#version 420 #extension GL_ARB_texture_gather : enable #extension GL_ARB_separate_shader_objects : enable // shader 58cf1eb8946f4b3c const float resXScale = ; const float resYScale = ; uniform ivec4 uf_remappedPS[3]; layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf4aec000 res 640x360x1 dim 1 tm: 4 format 001a compSel: 0 1 2 3 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 0 layout(location = 0) in vec4 passParameterSem136; layout(location = 0) out vec4 passPixelColor0; uniform vec2 uf_fragCoordScale; int clampFI32(int v) { if( v == 0x7FFFFFFF ) return floatBitsToInt(1.0); else if( v == 0xFFFFFFFF ) return floatBitsToInt(0.0); return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0)); } float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; } void main() { vec4 R0f = vec4(0.0); vec4 R1f = vec4(0.0); vec4 R2f = vec4(0.0); vec4 R123f = vec4(0.0); float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f; vec4 PV0f = vec4(0.0), PV1f = vec4(0.0); float PS0f = 0.0, PS1f = 0.0; vec4 tempf = vec4(0.0); float tempResultf; int tempResulti; ivec4 ARi = ivec4(0); bool predResult = true; vec3 cubeMapSTM; int cubeMapFaceId; R0f = passParameterSem136; // 0 R1f.x = R0f.x + intBitsToFloat(uf_remappedPS[0].x) / resXScale; R1f.y = R0f.y + intBitsToFloat(uf_remappedPS[0].y) / resYScale; R0f.z = R0f.x + intBitsToFloat(uf_remappedPS[0].z); R0f.w = R0f.y + intBitsToFloat(uf_remappedPS[0].w); // 1 backupReg0f = R0f.x; backupReg1f = R0f.y; R0f.x = backupReg0f + intBitsToFloat(uf_remappedPS[1].x) / resXScale; R0f.y = backupReg1f + intBitsToFloat(uf_remappedPS[1].y) / resYScale; R1f.xyzw = (texture(textureUnitPS0, R1f.xy).xyzw); R2f.xyzw = (texture(textureUnitPS0, R0f.zw).xyzw); R0f.xyzw = (texture(textureUnitPS0, R0f.xy).xyzw); // 0 PV0f.x = mul_nonIEEE(R1f.w, intBitsToFloat(uf_remappedPS[2].x)); PV0f.y = mul_nonIEEE(R1f.z, intBitsToFloat(uf_remappedPS[2].x)); PV0f.z = mul_nonIEEE(R1f.y, intBitsToFloat(uf_remappedPS[2].x)); PV0f.w = mul_nonIEEE(R1f.x, intBitsToFloat(uf_remappedPS[2].x)); // 1 R123f.x = (mul_nonIEEE(R2f.w,intBitsToFloat(uf_remappedPS[2].y)) + PV0f.x); PV1f.x = R123f.x; R123f.y = (mul_nonIEEE(R2f.z,intBitsToFloat(uf_remappedPS[2].y)) + PV0f.y); PV1f.y = R123f.y; R123f.z = (mul_nonIEEE(R2f.y,intBitsToFloat(uf_remappedPS[2].y)) + PV0f.z); PV1f.z = R123f.z; R123f.w = (mul_nonIEEE(R2f.x,intBitsToFloat(uf_remappedPS[2].y)) + PV0f.w); PV1f.w = R123f.w; // 2 backupReg0f = R0f.x; backupReg1f = R0f.y; backupReg2f = R0f.z; backupReg3f = R0f.w; R0f.x = (mul_nonIEEE(backupReg0f,intBitsToFloat(uf_remappedPS[2].z)) + PV1f.w); R0f.y = (mul_nonIEEE(backupReg1f,intBitsToFloat(uf_remappedPS[2].z)) + PV1f.z); R0f.z = (mul_nonIEEE(backupReg2f,intBitsToFloat(uf_remappedPS[2].z)) + PV1f.y); R0f.w = (mul_nonIEEE(backupReg3f,intBitsToFloat(uf_remappedPS[2].z)) + PV1f.x); // export passPixelColor0 = vec4(R0f.x, R0f.y, R0f.z, R0f.w); }