#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable #ifdef VULKAN #define ATTR_LAYOUT(__vkSet, __location) layout(set = __vkSet, location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation) #define SET_POSITION(_v) gl_Position = _v; gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0 #define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale.xy,gl_FragCoord.zw) #define gl_VertexID gl_VertexIndex #define gl_InstanceID gl_InstanceIndex #else #define ATTR_LAYOUT(__vkSet, __location) layout(location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation) #define SET_POSITION(_v) gl_Position = _v #define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale,gl_FragCoord.zw) #endif // This shader was automatically converted to be cross-compatible with Vulkan and OpenGL. // shader 74681a5c2af57975 // Used for: Vertical bloom blur float resYScale = float($height)/float($gameHeight); #ifdef VULKAN layout(set = 1, binding = 1) uniform ufBlock { uniform ivec4 uf_remappedPS[1]; uniform vec4 uf_fragCoordScale; }; #else uniform ivec4 uf_remappedPS[1]; uniform vec2 uf_fragCoordScale; #endif // uf_fragCoordScale was moved to the ufBlock TEXTURE_LAYOUT(0, 1, 0) uniform sampler2D textureUnitPS0; layout(location = 0) in vec4 passParameterSem133; layout(location = 0) out vec4 passPixelColor0; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){return mix(0.0, a*b, (a != 0.0) && (b != 0.0));} void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); vec4 R4f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R127f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem133; // 0 R2f.x = R0f.x + 0.0; R2f.y = R0f.y + 0.0; R127f.z = 0.0; PV0f.z = R127f.z; PV0f.w = intBitsToFloat(uf_remappedPS[0].w)/resYScale * intBitsToFloat(0xc0500000); PS0f = intBitsToFloat(uf_remappedPS[0].w)/resYScale * intBitsToFloat(0xbfb1eb85); // 1 R1f.x = PV0f.z + R0f.x; R1f.y = PV0f.w + R0f.y; R0f.z = PV0f.z + R0f.x; R0f.w = PS0f + R0f.y; PS1f = intBitsToFloat(uf_remappedPS[0].w)/resYScale * intBitsToFloat(0x3fb1eb85); // 2 R3f.x = R127f.z + R0f.x; R3f.y = PS1f + R0f.y; PV0f.z = intBitsToFloat(uf_remappedPS[0].w)/resYScale * intBitsToFloat(0x40500000); R4f.w = R127f.z + R0f.x; // 3 R4f.y = PV0f.z + R0f.y; R1f.xyzw = (texture(textureUnitPS0, R1f.xy).xyzw); R2f.xyzw = (texture(textureUnitPS0, R2f.xy).xyzw); R0f.xyzw = (texture(textureUnitPS0, R0f.zw).xyzw); R3f.xyzw = (texture(textureUnitPS0, R3f.xy).xyzw); R4f.xyzw = (texture(textureUnitPS0, R4f.wy).xyzw); // 0 PV0f.x = R1f.z * intBitsToFloat(0x3d9958bf); PV0f.y = R1f.y * intBitsToFloat(0x3d9958bf); PV0f.z = R1f.x * intBitsToFloat(0x3d9958bf); PV0f.w = R1f.w * intBitsToFloat(0x3d9958bf); // 1 R123f.x = (R2f.z * intBitsToFloat(0x3e658dc4) + PV0f.x); PV1f.x = R123f.x; R123f.y = (R2f.y * intBitsToFloat(0x3e658dc4) + PV0f.y); PV1f.y = R123f.y; R123f.z = (R2f.x * intBitsToFloat(0x3e658dc4) + PV0f.z); PV1f.z = R123f.z; R123f.w = (R2f.w * intBitsToFloat(0x3e658dc4) + PV0f.w); PV1f.w = R123f.w; // 2 R123f.x = (R0f.w * intBitsToFloat(0x3ea04663) + PV1f.w); PV0f.x = R123f.x; R123f.y = (R0f.z * intBitsToFloat(0x3ea04663) + PV1f.x); PV0f.y = R123f.y; R123f.z = (R0f.y * intBitsToFloat(0x3ea04663) + PV1f.y); PV0f.z = R123f.z; R123f.w = (R0f.x * intBitsToFloat(0x3ea04663) + PV1f.z); PV0f.w = R123f.w; // 3 R123f.x = (R3f.z * intBitsToFloat(0x3ea04663) + PV0f.y); PV1f.x = R123f.x; R123f.y = (R3f.y * intBitsToFloat(0x3ea04663) + PV0f.z); PV1f.y = R123f.y; R123f.z = (R3f.x * intBitsToFloat(0x3ea04663) + PV0f.w); PV1f.z = R123f.z; R123f.w = (R3f.w * intBitsToFloat(0x3ea04663) + PV0f.x); PV1f.w = R123f.w; // 4 backupReg0f = R4f.x; backupReg1f = R4f.y; backupReg2f = R4f.z; backupReg3f = R4f.w; R4f.x = (backupReg0f * intBitsToFloat(0x3d9958bf) + PV1f.z); R4f.y = (backupReg1f * intBitsToFloat(0x3d9958bf) + PV1f.y); R4f.z = (backupReg2f * intBitsToFloat(0x3d9958bf) + PV1f.x); R4f.w = (backupReg3f * intBitsToFloat(0x3d9958bf) + PV1f.w); // export passPixelColor0 = vec4(R4f.x, R4f.y, R4f.z, R4f.w); }