#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable // shader f14bb57cd5c9cb77 - dumped 1.15 // Used for: Removing/Restoring the native BotW World Anti-Aliasing implementation const float resX = $width/1280; const float resY = $height/720; uniform ivec4 uf_remappedPS[4]; layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf462d000 res 1280x720x1 dim 1 tm: 4 format 0019 compSel: 0 1 2 3 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 1 layout(binding = 1) uniform sampler2D textureUnitPS1;// Tex1 addr 0x37f40000 res 1280x720x1 dim 1 tm: 4 format 0001 compSel: 0 4 4 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 2 2 2 border: 1 layout(location = 0) in vec4 passParameterSem2; layout(location = 0) out vec4 passPixelColor0; uniform vec2 uf_fragCoordScale; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){return mix(0.0, a*b, (a != 0.0) && (b != 0.0));} void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); // Important variable vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); // Important variable vec4 R123f = vec4(0.0); vec4 R126f = vec4(0.0); vec4 R127f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; bool activeMaskStack[2]; bool activeMaskStackC[3]; activeMaskStack[0] = false; activeMaskStackC[0] = false; activeMaskStackC[1] = false; activeMaskStack[0] = true; activeMaskStackC[0] = true; activeMaskStackC[1] = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem2; if( activeMaskStackC[1] == true ) { R1f.xyzw = (textureGather(textureUnitPS1, R0f.xy).wzxy); R2f.xyzw = (texture(textureUnitPS0, R0f.xy).xyzw); } if( activeMaskStackC[1] == true ) { activeMaskStack[1] = activeMaskStack[0]; activeMaskStackC[2] = activeMaskStackC[1]; // 0 PV0f.x = R1f.w + -(R1f.x); PV0f.y = R1f.z + -(R1f.y); PV0f.z = mul_nonIEEE(R2f.x, intBitsToFloat(uf_remappedPS[0].x)); R127f.w = min(R1f.z, R1f.x); R127f.x = min(R1f.w, R1f.y); PS0f = R127f.x; // 1 R123f.x = (mul_nonIEEE(R2f.y,intBitsToFloat(uf_remappedPS[0].y)) + PV0f.z); PV1f.x = R123f.x; PV1f.y = max(R1f.z, R1f.x); R127f.z = PV0f.y + -(PV0f.x); PV1f.z = R127f.z; R126f.w = PV0f.y + PV0f.x; PV1f.w = R126f.w; PS1f = max(R1f.w, R1f.y); // 2 PV0f.x = max(PV1f.z, -(PV1f.z)); PV0f.y = max(PV1f.w, -(PV1f.w)); R123f.z = (mul_nonIEEE(R2f.z,intBitsToFloat(uf_remappedPS[0].z)) + PV1f.x); PV0f.z = R123f.z; PV0f.w = min(R127f.w, R127f.x); PS0f = max(PV1f.y, PS1f); // 3 PV1f.x = mul_nonIEEE(PS0f, intBitsToFloat(uf_remappedPS[1].x)); PV1f.y = max(PV0f.z, PS0f); PV1f.z = min(PV0f.z, PV0f.w); PV1f.w = min(PV0f.y, PV0f.x); // 4 R1f.x = -(PV1f.z) + PV1f.y; R0f.z = max(PV1f.x, intBitsToFloat(uf_remappedPS[1].y)); // Important - Divide looks blurrier/fuzzy and multiply looks sharper good PS0f = 1.0 / PV1f.w; // Important line affects aliasing strongly, increasing it is blurier and decreasing sharpens // 5 PV1f.x = mul_nonIEEE(R127f.z, PS0f); PV1f.y = mul_nonIEEE(R126f.w, PS0f); // 6 PV0f.z = max(PV1f.x, -(intBitsToFloat(uf_remappedPS[2].y))); PV0f.w = max(PV1f.y, -(intBitsToFloat(uf_remappedPS[2].y))); // 7 - another way to do it other than the original implmentation R3f.x = min(PV0f.w, intBitsToFloat(uf_remappedPS[2].y)); // Important - Divide looks sharper and better and multiply looks blurier fuzzy R1f.y = min(PV0f.z, intBitsToFloat(uf_remappedPS[2].y)); // Important - Divide looks sharper and better and multiply looks blurier fuzzy // 8 predResult = (R1f.x > R0f.z); activeMaskStack[1] = predResult; activeMaskStackC[2] = predResult == true && activeMaskStackC[1] == true; } else { activeMaskStack[1] = false; activeMaskStackC[2] = false; } if( activeMaskStackC[2] == true ) { // 0 backupReg0f = R3f.x; backupReg0f = R3f.x; R3f.x = (mul_nonIEEE(backupReg0f,intBitsToFloat(uf_remappedPS[3].x)/resX) + R0f.x); // Original Implementation R3f.y = (mul_nonIEEE(R1f.y,intBitsToFloat(uf_remappedPS[3].y)/resY) + R0f.y); // Original Implementation R1f.x = (mul_nonIEEE(backupReg0f,-(intBitsToFloat(uf_remappedPS[3].x)/resX)) + R0f.x); // Original Implementation PS0f = R1f.x; // 1 backupReg0f = R1f.y; R1f.y = (mul_nonIEEE(backupReg0f,-(intBitsToFloat(uf_remappedPS[3].y)/resY)) + R0f.y); // Original Implementation } if( activeMaskStackC[2] == true ) { R0f.xyzw = (texture(textureUnitPS0, R3f.xy).xyzw); R1f.xyzw = (texture(textureUnitPS0, R1f.xy).xyzw); } if( activeMaskStackC[2] == true ) { // 0 R127f.x = R0f.w + R1f.w; R127f.x /= 2.0; PV0f.x = R127f.x; R127f.y = R0f.z + R1f.z; R127f.y /= 2.0; PV0f.y = R127f.y; R127f.z = R0f.y + R1f.y; R127f.z /= 2.0; PV0f.z = R127f.z; R127f.w = R0f.x + R1f.x; R127f.w /= 2.0; PV0f.w = R127f.w; // 1 PV1f.x = R2f.w + -(PV0f.x); PV1f.y = R2f.z + -(PV0f.y); PV1f.z = R2f.y + -(PV0f.z); PV1f.w = R2f.x + -(PV0f.w); // 2 R2f.x = (PV1f.w * intBitsToFloat(0x3eb33333) + R127f.w); R2f.y = (PV1f.z * intBitsToFloat(0x3eb33333) + R127f.z); R2f.z = (PV1f.y * intBitsToFloat(0x3eb33333) + R127f.y); R2f.w = (PV1f.x * intBitsToFloat(0x3eb33333) + R127f.x); } activeMaskStackC[1] = activeMaskStack[0] == true && activeMaskStackC[0] == true; // export passPixelColor0 = vec4(R2f.x, R2f.y, R2f.z, R2f.w); }