#version 420 #extension GL_ARB_texture_gather : enable // shader bd8bba59e2149449 // Monochromia // Simple Levels + Curves + LumaSharpening // Credits to Jamie, NAVras for LumaSharpening; CeeJay.dk for Levels, Curves // original shader dumped using cemu 1.11.0c, BotW 1.3.1 // Levels controls const int BlackPoint = 3; //[0, 255] The black point is the new black - literally. Everything darker than this will become completely black const int WhitePoint = 252; //[0, 255] The new white point. Everything brighter than this becomes completely white // Curves controls const float Contrast = 0.25; //[-1.0, 1.0] The amount of contrast you want //LumaShapening #define sharp_strength 2.5 //[0.10 to 3.00] Default 0.65 , Strength of the sharpening. #define sharp_clamp 0.085 //[0.000 to 1.000] Default 0.035 , Limits maximum amount of sharpening a pixel recieves. //Advanced sharpening settings #define offset_bias 1.0 //[0.0 to 6.0] Offset bias adjusts the radius of the sampling pattern. //Others const float bloomFactor = 0.9; //Default is 1.0 uniform ivec4 uf_remappedPS[1]; layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf46ac800 res 320x180x1 dim 1 tm: 4 format 0816 compSel: 0 1 2 5 mipView: 0x0 (num 0x5) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 1 layout(binding = 1) uniform sampler2D textureUnitPS1;// Tex1 addr 0xf5c7b800 res 1280x720x1 dim 1 tm: 4 format 0816 compSel: 0 1 2 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 2 2 2 border: 1 layout(location = 0) in vec4 passParameterSem0; layout(location = 0) out vec4 passPixelColor0; uniform vec2 uf_fragCoordScale; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; } /** * Levels version 1.2 * by Christian Cann Schuldt Jensen ~ CeeJay.dk * * Allows you to set a new black and a white level. * This increases contrast, but clips any colors outside the new range to either black or white * and so some details in the shadows or highlights can be lost. * * The shader is very useful for expanding the 16-235 TV range to 0-255 PC range. * You might need it if you're playing a game meant to display on a TV with an emulator that does not do this. * But it's also a quick and easy way to uniformly increase the contrast of an image. * * -- Version 1.0 -- * First release * -- Version 1.1 -- * Optimized to only use 1 instruction (down from 2 - a 100% performance increase :) ) * -- Version 1.2 -- * Added the ability to highlight clipping regions of the image with #define HighlightClipping 1 */ vec3 LevelsPass(vec3 inputColor) { float black_point_float = BlackPoint / 255.0; float white_point_float = WhitePoint == BlackPoint ? (255.0 / 0.00025) : (255.0 / (WhitePoint - BlackPoint)); // Avoid division by zero if the white and black point are the same vec3 color = inputColor; color = color * white_point_float - (black_point_float * white_point_float); return color; } /** * Curves * by Christian Cann Schuldt Jensen ~ CeeJay.dk * * Curves, uses S-curves to increase contrast, without clipping highlights and shadows. */ vec3 CurvesPass(vec3 inputColor) { vec3 colorInput = inputColor; float Contrast_blend = Contrast * 2.0; //I multiply by two to give it a strength closer to the other curves. vec3 x = colorInput.rgb; //if the curve should be applied to both Luma and Chroma x = x * (x * (1.5 - x) + 0.5); //horner form - fastest version vec3 color = x; //if the curve should be applied to both Luma and Chroma colorInput.rgb = mix(colorInput.rgb, color, Contrast_blend); //Blend by Contrast return colorInput; } //LumaSharpening #define px (1.0/1280.0*uf_fragCoordScale.x) #define py (1.0/720.0*uf_fragCoordScale.y) #define CoefLuma vec3(0.2126, 0.7152, 0.0722) float lumaSharpening(sampler2D tex, vec2 pos){ vec4 colorInput = texture(tex, pos); vec3 ori = colorInput.rgb; // -- Combining the strength and luma multipliers -- vec3 sharp_strength_luma = (CoefLuma * sharp_strength); // -- Gaussian filter -- // [ .25, .50, .25] [ 1 , 2 , 1 ] // [ .50, 1, .50] = [ 2 , 4 , 2 ] // [ .25, .50, .25] [ 1 , 2 , 1 ] //float px = 1.0/tex_size[0]; //float py = 1.0/tex_size[1]; vec3 blur_ori = texture(tex, pos + vec2(px,-py) * 0.5 * offset_bias).rgb; // South East blur_ori += texture(tex, pos + vec2(-px,-py) * 0.5 * offset_bias).rgb; // South West blur_ori += texture(tex, pos + vec2(px,py) * 0.5 * offset_bias).rgb; // North East blur_ori += texture(tex, pos + vec2(-px,py) * 0.5 * offset_bias).rgb; // North West blur_ori *= 0.25; // ( /= 4) Divide by the number of texture fetches // -- Calculate the sharpening -- vec3 sharp = ori - blur_ori; //Subtracting the blurred image from the original image // -- Adjust strength of the sharpening and clamp it-- vec4 sharp_strength_luma_clamp = vec4(sharp_strength_luma * (0.5 / sharp_clamp),0.5); //Roll part of the clamp into the dot float sharp_luma = clamp((dot(vec4(sharp,1.0), sharp_strength_luma_clamp)), 0.0,1.0 ); //Calculate the luma, adjust the strength, scale up and clamp sharp_luma = (sharp_clamp * 2.0) * sharp_luma - sharp_clamp; //scale down // -- Combining the values to get the final sharpened pixel -- //colorInput.rgb = colorInput.rgb + sharp_luma; // Add the sharpening to the input color. return sharp_luma; } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R125f = vec4(0.0); vec4 R126f = vec4(0.0); vec4 R127f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem0; R1f.xyz = (texture(textureUnitPS0, R0f.xy).xyz); R1f.xyz *= bloomFactor; R0f.xyz = texture(textureUnitPS1, passParameterSem0.xy).xyz; float smask = lumaSharpening(textureUnitPS1, passParameterSem0.xy); R0f.xyz += vec3(smask); // 0 R126f.x = R1f.x + R0f.x; PV0f.x = R126f.x; R127f.y = R1f.y + R0f.y; PV0f.y = R127f.y; R126f.z = R1f.z + R0f.z; PV0f.z = R126f.z; R125f.w = 1.0; // 1 tempf.x = dot(vec4(PV0f.x,PV0f.y,PV0f.z,-0.0),vec4(intBitsToFloat(0x3e99096c),intBitsToFloat(0x3f162b6b),intBitsToFloat(0x3dea4a8c),0.0)); PV1f.x = tempf.x; PV1f.y = tempf.x; PV1f.z = tempf.x; PV1f.w = tempf.x; // 2 R127f.x = -(R127f.y) * intBitsToFloat(0x3fb8aa3b); PV0f.y = -(PV1f.x) * intBitsToFloat(0x3fb8aa3b); R127f.z = -(R126f.x) * intBitsToFloat(0x3fb8aa3b); R127f.w = -(R126f.z) * intBitsToFloat(0x3fb8aa3b); R126f.w = 1.0 / PV1f.x; PS0f = R126f.w; // 3 PS1f = exp2(PV0f.y); // 4 PV0f.x = -(PS1f) + 1.0; PS0f = exp2(R127f.x); // 5 R127f.x = -(PS0f) + 1.0; R126f.y = mul_nonIEEE(PV0f.x, PV0f.x); PV1f.z = PV0f.x * R126f.w; PS1f = exp2(R127f.w); // 6 backupReg0f = R126f.x; backupReg1f = R127f.z; R126f.x = mul_nonIEEE(backupReg0f, PV1f.z); PV0f.y = -(PS1f) + 1.0; R127f.z = mul_nonIEEE(R126f.z, PV1f.z); PV0f.z = R127f.z; R127f.w = mul_nonIEEE(R127f.y, PV1f.z); PV0f.w = R127f.w; PS0f = exp2(backupReg1f); // 7 PV1f.x = R127f.x + -(PV0f.w); PV1f.y = PV0f.y + -(PV0f.z); PV1f.w = -(PS0f) + 1.0; // 8 backupReg0f = R127f.z; R127f.x = (mul_nonIEEE(PV1f.x,R126f.y) + R127f.w); R127f.x = clamp(R127f.x, 0.0, 1.0); PV0f.x = R127f.x; PV0f.y = PV1f.w + -(R126f.x); R127f.z = (mul_nonIEEE(PV1f.y,R126f.y) + backupReg0f); R127f.z = clamp(R127f.z, 0.0, 1.0); PV0f.z = R127f.z; // 9 backupReg0f = R126f.x; R126f.x = (mul_nonIEEE(PV0f.y,R126f.y) + backupReg0f); R126f.x = clamp(R126f.x, 0.0, 1.0); PV1f.x = R126f.x; R126f.y = max(PV0f.x, PV0f.z); PV1f.w = min(PV0f.x, PV0f.z); // 10 tempf.x = dot(vec4(PV1f.x,R127f.x,R127f.z,R125f.w),vec4(intBitsToFloat(0x3f2aaaab),intBitsToFloat(0x3f2aaaab),intBitsToFloat(0x3f2aaaab),-(1.0))); PV0f.x = tempf.x; PV0f.y = tempf.x; PV0f.z = tempf.x; PV0f.w = tempf.x; R126f.z = min(PV1f.x, PV1f.w); PS0f = R126f.z; // 11 backupReg0f = R127f.x; backupReg1f = R127f.z; R127f.x = max(R126f.x, R126f.y); PV1f.x = R127f.x; R123f.y = (mul_nonIEEE(-(PV0f.x),PV0f.x) + 1.0); PV1f.y = R123f.y; R127f.z = backupReg0f + -(PS0f); R125f.w = R126f.x + -(PS0f); R126f.y = backupReg1f + -(PS0f); PS1f = R126f.y; // 12 R126f.x = (mul_nonIEEE(PV1f.y,intBitsToFloat(uf_remappedPS[0].y)) + intBitsToFloat(uf_remappedPS[0].x)); PV0f.x = R126f.x; PV0f.y = -(R126f.z) + PV1f.x; // 13 R123f.w = (mul_nonIEEE(-(PV0f.x),PV0f.y) + R127f.x); PV1f.w = R123f.w; // 14 R0f.x = (mul_nonIEEE(R126f.x,R125f.w) + PV1f.w); R0f.y = (mul_nonIEEE(R126f.x,R127f.z) + PV1f.w); R0f.z = (mul_nonIEEE(R126f.x,R126f.y) + PV1f.w); // export passPixelColor0 = vec4(R0f.x, R0f.y, R0f.z, R0f.w); vec3 color = (passPixelColor0.xyz); color = LevelsPass(color); color = CurvesPass(color); passPixelColor0 = vec4(color, R0f.w); }