#version 430 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable // shader 2fc311c50a4dc0cc const float arScale = (((float($gameHeight)/float($height))*float($width))/float($gameWidth)); // start of shader inputs/outputs, predetermined by Cemu. Do not touch #ifdef VULKAN #define ATTR_LAYOUT(__vkSet, __location) layout(set = __vkSet, location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation) #define gl_VertexID gl_VertexIndex #define gl_InstanceID gl_InstanceIndex #define SET_POSITION(_v) gl_Position = _v #else #define ATTR_LAYOUT(__vkSet, __location) layout(location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation) #define SET_POSITION(_v) gl_Position = _v #endif #ifdef VULKAN layout(set = 0, binding = 0) uniform ufBlock { uniform ivec4 uf_remappedVS[9]; }; #else uniform ivec4 uf_remappedVS[9]; #endif ATTR_LAYOUT(0, 0) in uvec4 attrDataSem0; ATTR_LAYOUT(0, 1) in uvec4 attrDataSem3; ATTR_LAYOUT(0, 2) in uvec4 attrDataSem4; ATTR_LAYOUT(0, 3) in uvec4 attrDataSem8; ATTR_LAYOUT(0, 4) in uvec4 attrDataSem9; out gl_PerVertex { vec4 gl_Position; }; layout(location = 0) out vec4 passParameterSem131; layout(location = 1) out vec4 passParameterSem136; // end of shader inputs/outputs int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); vec4 R4f = vec4(0.0); vec4 R5f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R127f = vec4(0.0); uvec4 attrDecoder; float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = floatBitsToInt(ivec4(gl_VertexID, 0, 0, gl_InstanceID)); attrDecoder.xyz = attrDataSem0.xyz; attrDecoder.xyz = (attrDecoder.xyz>>24)|((attrDecoder.xyz>>8)&0xFF00)|((attrDecoder.xyz<<8)&0xFF0000)|((attrDecoder.xyz<<24)); attrDecoder.w = 0; R3f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(floatBitsToInt(1.0))); attrDecoder.xyzw = floatBitsToUint(vec4(attrDataSem3.xyzw)/255.0); R1f = vec4(intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(int(attrDecoder.w)), intBitsToFloat(int(attrDecoder.x))); attrDecoder.xyzw = floatBitsToUint(vec4(attrDataSem4.xyzw)/255.0); R2f = vec4(intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(int(attrDecoder.w)), intBitsToFloat(int(attrDecoder.x))); attrDecoder.xy = attrDataSem8.xy; attrDecoder.xy = (attrDecoder.xy>>24)|((attrDecoder.xy>>8)&0xFF00)|((attrDecoder.xy<<8)&0xFF0000)|((attrDecoder.xy<<24)); attrDecoder.z = 0; attrDecoder.w = 0; R4f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(floatBitsToInt(0.0)), intBitsToFloat(floatBitsToInt(1.0))); attrDecoder.xy = attrDataSem9.xy; attrDecoder.xy = (attrDecoder.xy>>24)|((attrDecoder.xy>>8)&0xFF00)|((attrDecoder.xy<<8)&0xFF0000)|((attrDecoder.xy<<24)); attrDecoder.z = 0; attrDecoder.w = 0; R5f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(floatBitsToInt(0.0)), intBitsToFloat(floatBitsToInt(1.0))); // 0 PV0f.x = intBitsToFloat(uf_remappedVS[0].w) * 1.0; PV0f.y = intBitsToFloat(uf_remappedVS[0].z) * 1.0; PV0f.z = intBitsToFloat(uf_remappedVS[0].y) * 1.0; PV0f.w = intBitsToFloat(uf_remappedVS[0].x) * 1.0; R0f.x = mul_nonIEEE(R2f.z, R2f.w); PS0f = R0f.x; // 1 R123f.x = (mul_nonIEEE(R3f.z,intBitsToFloat(uf_remappedVS[1].w)) + PV0f.x); PV1f.x = R123f.x; R123f.y = (mul_nonIEEE(R3f.z,intBitsToFloat(uf_remappedVS[1].z)) + PV0f.y); PV1f.y = R123f.y; R123f.z = (mul_nonIEEE(R3f.z,intBitsToFloat(uf_remappedVS[1].y)) + PV0f.z); PV1f.z = R123f.z; R123f.w = (mul_nonIEEE(R3f.z,intBitsToFloat(uf_remappedVS[1].x)) + PV0f.w); PV1f.w = R123f.w; R0f.y = mul_nonIEEE(R2f.z, R2f.x); PS1f = R0f.y; // 2 R123f.x = (mul_nonIEEE(R3f.y,intBitsToFloat(uf_remappedVS[2].w)) + PV1f.x); PV0f.x = R123f.x; R123f.y = (mul_nonIEEE(R3f.y,intBitsToFloat(uf_remappedVS[2].z)) + PV1f.y); PV0f.y = R123f.y; R123f.z = (mul_nonIEEE(R3f.y,intBitsToFloat(uf_remappedVS[2].y)) + PV1f.z); PV0f.z = R123f.z; R123f.w = (mul_nonIEEE(R3f.y,intBitsToFloat(uf_remappedVS[2].x)) + PV1f.w); PV0f.w = R123f.w; R0f.z = mul_nonIEEE(R2f.z, R2f.y); PS0f = R0f.z; // 3 R123f.x = (mul_nonIEEE(R3f.x,intBitsToFloat(uf_remappedVS[3].w)) + PV0f.x); PV1f.x = R123f.x; R127f.y = (mul_nonIEEE(R3f.x,intBitsToFloat(uf_remappedVS[3].z)) + PV0f.y); R127f.z = (mul_nonIEEE(R3f.x,intBitsToFloat(uf_remappedVS[3].y)) + PV0f.z); R127f.w = (mul_nonIEEE(R3f.x,intBitsToFloat(uf_remappedVS[3].x)) + PV0f.w); R0f.w = 0.0; PS1f = R0f.w; // 4 PV0f.x = mul_nonIEEE(PV1f.x, intBitsToFloat(uf_remappedVS[4].w)); PV0f.y = mul_nonIEEE(PV1f.x, intBitsToFloat(uf_remappedVS[4].z)); PV0f.z = mul_nonIEEE(PV1f.x, intBitsToFloat(uf_remappedVS[4].y)); PV0f.w = mul_nonIEEE(PV1f.x, intBitsToFloat(uf_remappedVS[4].x)); R4f.z = R5f.x; PS0f = R4f.z; // 5 R123f.x = (mul_nonIEEE(R127f.y,intBitsToFloat(uf_remappedVS[5].w)) + PV0f.x); PV1f.x = R123f.x; R123f.y = (mul_nonIEEE(R127f.y,intBitsToFloat(uf_remappedVS[5].z)) + PV0f.y); PV1f.y = R123f.y; R123f.z = (mul_nonIEEE(R127f.y,intBitsToFloat(uf_remappedVS[5].y)) + PV0f.z); PV1f.z = R123f.z; R123f.w = (mul_nonIEEE(R127f.y,intBitsToFloat(uf_remappedVS[5].x)) + PV0f.w); PV1f.w = R123f.w; R4f.w = R5f.y; PS1f = R4f.w; // 6 R123f.x = (mul_nonIEEE(R127f.z,intBitsToFloat(uf_remappedVS[6].w)) + PV1f.x); PV0f.x = R123f.x; R123f.y = (mul_nonIEEE(R127f.z,intBitsToFloat(uf_remappedVS[6].z)) + PV1f.y); PV0f.y = R123f.y; R123f.z = (mul_nonIEEE(R127f.z,intBitsToFloat(uf_remappedVS[6].y)) + PV1f.z); PV0f.z = R123f.z; R123f.w = (mul_nonIEEE(R127f.z,intBitsToFloat(uf_remappedVS[6].x)) + PV1f.w); PV0f.w = R123f.w; // 7 R5f.x = (mul_nonIEEE(R127f.w,intBitsToFloat(uf_remappedVS[7].x)) + PV0f.w); R5f.y = (mul_nonIEEE(R127f.w,intBitsToFloat(uf_remappedVS[7].y)) + PV0f.z); R5f.z = (mul_nonIEEE(R127f.w,intBitsToFloat(uf_remappedVS[7].z)) + PV0f.y); R5f.w = (mul_nonIEEE(R127f.w,intBitsToFloat(uf_remappedVS[7].w)) + PV0f.x); // 8 backupReg0f = R1f.x; backupReg1f = R1f.y; backupReg2f = R1f.z; R1f.x = mul_nonIEEE(intBitsToFloat(uf_remappedVS[8].y), R1f.w); R1f.y = mul_nonIEEE(intBitsToFloat(uf_remappedVS[8].z), backupReg0f); R1f.z = mul_nonIEEE(intBitsToFloat(uf_remappedVS[8].w), backupReg1f); R1f.w = mul_nonIEEE(intBitsToFloat(uf_remappedVS[8].x), backupReg2f); // export SET_POSITION(vec4(R5f.x/arScale, R5f.y, R5f.z, R5f.w)); // export passParameterSem131 = vec4(R1f.x, R1f.y, R1f.z, R1f.w); // export // skipped export to semanticId 255 // export passParameterSem136 = vec4(R4f.x, R4f.y, R4f.z, R4f.w); // 0 }