitsToFloat(uf_remappedPS[3].z) / resScale)) + R0f.x); R3f.y = (mul_nonIEEE(R1f.y,-(intBitsToFloat(uf_remappedPS[3].w) / resScale)) + R0f.y); R0f.z = (mul_nonIEEE(R1f.x,intBitsToFloat(uf_remappedPS[3].z)) + R0f.x); //leave out, looks better on avg R0f.w = (mul_nonIEEE(R1f.y,intBitsToFloat(uf_remappedPS[3].w)) + R0f.y);//leave out, looks better on avg R4f.x = (mul_nonIEEE(R1f.x,-(intBitsToFloat(uf_remappedPS[3].x) / resScale)) + R0f.x); PS0f = R4f.x; // 1 R4f.y = (mul_nonIEEE(R1f.y,-(intBitsToFloat(uf_remappedPS[3].y)/resScale)) + R0f.y); R3f.z = (mul_nonIEEE(R1f.x,intBitsToFloat(uf_remappedPS[3].x) / resScale) + R0f.x); R3f.w = (mul_nonIEEE(R1f.y,intBitsToFloat(uf_remappedPS[3].y) / resScale) + R0f.y); } if( activeMaskStackC[2] == true ) { R1f.xyzw = (texture(textureUnitPS0, R0f.zw).xyzw); R0f.xyzw = (texture(textureUnitPS0, R3f.xy).xyzw); R2f.xyzw = (texture(textureUnitPS0, R4f.xy).xyzw); R3f.xyzw = (texture(textureUnitPS0, R3f.zw).xyzw); } if( activeMaskStackC[2] == true ) { // 0 R127f.xyz = vec3(R0f.x,R0f.w,R0f.z) + vec3(R1f.x,R1f.w,R1f.z); PV0f.x = R127f.x; PV0f.y = R127f.y; PV0f.z = R127f.z; R127f.w = R0f.y + R1f.y; PV0f.w = R127f.w; // 1 PV1f.x = R2f.x + PV0f.x; PV1f.y = R2f.w + PV0f.y; PV1f.z = R2f.z + PV0f.z; PV1f.w = R2f.y + PV0f.w; // 2 R126f.x = R3f.x + PV1f.x; R126f.x /= 2.0; PV0f.x = R126f.x; R126f.y = R3f.w + PV1f.y; R126f.y /= 2.0; PV0f.y = R126f.y; R126f.z = R3f.z + PV1f.z; R126f.z /= 2.0; PV0f.z = R126f.z; R126f.w = R3f.y + PV1f.w; R126f.w /= 2.0; PV0f.w = R126f.w; // 3 backupReg0f = R127f.y; R123f.x = (mul_nonIEEE(PV0f.x,intBitsToFloat(uf_remappedPS[1].x)) + -(R4f.w)); PV1f.x = R123f.x; R127f.yzw = vec3(R127f.z,R127f.w,R127f.x) + vec3(-(PV0f.z),-(PV0f.w),-(PV0f.x)); R127f.x = backupReg0f + -(PV0f.y); PS1f = R127f.x; // 4 R123f.w = (mul_nonIEEE(R126f.w,intBitsToFloat(uf_remappedPS[1].y)) + PV1f.x); PV0f.w = R123f.w; // 5 PV1f.z = max(PV0f.w, -(PV0f.w)); // 6 PV0f.y = -(R4f.z) + PV1f.z; // 7 R123f.x = intBitsToFloat(((PV0f.y >= 0.0)?(floatBitsToInt(1.0)):(0))); PV1f.x = R123f.x; // 8 R2f.x = (mul_nonIEEE(R127f.w,PV1f.x) + R126f.x)/2.0; R2f.y = (mul_nonIEEE(R127f.z,PV1f.x) + R126f.w)/2.0; R2f.z = (mul_nonIEEE(R127f.y,PV1f.x) + R126f.z)/2.0; R2f.w = (mul_nonIEEE(R127f.x,PV1f.x) + R126f.y)/2.0; } activeMaskStackC[1] = activeMaskStack[0] == true && activeMaskStackC[0] == true; // export R2f.xyz = contrasty(R2f.xyz); R2f.xyz = mix(R2f.xyz, smoothstep(0.0, 1.0, R2f.xyz), contrastCurve); float smask = lumasharping(textureUnitPS1, passParameterSem2.xy); vec3 temp3 = R2f.xyz; R2f.xyz = mix(R2f.xyz, (temp3.xyz += (smask)), sharp_mix); passPixelColor0 = vec4(R2f.x, R2f.y, R2f.z, R2f.w); }