#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_shading_language_packing : enable #ifdef VULKAN #define ATTR_LAYOUT(__vkSet, __location) layout(set = __vkSet, location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation) #define SET_POSITION(_v) gl_Position = _v; gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0 #define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale.xy,gl_FragCoord.zw) #define gl_VertexID gl_VertexIndex #define gl_InstanceID gl_InstanceIndex #else #define ATTR_LAYOUT(__vkSet, __location) layout(location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation) #define SET_POSITION(_v) gl_Position = _v #define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale,gl_FragCoord.zw) #endif // This shaders was auto-converted from OpenGL to Cemu so expect weird code and possible errors. // shader 4b92e636153d6b54 // Used for: Horizontal blur pass end screen background const float resXScale = (float($width)/float($gameWidth)); const float resYScale = (float($height)/float($gameHeight)); #ifdef VULKAN layout(set = 0, binding = 0) uniform ufBlock { uniform ivec4 uf_remappedVS[5]; uniform vec2 uf_windowSpaceToClipSpaceTransform; }; #else uniform ivec4 uf_remappedVS[5]; uniform vec2 uf_windowSpaceToClipSpaceTransform; #endif ATTR_LAYOUT(0, 0) in uvec4 attrDataSem0; ATTR_LAYOUT(0, 1) in uvec4 attrDataSem2; ATTR_LAYOUT(0, 2) in uvec4 attrDataSem8; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; }; layout(location = 0) out vec4 passParameterSem130; layout(location = 1) out vec4 passParameterSem131; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ return min(a*b,min(abs(a)*3.40282347E+38F,abs(b)*3.40282347E+38F)); } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R127f = vec4(0.0); uvec4 attrDecoder; float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = floatBitsToInt(ivec4(gl_VertexID, 0, 0, gl_InstanceID)); attrDecoder = attrDataSem0; attrDecoder = (attrDecoder>>24)|((attrDecoder>>8)&0xFF00)|((attrDecoder<<8)&0xFF0000)|((attrDecoder<<24)); R1f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(int(attrDecoder.w))); attrDecoder.xy = attrDataSem2.xy; attrDecoder.xy = ((attrDecoder.xy>>8)&0xFF)|((attrDecoder.xy<<8)&0xFF00); attrDecoder.z = 0; attrDecoder.w = 0; attrDecoder.xy = floatBitsToUint(unpackHalf2x16(attrDecoder.x|(attrDecoder.y<<16))); attrDecoder.zw = uvec2(0); R2f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(floatBitsToInt(0.0)), intBitsToFloat(floatBitsToInt(1.0))); // 0 PV0f.x = R1f.w * intBitsToFloat(uf_remappedVS[0].y); PV0f.y = R1f.w * intBitsToFloat(uf_remappedVS[0].x); PV0f.z = R1f.w * intBitsToFloat(uf_remappedVS[0].w); PV0f.w = R1f.w * intBitsToFloat(uf_remappedVS[0].z); R127f.w = 0.0; PS0f = R127f.w; // 1 R123f.x = (R1f.z * intBitsToFloat(uf_remappedVS[1].y) + PV0f.x); PV1f.x = R123f.x; R123f.y = (R1f.z * intBitsToFloat(uf_remappedVS[1].x) + PV0f.y); PV1f.y = R123f.y; R123f.z = (R1f.z * intBitsToFloat(uf_remappedVS[1].w) + PV0f.z); PV1f.z = R123f.z; R123f.w = (R1f.z * intBitsToFloat(uf_remappedVS[1].z) + PV0f.w); PV1f.w = R123f.w; R0f.y = R2f.y + PS0f; PS1f = R0f.y; // 2 R123f.x = (R1f.y * intBitsToFloat(uf_remappedVS[2].y) + PV1f.x); PV0f.x = R123f.x; R123f.y = (R1f.y * intBitsToFloat(uf_remappedVS[2].x) + PV1f.y); PV0f.y = R123f.y; R123f.z = (R1f.y * intBitsToFloat(uf_remappedVS[2].w) + PV1f.z); PV0f.z = R123f.z; R123f.w = (R1f.y * intBitsToFloat(uf_remappedVS[2].z) + PV1f.w); PV0f.w = R123f.w; R3f.y = R2f.y + R127f.w; PS0f = R3f.y; // 3 backupReg0f = R1f.x; backupReg0f = R1f.x; backupReg0f = R1f.x; backupReg0f = R1f.x; R1f.x = (backupReg0f * intBitsToFloat(uf_remappedVS[3].x) + PV0f.y); R1f.y = (backupReg0f * intBitsToFloat(uf_remappedVS[3].y) + PV0f.x); R1f.z = (backupReg0f * intBitsToFloat(uf_remappedVS[3].z) + PV0f.w); R1f.w = (backupReg0f * intBitsToFloat(uf_remappedVS[3].w) + PV0f.z); // 4 PV0f.x = intBitsToFloat(uf_remappedVS[4].x)/resXScale * intBitsToFloat(0x3b088889); PV0f.y = intBitsToFloat(uf_remappedVS[4].x)/resXScale * intBitsToFloat(0x3b088889); // 5 PV1f.x = PV0f.x; PV1f.x /= 2.0; PV1f.y = PV0f.y * intBitsToFloat(0xbfc00000); PV1f.z = -(PV0f.x); PV1f.z /= 2.0; PV1f.w = PV0f.y * 1.5; // 6 R0f.x = R2f.x + PV1f.y; R0f.z = R2f.x + PV1f.z; R3f.w = R2f.x + PV1f.w; R3f.z = R2f.x + PV1f.x; PS0f = R3f.z; // export SET_POSITION(vec4(R1f.x, R1f.y, R1f.z, R1f.w)); // export passParameterSem130 = vec4(R0f.x, R0f.y, R0f.z, R0f.y); // export passParameterSem131 = vec4(R3f.w, R3f.y, R3f.z, R3f.y); // 0 }