#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable #ifdef VULKAN #define ATTR_LAYOUT(__vkSet, __location) layout(set = __vkSet, location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation) #define SET_POSITION(_v) gl_Position = _v; gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0 #define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale.xy,gl_FragCoord.zw) #define gl_VertexID gl_VertexIndex #define gl_InstanceID gl_InstanceIndex #else #define ATTR_LAYOUT(__vkSet, __location) layout(location = __location) #define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation, std140) #define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation) #define SET_POSITION(_v) gl_Position = _v #define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale,gl_FragCoord.zw) #endif // This shader was automatically converted to be cross-compatible with Vulkan and OpenGL. // shader ae5bf21625f134f3 // Used for: Squid Sisters TV const float origRatio = float($gameWidth)/float($gameHeight); const float newRatio = float($width)/float($height); #ifdef VULKAN layout(set = 0, binding = 0) uniform ufBlock { uniform ivec4 uf_remappedVS[7]; // uniform vec2 uf_windowSpaceToClipSpaceTransform; // Cemu optimized this uf_variable away in Cemu 1.15.7 }; #else uniform ivec4 uf_remappedVS[7]; // uniform vec2 uf_windowSpaceToClipSpaceTransform; // Cemu optimized this uf_variable away in Cemu 1.15.7 #endif // uf_windowSpaceToClipSpaceTransform was moved to the ufBlock ATTR_LAYOUT(0, 0) in uvec4 attrDataSem0; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; }; layout(location = 0) out vec4 passParameterSem0; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R125f = vec4(0.0); vec4 R126f = vec4(0.0); vec4 R127f = vec4(0.0); uvec4 attrDecoder; float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = floatBitsToInt(ivec4(gl_VertexID, 0, 0, gl_InstanceID)); attrDecoder.xyz = attrDataSem0.xyz; attrDecoder.xyz = (attrDecoder.xyz>>24)|((attrDecoder.xyz>>8)&0xFF00)|((attrDecoder.xyz<<8)&0xFF0000)|((attrDecoder.xyz<<24)); attrDecoder.w = 0; R1f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(floatBitsToInt(1.0))); // 0 R127f.x = -(R1f.y); R123f.y = (intBitsToFloat(uf_remappedVS[0].x) * intBitsToFloat(0x3e22f983) + 0.5); PV0f.y = R123f.y; R127f.z = (R1f.x > 0.0)?1.0:0.0; R127f.z /= 2.0; R126f.w = 1.0; PV0f.w = R126f.w; R127f.w = (0.0 > R1f.x)?1.0:0.0; R127f.w /= 2.0; PS0f = R127f.w; // 1 R0f.x = dot(vec4(R1f.x,R1f.y,R1f.z,PV0f.w),vec4(intBitsToFloat(uf_remappedVS[1].x),intBitsToFloat(uf_remappedVS[1].y),intBitsToFloat(uf_remappedVS[1].z),intBitsToFloat(uf_remappedVS[1].w))); PV1f.x = R0f.x; PV1f.y = R0f.x; PV1f.z = R0f.x; PV1f.w = R0f.x; PS1f = fract(PV0f.y); // 2 tempf.x = dot(vec4(R1f.x,R1f.y,R1f.z,R126f.w),vec4(intBitsToFloat(uf_remappedVS[2].x),intBitsToFloat(uf_remappedVS[2].y),intBitsToFloat(uf_remappedVS[2].z),intBitsToFloat(uf_remappedVS[2].w))); PV0f.x = tempf.x; PV0f.y = tempf.x; PV0f.z = tempf.x; PV0f.w = tempf.x; R0f.y = tempf.x; R125f.w = (PS1f * intBitsToFloat(0x40c90fdb) + intBitsToFloat(0xc0490fdb)); PS0f = R125f.w; // 3 tempf.x = dot(vec4(R1f.x,R1f.y,R1f.z,R126f.w),vec4(intBitsToFloat(uf_remappedVS[3].x),intBitsToFloat(uf_remappedVS[3].y),intBitsToFloat(uf_remappedVS[3].z),intBitsToFloat(uf_remappedVS[3].w))); PV1f.x = tempf.x; PV1f.y = tempf.x; PV1f.z = tempf.x; PV1f.w = tempf.x; R0f.z = tempf.x; R126f.x = R127f.z + -(R127f.w); PS1f = R126f.x; // 4 tempf.x = dot(vec4(R1f.x,R1f.y,R1f.z,R126f.w),vec4(intBitsToFloat(uf_remappedVS[4].x),intBitsToFloat(uf_remappedVS[4].y),intBitsToFloat(uf_remappedVS[4].z),intBitsToFloat(uf_remappedVS[4].w))); PV0f.x = tempf.x; PV0f.y = tempf.x; PV0f.z = tempf.x; PV0f.w = tempf.x; R0f.w = tempf.x; R127f.z = (R127f.x > 0.0)?1.0:0.0; R127f.z /= 2.0; PS0f = R127f.z; // 5 PV1f.y = (0.0 > R127f.x)?1.0:0.0; PV1f.y /= 2.0; R126f.z = R125f.w * intBitsToFloat(0x3e22f983); PV1f.z = R126f.z; R125f.w = R126f.x + intBitsToFloat(uf_remappedVS[5].x); // 6 PV0f.z = R127f.z + -(PV1f.y); R127f.y = cos((PV1f.z)/0.1591549367); PS0f = R127f.y; // 7 backupReg0f = R126f.z; PV1f.y = mul_nonIEEE(PS0f, R125f.w); R126f.z = PV0f.z + intBitsToFloat(uf_remappedVS[5].y); PV1f.z = R126f.z; PS1f = sin((backupReg0f)/0.1591549367); // 8 R123f.x = (mul_nonIEEE(-(PS1f),PV1f.z) + PV1f.y); PV0f.x = R123f.x; PV0f.w = mul_nonIEEE(PS1f, R125f.w); // 9 R1f.x = (mul_nonIEEE(PV0f.x,intBitsToFloat(uf_remappedVS[6].x)) + 0.5); R123f.z = (mul_nonIEEE(R127f.y,R126f.z) + PV0f.w); PV1f.z = R123f.z; // 10 R1f.y = (mul_nonIEEE(PV1f.z,intBitsToFloat(uf_remappedVS[6].y)) + 0.5); // export SET_POSITION(vec4(R0f.x/(origRatio/newRatio), R0f.y, R0f.z, R0f.w)); // export passParameterSem0 = vec4(R1f.x, R1f.y, R1f.z, R1f.z); }