#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable #extension GL_ARB_shading_language_packing : enable // shader 4f557f00a56c6358 //test align edge alpha shadow uniform ivec4 uf_remappedVS[4]; uniform vec2 uf_windowSpaceToClipSpaceTransform; layout(location = 0) in uvec4 attrDataSem0; layout(location = 1) in uvec4 attrDataSem1; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; }; layout(location = 0) out vec4 passParameterSem0; layout(location = 1) out vec4 passParameterSem1; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R123f = vec4(0.0); uvec4 attrDecoder; float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = floatBitsToInt(ivec4(gl_VertexID, 0, 0, gl_InstanceID)); attrDecoder.xyz = attrDataSem0.xyz; attrDecoder.xyz = (attrDecoder.xyz>>24)|((attrDecoder.xyz>>8)&0xFF00)|((attrDecoder.xyz<<8)&0xFF0000)|((attrDecoder.xyz<<24)); attrDecoder.w = 0; R1f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(floatBitsToInt(1.0))); attrDecoder.xy = attrDataSem1.xy; attrDecoder.xy = (attrDecoder.xy>>24)|((attrDecoder.xy>>8)&0xFF00)|((attrDecoder.xy<<8)&0xFF0000)|((attrDecoder.xy<<24)); attrDecoder.z = 0; attrDecoder.w = 0; R2f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(floatBitsToInt(0.0)), intBitsToFloat(floatBitsToInt(1.0))); // 0 PV0f.x = mul_nonIEEE(R1f.w, intBitsToFloat(uf_remappedVS[0].y)); PV0f.y = mul_nonIEEE(R1f.w, intBitsToFloat(uf_remappedVS[0].x)); PV0f.z = mul_nonIEEE(R1f.w, intBitsToFloat(uf_remappedVS[0].w)); PV0f.w = mul_nonIEEE(R1f.w, intBitsToFloat(uf_remappedVS[0].z)); R0f.x = R2f.x; PS0f = R0f.x; // 1 R123f.x = (mul_nonIEEE(R1f.z,intBitsToFloat(uf_remappedVS[1].y)) + PV0f.x); PV1f.x = R123f.x; R123f.y = (mul_nonIEEE(R1f.z,intBitsToFloat(uf_remappedVS[1].x)) + PV0f.y); PV1f.y = R123f.y; R123f.z = (mul_nonIEEE(R1f.z,intBitsToFloat(uf_remappedVS[1].w)) + PV0f.z); PV1f.z = R123f.z; R123f.w = (mul_nonIEEE(R1f.z,intBitsToFloat(uf_remappedVS[1].z)) + PV0f.w); PV1f.w = R123f.w; R1f.z = 0.0; PS1f = R1f.z; // 2 R123f.x = (mul_nonIEEE(R1f.y,intBitsToFloat(uf_remappedVS[2].y)) + PV1f.x); PV0f.x = R123f.x; R123f.y = (mul_nonIEEE(R1f.y,intBitsToFloat(uf_remappedVS[2].x)) + PV1f.y); PV0f.y = R123f.y; R123f.z = (mul_nonIEEE(R1f.y,intBitsToFloat(uf_remappedVS[2].w)) + PV1f.z); PV0f.z = R123f.z; R123f.w = (mul_nonIEEE(R1f.y,intBitsToFloat(uf_remappedVS[2].z)) + PV1f.w); PV0f.w = R123f.w; R0f.y = R2f.y; PS0f = R0f.y; // 3 R2f.x = (mul_nonIEEE(R1f.x,intBitsToFloat(uf_remappedVS[3].x)) + PV0f.y); R2f.y = (mul_nonIEEE(R1f.x,intBitsToFloat(uf_remappedVS[3].y)) + PV0f.x); R2f.z = (mul_nonIEEE(R1f.x,intBitsToFloat(uf_remappedVS[3].z)) + PV0f.w); R2f.w = (mul_nonIEEE(R1f.x,intBitsToFloat(uf_remappedVS[3].w)) + PV0f.z); // export gl_Position = vec4(R1f.x*(1/1.001), R1f.y*(1 / 1.001), R1f.z, R1f.w); // export passParameterSem0 = vec4(R2f.x, R2f.y, R2f.z, R2f.w); // export passParameterSem1 = vec4(R0f.x, R0f.y, R0f.z, R0f.z); // 0 }