#version 420 #extension GL_ARB_texture_gather : enable #define pow2(x) (x * x) // shader d8e69e8df8c227f5 // Bloom/blur 1st step, 1280->640->1280 uniform ivec4 uf_remappedPS[3]; layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf470a000 res 1280x720x1 dim 1 tm: 4 format 0816 compSel: 0 1 2 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 0 layout(binding = 1) uniform sampler2D textureUnitPS1;// Tex1 addr 0xf4386000 res 1280x720x1 dim 1 tm: 4 format 001a compSel: 0 1 2 3 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 2 2 2 border: 0 layout(location = 0) in vec4 passParameterSem0; layout(location = 0) out vec4 passPixelColor0; uniform vec2 uf_fragCoordScale; const float resScale = ($height/$gameHeight); const int sampleScale = 3; highp float lineRand(vec2 co) { highp float a = 12.9898; highp float b = 78.233; highp float c = 43758.5453; highp float dt = dot(co.xy, vec2(a, b)); highp float sn = mod(dt, 3.14); return fract(sin(sn) * c); } // FabriceNeyret2, single pass gaussian by intermediate MIPmap level. https://www.shadertoy.com/view/ltScRG // I hereby pledge my loyalty to the FabriceNeyret2 fanclub, this is bloody beautiful! const int samples = 8 * sampleScale, //8 or 4 balances xy position LOD = 2, // gaussian done on MIPmap at scale LOD sLOD = 1 << LOD; // tile size = 2^LOD const float sigma = float(samples) * .25; float gaussian(vec2 i) { return exp(-.5* dot(i /= sigma, i)) / (6.28 * sigma*sigma); } vec4 blur(sampler2D sp, vec2 U, vec2 scale) { vec4 O = vec4(0); int s = samples / sLOD; for (int i = 0; i < s*s; i++) { vec2 d = vec2(i%s, i / s)*float(sLOD) - float(samples) / 2.; O += gaussian(d) * textureLod(sp, U + scale * d, float(LOD)); } return O / O.a; } int clampFI32(int v) { if (v == 0x7FFFFFFF) return floatBitsToInt(1.0); else if (v == 0xFFFFFFFF) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b) { return min(a*b, min(abs(a)*3.40282347E+38F, abs(b)*3.40282347E+38F)); } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); vec4 R4f = vec4(0.0); vec4 R5f = vec4(0.0); vec4 R6f = vec4(0.0); vec4 R7f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R127f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem0; R0f.xy = vec2((passParameterSem0.x + passParameterSem0.z), (passParameterSem0.y + passParameterSem0.w)); // 0 R1f.x = R0f.x + intBitsToFloat(uf_remappedPS[0].x) / resScale; R1f.y = R0f.y + intBitsToFloat(uf_remappedPS[0].y) / resScale; R0f.z = R0f.x + intBitsToFloat(uf_remappedPS[0].z) / resScale; R0f.w = R0f.y + intBitsToFloat(uf_remappedPS[0].w) / resScale; // 1 backupReg0f = R0f.x; backupReg1f = R0f.y; backupReg0f = R0f.x; backupReg1f = R0f.y; R0f.x = backupReg0f + intBitsToFloat(uf_remappedPS[1].x) / resScale; R0f.y = backupReg1f + intBitsToFloat(uf_remappedPS[1].y) / resScale; R1f.z = backupReg0f + intBitsToFloat(uf_remappedPS[1].z) / resScale; R1f.w = backupReg1f + intBitsToFloat(uf_remappedPS[1].w) / resScale; //color.a = 1.0; R2f.xyz = (texture(textureUnitPS1, R1f.xy).xyz); R3f.xyz = (texture(textureUnitPS1, R0f.zw).xyz); R4f.xyz = (texture(textureUnitPS1, R0f.xy).xyz); R5f.xyz = (texture(textureUnitPS1, R1f.zw).xyz); vec2 coord = passParameterSem0.xy*textureSize(textureUnitPS0, 0); // R0f.xy;// vec2(0.5, 0.5); vec2 ps = vec2(1.0) / textureSize(textureUnitPS0, 0); vec2 uv = coord * ps; R6f.xyzw = blur(textureUnitPS0, uv, ps); // R6f.xyz = blur(textureUnitPS0, uv, ps); // R6f.w = 1.0; R7f = R6f; R0f = R6f; R1f = R6f; tempf.x = dot(vec4(R2f.x, R2f.y, R2f.z, -0.0), vec4(intBitsToFloat(0x3e000000), intBitsToFloat(0x41ff0000), intBitsToFloat(0x45fe0100), 0.0)); PV0f.x = tempf.x; PV0f.y = tempf.x; PV0f.z = tempf.x; PV0f.w = tempf.x; R127f.w = tempf.x; R127f.z = R6f.x + R7f.x; PS0f = R127f.z; // 1 tempf.x = dot(vec4(R3f.x, R3f.y, R3f.z, -0.0), vec4(intBitsToFloat(0x3e000000), intBitsToFloat(0x41ff0000), intBitsToFloat(0x45fe0100), 0.0)); PV1f.x = tempf.x; PV1f.y = tempf.x; PV1f.z = tempf.x; PV1f.w = tempf.x; R127f.y = R6f.y + R7f.y; PS1f = R127f.y; // 2 tempf.x = dot(vec4(R4f.x, R4f.y, R4f.z, -0.0), vec4(intBitsToFloat(0x3e000000), intBitsToFloat(0x41ff0000), intBitsToFloat(0x45fe0100), 0.0)); PV0f.x = tempf.x; PV0f.y = tempf.x; PV0f.z = tempf.x; PV0f.w = tempf.x; PS0f = R127f.w + PV1f.x; // 3 tempf.x = dot(vec4(R5f.x, R5f.y, R5f.z, -0.0), vec4(intBitsToFloat(0x3e000000), intBitsToFloat(0x41ff0000), intBitsToFloat(0x45fe0100), 0.0)); PV1f.x = tempf.x; PV1f.y = tempf.x; PV1f.z = tempf.x; PV1f.w = tempf.x; PS1f = PS0f + PV0f.x; // 4 backupReg0f = R0f.y; PV0f.y = PS1f + PV1f.x; PV0f.z = R127f.y + backupReg0f; PV0f.w = R6f.z + R7f.z; // 5 backupReg0f = R0f.z; R123f.x = (PV0f.y * 0.25 + -(intBitsToFloat(uf_remappedPS[2].x))); PV1f.x = R123f.x; PV1f.y = R127f.z + R0f.x; PV1f.z = PV0f.z + R1f.y; PV1f.w = PV0f.w + backupReg0f; // 6 PV0f.x = PV1f.y + R1f.x; PV0f.y = PV1f.w + R1f.z; PV0f.z = PV1f.z * 0.25; PV0f.w = max(PV1f.x, -(PV1f.x)); // 7 PV1f.x = PV0f.x * 0.25; PV1f.y = PV0f.y * 0.25; PV1f.z = PV0f.w * intBitsToFloat(uf_remappedPS[2].y); PV1f.z = clamp(PV1f.z, 0.0, 1.0); PV1f.w = max(PV0f.z, 0.0); // 8 PV0f.x = max(PV1f.y, 0.0); R1f.y = min(PV1f.w, 4.0); PV0f.z = max(PV1f.x, 0.0); tempResultf = log2(PV1f.z); if (isinf(tempResultf) == true) tempResultf = -3.40282347E+38F; PS0f = tempResultf; // 9 PV1f.x = PS0f * intBitsToFloat(uf_remappedPS[2].w); R1f.z = min(PV0f.x, 4.0); R1f.x = min(PV0f.z, 4.0); PS1f = R1f.x; // 10 PS0f = exp2(PV1f.x); // 11 R1f.w = PS0f * intBitsToFloat(uf_remappedPS[2].z); // export passPixelColor0 = vec4(R1f.x, R1f.y, R1f.z, R1f.w); }