#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable #extension GL_ARB_shading_language_packing : enable // shader 0535e0f9e37cf612 #define enabled $enabled uniform ivec4 uf_remappedVS[8]; uniform vec2 uf_windowSpaceToClipSpaceTransform; layout(location = 0) in uvec4 attrDataSem0; layout(location = 1) in uvec4 attrDataSem3; layout(location = 2) in uvec4 attrDataSem4; layout(location = 3) in uvec4 attrDataSem8; layout(location = 4) in uvec4 attrDataSem9; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; }; layout(location = 0) out vec4 passParameterSem131; layout(location = 1) out vec4 passParameterSem136; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R3f = vec4(0.0); vec4 R4f = vec4(0.0); vec4 R123f = vec4(0.0); vec4 R125f = vec4(0.0); vec4 R126f = vec4(0.0); vec4 R127f = vec4(0.0); uvec4 attrDecoder; float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = floatBitsToInt(ivec4(gl_VertexID, 0, 0, gl_InstanceID)); attrDecoder.xyz = attrDataSem0.xyz; attrDecoder.xyz = (attrDecoder.xyz>>24)|((attrDecoder.xyz>>8)&0xFF00)|((attrDecoder.xyz<<8)&0xFF0000)|((attrDecoder.xyz<<24)); attrDecoder.w = 0; R3f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(floatBitsToInt(1.0))); attrDecoder.xyzw = floatBitsToUint(vec4(attrDataSem3.xyzw)/255.0); R1f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(int(attrDecoder.w))); attrDecoder.xyzw = floatBitsToUint(vec4(attrDataSem4.xyzw)/255.0); R2f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(int(attrDecoder.w))); attrDecoder.xy = attrDataSem8.xy; attrDecoder.xy = (attrDecoder.xy>>24)|((attrDecoder.xy>>8)&0xFF00)|((attrDecoder.xy<<8)&0xFF0000)|((attrDecoder.xy<<24)); attrDecoder.z = 0; attrDecoder.w = 0; R4f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(floatBitsToInt(0.0)), intBitsToFloat(floatBitsToInt(1.0))); // skipped unused attribute for r5 // 0 R123f.x = (mul_nonIEEE(R3f.z,intBitsToFloat(uf_remappedVS[0].w)) + intBitsToFloat(uf_remappedVS[1].w)); PV0f.x = R123f.x; R123f.y = (mul_nonIEEE(R3f.z,intBitsToFloat(uf_remappedVS[0].z)) + intBitsToFloat(uf_remappedVS[1].z)); PV0f.y = R123f.y; R4f.z = 0.0; // 1 R127f.x = (mul_nonIEEE(R3f.y,intBitsToFloat(uf_remappedVS[2].w)) + PV0f.x); R127f.y = (mul_nonIEEE(R3f.y,intBitsToFloat(uf_remappedVS[2].z)) + PV0f.y); // 2 R123f.z = (mul_nonIEEE(R3f.z,intBitsToFloat(uf_remappedVS[0].x)) + intBitsToFloat(uf_remappedVS[1].x)); PV0f.z = R123f.z; R123f.w = (mul_nonIEEE(R3f.z,intBitsToFloat(uf_remappedVS[0].y)) + intBitsToFloat(uf_remappedVS[1].y)); PV0f.w = R123f.w; // 3 R123f.x = (mul_nonIEEE(R3f.x,intBitsToFloat(uf_remappedVS[3].w)) + R127f.x); PV1f.x = R123f.x; R126f.y = (mul_nonIEEE(R3f.x,intBitsToFloat(uf_remappedVS[3].z)) + R127f.y); R127f.z = (mul_nonIEEE(R3f.y,intBitsToFloat(uf_remappedVS[2].x)) + PV0f.z); R127f.w = (mul_nonIEEE(R3f.y,intBitsToFloat(uf_remappedVS[2].y)) + PV0f.w); // 4 R127f.x = mul_nonIEEE(PV1f.x, intBitsToFloat(uf_remappedVS[4].w)); R127f.y = mul_nonIEEE(PV1f.x, intBitsToFloat(uf_remappedVS[4].z)); PV0f.z = mul_nonIEEE(PV1f.x, intBitsToFloat(uf_remappedVS[4].x)); PV0f.w = mul_nonIEEE(PV1f.x, intBitsToFloat(uf_remappedVS[4].y)); // 5 backupReg0f = R127f.w; R123f.x = (mul_nonIEEE(R126f.y,intBitsToFloat(uf_remappedVS[5].y)) + PV0f.w); PV1f.x = R123f.x; R125f.y = (mul_nonIEEE(R3f.x,intBitsToFloat(uf_remappedVS[3].x)) + R127f.z); R123f.z = (mul_nonIEEE(R126f.y,intBitsToFloat(uf_remappedVS[5].x)) + PV0f.z); PV1f.z = R123f.z; R127f.w = (mul_nonIEEE(R3f.x,intBitsToFloat(uf_remappedVS[3].y)) + backupReg0f); PV1f.w = R127f.w; // 6 R123f.x = (mul_nonIEEE(R126f.y,intBitsToFloat(uf_remappedVS[5].w)) + R127f.x); PV0f.x = R123f.x; R123f.y = (mul_nonIEEE(R126f.y,intBitsToFloat(uf_remappedVS[5].z)) + R127f.y); PV0f.y = R123f.y; R123f.z = (mul_nonIEEE(PV1f.w,intBitsToFloat(uf_remappedVS[6].x)) + PV1f.z); PV0f.z = R123f.z; R126f.w = (mul_nonIEEE(PV1f.w,intBitsToFloat(uf_remappedVS[6].y)) + PV1f.x); // 7 R123f.x = (mul_nonIEEE(R127f.w,intBitsToFloat(uf_remappedVS[6].w)) + PV0f.x); PV1f.x = R123f.x; R123f.y = (mul_nonIEEE(R127f.w,intBitsToFloat(uf_remappedVS[6].z)) + PV0f.y); PV1f.y = R123f.y; R3f.x = (mul_nonIEEE(R125f.y,intBitsToFloat(uf_remappedVS[7].x)) + PV0f.z); PS1f = R3f.x; // 8 R3f.y = (mul_nonIEEE(R125f.y,intBitsToFloat(uf_remappedVS[7].y)) + R126f.w); R3f.z = (mul_nonIEEE(R125f.y,intBitsToFloat(uf_remappedVS[7].z)) + PV1f.y); R3f.w = (mul_nonIEEE(R125f.y,intBitsToFloat(uf_remappedVS[7].w)) + PV1f.x); // export #if (enabled == 0) gl_Position = vec4(R3f.x, R3f.y, R3f.z, R3f.w); #endif #if (enabled == 1) #endif // export passParameterSem131 = vec4(R1f.x, R1f.y, R1f.z, R1f.w); // export // skipped export to semanticId 255 // export passParameterSem136 = vec4(R4f.x, R4f.y, R4f.z, R4f.z); }