#version 420 #extension GL_ARB_texture_gather : enable // shader bd8bba59e2149449 // Possible problems // Being below 1.3.0 will give you double-vision with recent graphic packs. Update to 1.3.0 or above. // If you're experiencing any issues (due to having the previous Clarity shaders installed), please remove and redownload all of the BotW packs. // Credit to NAVras for merging to a better shader. //(Thank you NAVras for debugging and answering silly questions.) // Couldn't have got this far without you. // Credit to getdls for adding exposure & Original Contrasty. // Clarity GFX // Credit to Jamie for main coding. // Credit to Kiri coding & Reshade logic. // Credit to Serfrost for preset values. // Original shader dumped using cemu 1.10.0f, BotW 1.3.1 //v0.9b //########################################################## //ToneMapping float bloomFactor = 0.2; //Default is 1.0 float Bleach = 0.3; //Default is 0.0 float exposure = 1.13; //Default is 1.0 float defog = 0.004; //Default is 0.0 //Lift Gamma Gain #define RGB_Lift vec3(1.05, 1.05, 1.05) //[0.000 to 2.000] Adjust shadows for Red, Green and Blue. #define RGB_Gamma vec3(0.70, 0.70, 0.70) //[0.000 to 2.000] Adjust midtones for Red, Green and Blue #define RGB_Gain vec3(1.05, 1.00, 1.05) //[0.000 to 2.000] Adjust highlights for Red, Green and Blue //Note that a value of 1.0 is a neutral setting that leave the color unchanged. //Curves float Contrast = 0.50; //[-1.0, 1.0] The amount of contrast you want //Levels Control const int BlackPoint = 0; //[0, 255] The black point is the new black - literally. Everything darker than this will become completely black const int WhitePoint = 255; //[0, 255] The new white point. Everything brighter than this becomes completely white //LumaShapening #define sharp_strength 0.65 //[0.10 to 3.00] Strength of the sharpening Default is 0.65 #define sharp_clamp 0.035 //[0.000 to 1.000] Limits maximum amount of sharpening a pixel recieves - Default is 0.035 //Advanced sharpening settings #define offset_bias 1.0 //[0.0 to 6.0] Offset bias adjusts the radius of the sampling pattern. //Technicolor2 #define Technicolor2_Red_Strength 0.0 //Default is 0.0 #define Technicolor2_Green_Strength 0.0 //Default is 0.0 #define Technicolor2_Blue_Strength 0.0 //Default is 0.0 #define Technicolor2_Brightness 0.50 //Default is 1.0 #define Technicolor2_Strength 1.0 //Default is 1.0 #define Technicolor2_Saturation 0.70 //Default is 1.0 //Fake High Dynamic Range. #define HDRPower 1.15 // 0.0 to 8.0 "Raising this seems to make the effect stronger and also darker , Default 1.30." #define radius1 0.793 // 0.0 to 8.0 "Default 0.793 , will affect FX." #define radius2 0.87 // 0.0 to 8.0 "Default 0.87 , will affect FX." //########################################################### //Do not edit under this line. float sat = 0.0; const vec3 FogColor = vec3(1.0, 1.5, 1.0); //defog Color"; uniform ivec4 uf_remappedPS[1]; layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf46ac800 res 320x180x1 dim 1 tm: 4 format 0816 compSel: 0 1 2 5 mipView: 0x0 (num 0x5) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 1 layout(binding = 1) uniform sampler2D textureUnitPS1;// Tex1 addr 0xf5c7b800 res 1280x720x1 dim 1 tm: 4 format 0816 compSel: 0 1 2 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 2 2 2 border: 1 layout(location = 0) in vec4 passParameterSem0; layout(location = 0) out vec4 passPixelColor0; uniform vec2 uf_fragCoordScale; int clampFI32(int v) { if (v == 0x7FFFFFFF) return floatBitsToInt(1.0); else if (v == 0xFFFFFFFF) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b) { if (a == 0.0 || b == 0.0) return 0.0; return a*b; } //ToneMapping vec3 TonemapPass(vec3 inputColor) { vec3 color = inputColor; color = clamp(color - defog * FogColor * 2.55, 0.0, 1.0); // defog color *= exposure / (1.0 + color / exposure); const vec3 coefLuma = vec3(0.2126, 0.7152, 0.0722); float lum = dot(coefLuma, color); float L = clamp(10.0 * (lum - 0.45), 0.0, 1.0); vec3 A2 = Bleach * color; vec3 result1 = 2.0f * color * lum; vec3 result2 = 1.0f - 2.0f * (1.0f - lum) * (1.0f - color); vec3 newColor = mix(result1, result2, L); vec3 mixRGB = A2 * newColor; color += ((1.0f - A2) * mixRGB); vec3 middlegray = vec3(dot(color, vec3(1.0 / 3.0))); vec3 diffcolor = color - middlegray; color = (color + diffcolor * sat) / (1 + (diffcolor * sat)); // saturation return color; } // Levels vec3 LevelsPass(vec3 inputColor) { float black_point_float = BlackPoint / 255.0; float white_point_float = WhitePoint == BlackPoint ? (255.0 / 0.00025) : (255.0 / (WhitePoint - BlackPoint)); // Avoid division by zero if the white and black point are the same vec3 color = inputColor; color = color * white_point_float - (black_point_float * white_point_float); return color; } //Curves vec3 CurvesPass(vec3 inputColor) { vec3 colorInput = inputColor; float Contrast_blend = Contrast * 2.0; //I multiply by two to give it a strength closer to the other curves. vec3 x = colorInput.rgb; //if the curve should be applied to both Luma and Chroma x = x * (x * (1.5 - x) + 0.5); //horner form - fastest version vec3 color = x; //if the curve should be applied to both Luma and Chroma colorInput.rgb = mix(colorInput.rgb, color, Contrast_blend); //Blend by Contrast return colorInput; } //TECHNICOLOR2 vec3 Technicolor2(vec3 inputColor) { vec3 color = inputColor; vec3 Color_Strength = vec3(Technicolor2_Red_Strength, Technicolor2_Green_Strength, Technicolor2_Blue_Strength); vec3 source = color; vec3 temp = 1.0 - source; vec3 target = temp.grg; vec3 target2 = temp.bbr; vec3 temp2 = source * target; temp2 *= target2; temp = temp2 * Color_Strength; temp2 *= Technicolor2_Brightness; target = temp.grg; target2 = temp.bbr; temp = source - target; temp += temp2; temp2 = temp - target2; color = mix(source, temp2, Technicolor2_Strength); color = mix(vec3(dot(color, vec3(0.333))), color, Technicolor2_Saturation); return color; } //Lift Gamma Gain vec3 LiftGammaGainPass(vec3 colorInput) { // -- Get input -- vec3 color = colorInput; // -- Lift -- color = color * (1.5 - 0.5 * RGB_Lift) + 0.5 * RGB_Lift - 0.5; color = clamp(color, 0.0, 1.0); //isn't strictly necessary, but doesn't cost performance. // -- Gain -- color *= RGB_Gain; // -- Gamma -- color = pow(color, 1.0 / RGB_Gamma); //Gamma // -- Return output -- return clamp(color, 0.0, 1.0); } //LumaShapening #define px (1.0/1280.0*uf_fragCoordScale.x) #define py (1.0/720.0*uf_fragCoordScale.y) #define CoefLuma vec3(0.2126, 0.7152, 0.0722) float lumasharping(sampler2D tex, vec2 pos) { vec4 colorInput = texture(tex, pos); vec3 ori = colorInput.rgb; // -- Combining the strength and luma multipliers -- vec3 sharp_strength_luma = (CoefLuma * sharp_strength); // -- Gaussian filter -- // [ .25, .50, .25] [ 1 , 2 , 1 ] // [ .50, 1, .50] = [ 2 , 4 , 2 ] // [ .25, .50, .25] [ 1 , 2 , 1 ] //float px = 1.0/tex_size[0]; //float py = 1.0/tex_size[1]; vec3 blur_ori = texture(tex, pos + vec2(px, -py) * 0.5 * offset_bias).rgb; // South East blur_ori += texture(tex, pos + vec2(-px, -py) * 0.5 * offset_bias).rgb; // South West blur_ori += texture(tex, pos + vec2(px, py) * 0.5 * offset_bias).rgb; // North East blur_ori += texture(tex, pos + vec2(-px, py) * 0.5 * offset_bias).rgb; // North West blur_ori *= 0.25; // ( /= 4) Divide by the number of texture fetches // -- Calculate the sharpening -- vec3 sharp = ori - blur_ori; //Subtracting the blurred image from the original image // -- Adjust strength of the sharpening and clamp it-- vec4 sharp_strength_luma_clamp = vec4(sharp_strength_luma * (0.5 / sharp_clamp), 0.5); //Roll part of the clamp into the dot float sharp_luma = clamp((dot(vec4(sharp, 1.0), sharp_strength_luma_clamp)), 0.0, 1.0); //Calculate the luma, adjust the strength, scale up and clamp sharp_luma = (sharp_clamp * 2.0) * sharp_luma - sharp_clamp; //scale down // -- Combining the values to get the final sharpened pixel -- //colorInput.rgb = colorInput.rgb + sharp_luma; // Add the sharpening to the input color. return sharp_luma; } //Fake High Dynamic Range. vec3 HDRPass(sampler2D tex, vec2 pos) { vec3 color = texture(tex, pos).rgb; vec3 bloom_sum1 = texture(tex, pos + vec2(1.5, -1.5) * radius1 * vec2(px, py)).rgb; bloom_sum1 += texture(tex, pos + vec2(-1.5, -1.5) * radius1 * vec2(px, py)).rgb; bloom_sum1 += texture(tex, pos + vec2(1.5, 1.5) * radius1 * vec2(px, py)).rgb; bloom_sum1 += texture(tex, pos + vec2(-1.5, 1.5) * radius1 * vec2(px, py)).rgb; bloom_sum1 += texture(tex, pos + vec2(0.0, -2.5) * radius1 * vec2(px, py)).rgb; bloom_sum1 += texture(tex, pos + vec2(0.0, 2.5) * radius1 * vec2(px, py)).rgb; bloom_sum1 += texture(tex, pos + vec2(-2.5, 0.0) * radius1 * vec2(px, py)).rgb; bloom_sum1 += texture(tex, pos + vec2(2.5, 0.0) * radius1 * vec2(px, py)).rgb; bloom_sum1 *= 0.005; vec3 bloom_sum2 = texture(tex, pos + vec2(1.5, -1.5) * radius2 * vec2(px, py)).rgb; bloom_sum2 += texture(tex, pos + vec2(-1.5, -1.5) * radius2 * vec2(px, py)).rgb; bloom_sum2 += texture(tex, pos + vec2(1.5, 1.5) * radius2 * vec2(px, py)).rgb; bloom_sum2 += texture(tex, pos + vec2(-1.5, 1.5) * radius2 * vec2(px, py)).rgb; bloom_sum2 += texture(tex, pos + vec2(0.0, -2.5) * radius2 * vec2(px, py)).rgb; bloom_sum2 += texture(tex, pos + vec2(0.0, 2.5) * radius2 * vec2(px, py)).rgb; bloom_sum2 += texture(tex, pos + vec2(-2.5, 0.0) * radius2 * vec2(px, py)).rgb; bloom_sum2 += texture(tex, pos + vec2(2.5, 0.0) * radius2 * vec2(px, py)).rgb; bloom_sum2 *= 0.010; float dist = radius2 - radius1; vec3 HDR = (color + (bloom_sum2 - bloom_sum1)) * dist; vec3 blend = HDR + color; color = pow(abs(blend), vec3(abs(HDRPower))) + HDR; return color; } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R125f = vec4(0.0); vec4 R126f = vec4(0.0); vec4 R127f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem0; R1f.xyz = (texture(textureUnitPS0, R0f.xy).xyz); vec3 bloom = texture(textureUnitPS0, passParameterSem0.xy).xyz; bloom *= bloomFactor; R0f.xyz = HDRPass(textureUnitPS1, passParameterSem0.xy); float smask = lumasharping(textureUnitPS1, passParameterSem0.xy); R0f.xyz += vec3(smask); // 0 R126f.x = R1f.x + R0f.x; PV0f.x = R126f.x; R127f.y = R1f.y + R0f.y; PV0f.y = R127f.y; R126f.z = R1f.z + R0f.z; PV0f.z = R126f.z; R125f.w = 1.0; // 1 tempf.x = dot(vec4(PV0f.x, PV0f.y, PV0f.z, -0.0), vec4(intBitsToFloat(0x3e99096c), intBitsToFloat(0x3f162b6b), intBitsToFloat(0x3dea4a8c), 0.0)); PV1f.x = tempf.x; PV1f.y = tempf.x; PV1f.z = tempf.x; PV1f.w = tempf.x; // 2 R127f.x = -(R127f.y) * intBitsToFloat(0x3fb8aa3b); PV0f.y = -(PV1f.x) * intBitsToFloat(0x3fb8aa3b); R127f.z = -(R126f.x) * intBitsToFloat(0x3fb8aa3b); R127f.w = -(R126f.z) * intBitsToFloat(0x3fb8aa3b); R126f.w = 1.0 / PV1f.x; PS0f = R126f.w; // 3 PS1f = exp2(PV0f.y); // 4 PV0f.x = -(PS1f)+1.0; PS0f = exp2(R127f.x); // 5 R127f.x = -(PS0f)+1.0; R126f.y = mul_nonIEEE(PV0f.x, PV0f.x); PV1f.z = PV0f.x * R126f.w; PS1f = exp2(R127f.w); // 6 backupReg0f = R126f.x; backupReg1f = R127f.z; R126f.x = mul_nonIEEE(backupReg0f, PV1f.z); PV0f.y = -(PS1f)+1.0; R127f.z = mul_nonIEEE(R126f.z, PV1f.z); PV0f.z = R127f.z; R127f.w = mul_nonIEEE(R127f.y, PV1f.z); PV0f.w = R127f.w; PS0f = exp2(backupReg1f); // 7 PV1f.x = R127f.x + -(PV0f.w); PV1f.y = PV0f.y + -(PV0f.z); PV1f.w = -(PS0f)+1.0; // 8 backupReg0f = R127f.z; R127f.x = (mul_nonIEEE(PV1f.x, R126f.y) + R127f.w); R127f.x = clamp(R127f.x, 0.0, 1.0); PV0f.x = R127f.x; PV0f.y = PV1f.w + -(R126f.x); R127f.z = (mul_nonIEEE(PV1f.y, R126f.y) + backupReg0f); R127f.z = clamp(R127f.z, 0.0, 1.0); PV0f.z = R127f.z; // 9 backupReg0f = R126f.x; R126f.x = (mul_nonIEEE(PV0f.y, R126f.y) + backupReg0f); R126f.x = clamp(R126f.x, 0.0, 1.0); PV1f.x = R126f.x; R126f.y = max(PV0f.x, PV0f.z); PV1f.w = min(PV0f.x, PV0f.z); // 10 tempf.x = dot(vec4(PV1f.x, R127f.x, R127f.z, R125f.w), vec4(intBitsToFloat(0x3f2aaaab), intBitsToFloat(0x3f2aaaab), intBitsToFloat(0x3f2aaaab), -(1.0))); PV0f.x = tempf.x; PV0f.y = tempf.x; PV0f.z = tempf.x; PV0f.w = tempf.x; R126f.z = min(PV1f.x, PV1f.w); PS0f = R126f.z; // 11 backupReg0f = R127f.x; backupReg1f = R127f.z; R127f.x = max(R126f.x, R126f.y); PV1f.x = R127f.x; R123f.y = (mul_nonIEEE(-(PV0f.x), PV0f.x) + 1.0); PV1f.y = R123f.y; R127f.z = backupReg0f + -(PS0f); R125f.w = R126f.x + -(PS0f); R126f.y = backupReg1f + -(PS0f); PS1f = R126f.y; // 12 R126f.x = (mul_nonIEEE(PV1f.y, intBitsToFloat(uf_remappedPS[0].y)) + intBitsToFloat(uf_remappedPS[0].x)); PV0f.x = R126f.x; PV0f.y = -(R126f.z) + PV1f.x; // 13 R123f.w = (mul_nonIEEE(-(PV0f.x), PV0f.y) + R127f.x); PV1f.w = R123f.w; // 14 R0f.x = (mul_nonIEEE(R126f.x, R125f.w) + PV1f.w); R0f.y = (mul_nonIEEE(R126f.x, R127f.z) + PV1f.w); R0f.z = (mul_nonIEEE(R126f.x, R126f.y) + PV1f.w); passPixelColor0 = vec4(R0f.x, R0f.y, R0f.z, R0f.w); vec3 color = (passPixelColor0.xyz); color += bloom; color = TonemapPass(color); color = Technicolor2(color); color = LevelsPass(color); color = CurvesPass(color); color = LiftGammaGainPass(color); passPixelColor0 = vec4(color, R0f.w); }