#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable // shader be99d80628d31127 //AA PS // Used for: Another vertical blur const float resXScale = float($width)/float($gameWidth); const float resYScale = float($height)/float($gameHeight); uniform ivec4 uf_remappedPS[4]; layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf5800800 res 1280x720x1 dim 1 tm: 4 format 0019 compSel: 0 1 2 3 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 1 layout(binding = 1) uniform sampler2D textureUnitPS1;// Tex1 addr 0xf4341000 res 1280x720x1 dim 1 tm: 4 format 0001 compSel: 0 4 4 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 2 2 2 border: 1 layout(location = 0) in vec4 passParameterSem2; layout(location = 0) out vec4 passPixelColor0; uniform vec2 uf_fragCoordScale; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){return mix(0.0, a*b, (a != 0.0) && (b != 0.0));} void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); vec4 R4f = vec4(0.0); vec4 R5f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R126f = vec4(0.0); vec4 R127f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; bool activeMaskStack[2]; bool activeMaskStackC[3]; activeMaskStack[0] = false; activeMaskStackC[0] = false; activeMaskStackC[1] = false; activeMaskStack[0] = true; activeMaskStackC[0] = true; activeMaskStackC[1] = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem2; if( activeMaskStackC[1] == true ) { R4f.xyzw = (texture(textureUnitPS0, R0f.xy).xyzw); R2f.xyzw = (textureGather(textureUnitPS1, R0f.xy).wzxy); } if( activeMaskStackC[1] == true ) { activeMaskStack[1] = activeMaskStack[0]; activeMaskStackC[2] = activeMaskStackC[1]; // 0 PV0f.x = min(R2f.z, R2f.x); PV0f.y = max(R2f.z, R2f.x); PV0f.z = mul_nonIEEE(R4f.x, intBitsToFloat(uf_remappedPS[0].x)); PV0f.w = min(R2f.w, R2f.y); PS0f = max(R2f.w, R2f.y); // 1 PV1f.x = min(PV0f.x, PV0f.w); R123f.y = (mul_nonIEEE(R4f.y,intBitsToFloat(uf_remappedPS[0].y)) + PV0f.z); PV1f.y = R123f.y; R127f.z = R2f.z + -(R2f.y); PV1f.z = R127f.z; PV1f.w = max(PV0f.y, PS0f); R126f.z = R2f.w + -(R2f.x); PS1f = R126f.z; // 2 PV0f.x = mul_nonIEEE(PV1f.w, intBitsToFloat(uf_remappedPS[1].x)); PV0f.y = max(PV1f.y, PV1f.w); PV0f.z = min(PV1f.y, PV1f.x); R3f.x = PV1f.z + PS1f; PS0f = R3f.x; // 3 R1f.x = max(PV0f.x, intBitsToFloat(uf_remappedPS[1].y)); R3f.y = -(PV0f.z) + PV0f.y; R1f.y = R127f.z + -(R126f.z); PS1f = R1f.y; // 4 predResult = (R3f.y > R1f.x); activeMaskStack[1] = predResult; activeMaskStackC[2] = predResult == true && activeMaskStackC[1] == true; } else { activeMaskStack[1] = false; activeMaskStackC[2] = false; } if( activeMaskStackC[2] == true ) { // 0 backupReg0f = R2f.y; R1f.x = max(R3f.x, -(R3f.x)); PV0f.x = R1f.x; R2f.y = backupReg0f + R2f.x; PV0f.y = R2f.y; R0f.z = intBitsToFloat(uf_remappedPS[2].z) * 0.25; R0f.w = max(R1f.y, -(R1f.y)); PV0f.w = R0f.w; R2f.x = -(intBitsToFloat(uf_remappedPS[3].x)); PS0f = R2f.x; // 1 R3f.y = R2f.z + PV0f.y; PV1f.y = R3f.y; R2f.y = min(PV0f.x, PV0f.w); PS1f = R2f.y; // 2 R3f.y = R2f.w + PV1f.y; PV0f.y = R3f.y; R1f.z = intBitsToFloat(uf_remappedPS[3].x); R0f.w = intBitsToFloat(uf_remappedPS[3].y); R5f.y = -(intBitsToFloat(uf_remappedPS[3].y)); PS0f = R5f.y; // 3 backupReg0f = R0f.z; R0f.z = (mul_nonIEEE(backupReg0f,PV0f.y) + intBitsToFloat(uf_remappedPS[2].w)); PV1f.z = R0f.z; // 4 backupReg0f = R2f.y; R2f.y = max(PV1f.z, backupReg0f); PV0f.y = R2f.y; // 5 R2f.y = 1.0 / PV0f.y; PS1f = R2f.y; // 6 backupReg0f = R1f.y; R1f.x = mul_nonIEEE(R3f.x, PS1f); PV0f.x = R1f.x; R1f.y = mul_nonIEEE(backupReg0f, PS1f); PV0f.y = R1f.y; // 7 R1f.x = max(PV0f.x, -(intBitsToFloat(uf_remappedPS[2].y))); PV1f.x = R1f.x; R1f.y = max(PV0f.y, -(intBitsToFloat(uf_remappedPS[2].y))); PV1f.y = R1f.y; // 8 R1f.x = min(PV1f.x, intBitsToFloat(uf_remappedPS[2].y)); PV0f.x = R1f.x; R1f.y = min(PV1f.y, intBitsToFloat(uf_remappedPS[2].y)); PV0f.y = R1f.y; // 9 backupReg0f = R0f.x; backupReg1f = R0f.y; backupReg0f = R0f.x; backupReg2f = R0f.w; backupReg1f = R0f.y; R0f.x = (mul_nonIEEE(PV0f.x,R2f.x) /resXScale + backupReg0f); R0f.y = (mul_nonIEEE(PV0f.y,R5f.y) /resYScale+ backupReg1f); R0f.z = (mul_nonIEEE(PV0f.x,R1f.z) /resXScale + backupReg0f); R0f.w = (mul_nonIEEE(PV0f.y,backupReg2f)/ resXScale + backupReg1f); } if( activeMaskStackC[2] == true ) { R1f.xyzw = (texture(textureUnitPS0, R0f.zw).xyzw); R0f.xyzw = (texture(textureUnitPS0, R0f.xy).xyzw); } if( activeMaskStackC[2] == true ) { // 0 backupReg0f = R0f.y; backupReg1f = R0f.x; PV0f.x = R0f.w + R1f.w; PV0f.x /= 2.0; PV0f.y = R0f.z + R1f.z; PV0f.y /= 2.0; PV0f.z = backupReg0f + R1f.y; PV0f.z /= 2.0; PV0f.w = backupReg1f + R1f.x; PV0f.w /= 2.0; // 1 PV1f.x = -(R4f.w) + PV0f.x; PV1f.y = -(R4f.z) + PV0f.y; PV1f.z = -(R4f.y) + PV0f.z; PV1f.w = -(R4f.x) + PV0f.w; // 2 backupReg0f = R4f.x; backupReg1f = R4f.y; backupReg2f = R4f.z; backupReg3f = R4f.w; R4f.x = (PV1f.w * intBitsToFloat(0x3f4ccccd) + backupReg0f); R4f.y = (PV1f.z * intBitsToFloat(0x3f4ccccd) + backupReg1f); R4f.z = (PV1f.y * intBitsToFloat(0x3f4ccccd) + backupReg2f); R4f.w = (PV1f.x * intBitsToFloat(0x3f4ccccd) + backupReg3f); } activeMaskStackC[1] = activeMaskStack[0] == true && activeMaskStackC[0] == true; // export passPixelColor0 = vec4(R4f.x, R4f.y, R4f.z, R4f.w); }