mirror of
https://github.com/cemu-project/cemu_graphic_packs.git
synced 2024-11-27 03:54:15 +01:00
b82a4bae67
Updated Values redid entire Shader . Added Toggles, and new values.
669 lines
22 KiB
Plaintext
669 lines
22 KiB
Plaintext
#version 420
|
|
#extension GL_ARB_texture_gather : enable
|
|
// shader 37040a485a29d54e
|
|
|
|
// Possible problems
|
|
// Being below 1.3.3 will give you double-vision with recent graphic packs. Update to 1.3.0 or above.
|
|
// If you're experiencing any issues (due to having the previous Clarity shaders installed), please remove and redownload all of the BotW packs.
|
|
// Clarity GFX
|
|
// Credit to Jamie for main coding.
|
|
// Credit to Kiri coding & Reshade logic.
|
|
// Credit to Cremtif for Help.
|
|
// Credit to Serfrost for preset values.
|
|
// Shader dumped from Cemu 1.11.2 from BotW 1.4.0
|
|
// v 2.0
|
|
// Add 1.4.0 support
|
|
|
|
//##########################################################
|
|
#define adjust_bloom 1 // 0: disable, 1: enable.
|
|
//BloomFactor
|
|
float bloomFactor = 0.010; //Default is 0.020 (rough estimate based on Switch)
|
|
|
|
#define HDRpassing 0 // 0: disable, 1: enable.
|
|
//Fake High Dynamic Range.
|
|
float HDRPower = 1.085; // 0.0 to 8.0 Default 1.30.
|
|
float radius1 = 0.793; // 0.0 to 8.0 Default 0.793
|
|
float radius2 = 0.87; // 0.0 to 8.0 Default 0.87 "Raising this seems to make the effect stronger and also brighter."
|
|
|
|
#define lumapassing 0 // 0: disable, 1: enable.
|
|
//LumaShapening
|
|
float sharp_strength = 0.25; //[0.10 to 3.00] Strength of the sharpening Default is 0.65
|
|
float sharp_clamp = 0.085; //[0.000 to 1.000] Limits maximum amount of sharpening a pixel recieves - Default is 0.035
|
|
|
|
//Advanced sharpening settings
|
|
float offset_bias = 1.0; //[0.0 to 6.0] Offset bias adjusts the radius of the sampling pattern.
|
|
|
|
#define Tone_map 2 // 0: disable, 1-8: enable.
|
|
// Reshade ToneMap Option 1
|
|
// linearToneMapping Option 2
|
|
// simpleReinhardToneMapping Option 3
|
|
// lumaBasedReinhardToneMapping Option 4
|
|
// whitePreservingLumaBasedReinhardToneMapping Option 5
|
|
// RomBinDaHouseToneMapping Option 6
|
|
// filmicToneMapping Option 7
|
|
// Uncharted2ToneMapping Option 8
|
|
//Reshade ToneMap Controls
|
|
float Bleach = 0.3; // "More bleach means more contrasted and less colorful image" min -0.5 max 1.0 Default 0.0
|
|
float defog = 0.004; // Default is 0.0 //How much of the overall color you want removed form the values of FogColor.
|
|
vec3 FogColor = vec3(1.0, 1.5, 1.7); // Color you want to Add or Remove 0.25 would add .25 percent of that color 1.25 would remove .25 percent of the color."
|
|
float sat = 0.050; // "Adjust saturation" min -1.0 max 1.0 Default 0.0
|
|
|
|
#define blacknwhitepass 1 // 0: disable, 1: enable.
|
|
//Levels Control
|
|
const int BlackPoint = 6; //[0, 255] The black point is the new black - literally. Everything darker than this will become completely black
|
|
const int WhitePoint = 255; //[0, 255] The new white point. Everything brighter than this becomes completely white
|
|
|
|
#define lggpass 0 // 0: disable, 1: enable.
|
|
//Lift Gamma Gain
|
|
vec3 RGB_Lift = vec3(0.98, 0.98, 0.93); // [0.000 to 2.000] Adjust shadows for Red, Green and Blue.
|
|
vec3 RGB_Gamma = vec3(0.95, 0.95, 0.90); // [0.000 to 2.000] Adjust midtones for Red, Green and Blue
|
|
vec3 RGB_Gain = vec3(0.99, 0.99, 0.94); //[0.000 to 2.000] Adjust highlights for Red, Green and Blue
|
|
//Note that a value of 1.0 is a neutral setting that leave the color unchanged.
|
|
|
|
#define vibpass 1 // 0: disable, 1: enable.
|
|
//VibrancePass
|
|
float Vibrance = 0.013; // "Intelligently saturates (or desaturates if you use negative values) the pixels depending on their original saturation.";
|
|
vec3 VibranceRGBBalance = vec3(1.0, 1.0, 1.0); // "A per channel multiplier to the Vibrance strength so you can give more boost to certain colors over others.";
|
|
|
|
#define Tech 1
|
|
//Technicolor
|
|
float Power = 4.0; // Min 0.0 Max 8.0 Default 4.0
|
|
vec3 RGBNegativeAmount = vec3(0.88, 0.88, 0.88);
|
|
//To Edit Strength scroll down to Techicolor and edit it there, to not conflict with Filmic
|
|
|
|
#define Techine 0 // 0: disable, 1: enable.
|
|
//Technicolor2
|
|
float Technicolor2_Red_Strength = 0.51; // "Higher means darker and more intense colors." Default 0.2
|
|
float Technicolor2_Green_Strength = 0.51; // "Higher means darker and more intense colors." Default 0.2
|
|
float Technicolor2_Blue_Strength = 0.51; // "Higher means darker and more intense colors." Default 0.2
|
|
float Technicolor2_Brightness = 1.75; // "Higher means brighter image." min 0.5 max 1.5 Default 1.0
|
|
float Technicolor2_Strength = 0.80; // Default is 1.0
|
|
float Technicolor2_Saturation = 0.20; // Default is 1.0
|
|
|
|
//Curves / Filmic Pass Contrast
|
|
#define CurvesPss 0 // 0: disable, 1: enable.
|
|
float Contrast = 0.750;
|
|
// 1 To use curves Contrast, 0 off or to use with Filmic Pass.
|
|
|
|
#define Filmicpass 0 // 0: disable, 1: enable.
|
|
//Filmic Pass
|
|
float Strength = 0.85; // "Strength of the color curve altering"; min 0.0 max 1.5 Default 0.85
|
|
float Fade = 0.4; // "Decreases contrast to imitate faded image" min 0.0 max 0.6 Default 0.4
|
|
float Linearization = 0.7; // min 0.5 max 2.0 Default 0.5
|
|
float Saturation = -0.15; // min -1.0 max 1.0 Default -0.15
|
|
|
|
float RedCurve = 1.0; // min 0.0 max 2.0 Default 1.0
|
|
float GreenCurve = 1.0; // min 0.0 max 2.0 Default 1.0
|
|
float BlueCurve = 1.0; // min 0.0 max 2.0 Default 1.0
|
|
float BaseCurve = 1.1; // min 0.0 max 2.0 Default 1.5
|
|
|
|
float BaseGamma = 0.98; // min 0.7 max 2.0 Default 1.0
|
|
float EffectGamma = 0.97; // min 0.0 max 2.0 Default 0.68
|
|
float EffectGammaR = 1.0; // min 0.0 max 2.0 Default 1.0
|
|
float EffectGammaG = 1.0; // min 0.0 max 2.0 Default 1.0
|
|
float EffectGammaB = 1.0; // min 0.0 max 2.0 Default 1.0
|
|
|
|
//###########################################################
|
|
|
|
//Do not edit under this line.
|
|
|
|
uniform ivec4 uf_remappedPS[1];
|
|
layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf46ac800 res 320x180x1 dim 1 tm: 4 format 0816 compSel: 0 1 2 5 mipView: 0x0 (num 0x5) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 1
|
|
layout(binding = 1) uniform sampler2D textureUnitPS1;// Tex1 addr 0xf5c7b800 res 1280x720x1 dim 1 tm: 4 format 0816 compSel: 0 1 2 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 2 2 2 border: 1
|
|
layout(location = 0) in vec4 passParameterSem0;
|
|
layout(location = 0) out vec4 passPixelColor0;
|
|
uniform vec2 uf_fragCoordScale;
|
|
int clampFI32(int v)
|
|
{
|
|
if (v == 0x7FFFFFFF)
|
|
return floatBitsToInt(1.0);
|
|
else if (v == 0xFFFFFFFF)
|
|
return floatBitsToInt(0.0);
|
|
return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0));
|
|
}
|
|
float mul_nonIEEE(float a, float b) { if (a == 0.0 || b == 0.0) return 0.0; return a*b; }
|
|
|
|
//ToneMapping
|
|
|
|
vec3 linearToneMapping(vec3 color)
|
|
{
|
|
float exposure = 1.;
|
|
color = clamp(exposure * color, 0., 1.);
|
|
return color;
|
|
}
|
|
|
|
vec3 simpleReinhardToneMapping(vec3 color)
|
|
{
|
|
float exposure = 1.5;
|
|
color *= exposure / (1. + color / exposure);
|
|
return color;
|
|
}
|
|
|
|
vec3 lumaBasedReinhardToneMapping(vec3 color)
|
|
{
|
|
float luma = dot(color, vec3(0.2126, 0.7152, 0.0722));
|
|
float toneMappedLuma = luma / (1. + luma);
|
|
color *= toneMappedLuma / luma;
|
|
return color;
|
|
}
|
|
|
|
vec3 whitePreservingLumaBasedReinhardToneMapping(vec3 color)
|
|
{
|
|
float white = 2.;
|
|
float luma = dot(color, vec3(0.2126, 0.7152, 0.0722));
|
|
float toneMappedLuma = luma * (1. + luma / (white*white)) / (1. + luma);
|
|
color *= toneMappedLuma / luma;
|
|
return color;
|
|
}
|
|
|
|
vec3 RomBinDaHouseToneMapping(vec3 color)
|
|
{
|
|
color = exp(-1.0 / (2.72*color + 0.15));
|
|
return color;
|
|
}
|
|
|
|
vec3 filmicToneMapping(vec3 color)
|
|
{
|
|
color = max(vec3(0.), color - vec3(0.004));
|
|
color = (color * (6.2 * color + .5)) / (color * (6.2 * color + 1.7) + 0.06);
|
|
return color;
|
|
}
|
|
|
|
vec3 Uncharted2ToneMapping(vec3 color)
|
|
{
|
|
float A = 0.15;
|
|
float B = 0.50;
|
|
float C = 0.10;
|
|
float D = 0.20;
|
|
float E = 0.02;
|
|
float F = 0.30;
|
|
float W = 11.2;
|
|
float exposure = 2.;
|
|
color *= exposure;
|
|
color = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
|
|
float white = ((W * (A * W + C * B) + D * E) / (W * (A * W + B) + D * F)) - E / F;
|
|
color /= white;
|
|
return color;
|
|
}
|
|
|
|
vec3 ReshadeToneMap(vec3 inputColor) {
|
|
vec3 color = inputColor;
|
|
color = clamp(color - defog * FogColor * 2.55, 0.0, 1.0); // defog
|
|
|
|
const vec3 coefLuma = vec3(0.2126, 0.7152, 0.0722);
|
|
float lum = dot(coefLuma, color);
|
|
|
|
float L = clamp(10.0 * (lum - 0.45), 0.0, 1.0);
|
|
vec3 A2 = Bleach * color;
|
|
|
|
vec3 result1 = 2.0f * color * lum;
|
|
vec3 result2 = 1.0f - 2.0f * (1.0f - lum) * (1.0f - color);
|
|
|
|
vec3 newColor = mix(result1, result2, L);
|
|
vec3 mixRGB = A2 * newColor;
|
|
color += ((1.0f - A2) * mixRGB);
|
|
|
|
vec3 middlegray = vec3(dot(color, vec3(1.0 / 3.0)));
|
|
vec3 diffcolor = color - middlegray;
|
|
|
|
color = (color + diffcolor * sat) / (1 + (diffcolor * sat)); // saturation
|
|
|
|
return color;
|
|
}
|
|
|
|
//Curves
|
|
|
|
vec3 CurvesPass(vec3 inputColor) {
|
|
vec3 colorInput = inputColor;
|
|
float Contrast_blend = Contrast * 2.0; //I multiply by two to give it a strength closer to the other curves.
|
|
vec3 x = colorInput.rgb; //if the curve should be applied to both Luma and Chroma
|
|
x = x * (x * (1.5 - x) + 0.5); //horner form - fastest version
|
|
vec3 color = x; //if the curve should be applied to both Luma and Chroma
|
|
colorInput.rgb = mix(colorInput.rgb, color, Contrast_blend); //Blend by Contrast
|
|
return colorInput;
|
|
}
|
|
|
|
//TECHNICOLOR2
|
|
|
|
vec3 Technicolor2(vec3 inputColor) {
|
|
vec3 color = inputColor;
|
|
vec3 Color_Strength = vec3(Technicolor2_Red_Strength, Technicolor2_Green_Strength, Technicolor2_Blue_Strength);
|
|
vec3 source = color;
|
|
vec3 temp = 1.0 - source;
|
|
vec3 target = temp.grg;
|
|
vec3 target2 = temp.bbr;
|
|
vec3 temp2 = source * target;
|
|
temp2 *= target2;
|
|
|
|
temp = temp2 * Color_Strength;
|
|
temp2 *= Technicolor2_Brightness;
|
|
|
|
target = temp.grg;
|
|
target2 = temp.bbr;
|
|
|
|
temp = source - target;
|
|
temp += temp2;
|
|
temp2 = temp - target2;
|
|
|
|
color = mix(source, temp2, Technicolor2_Strength);
|
|
|
|
color = mix(vec3(dot(color, vec3(0.333))), color, Technicolor2_Saturation);
|
|
|
|
return color;
|
|
}
|
|
|
|
//Technicolor
|
|
vec3 TechnicolorPass(vec3 color)
|
|
{
|
|
float Strength = 0.20; // Min 0.0 Max 1.0 Default 0.4
|
|
const vec3 cyanfilter = vec3(0.0, 1.30, 1.0);
|
|
const vec3 magentafilter = vec3(1.0, 0.0, 1.05);
|
|
const vec3 yellowfilter = vec3(1.6, 1.6, 0.05);
|
|
const vec2 redorangefilter = vec2(1.05, 0.620); // RG_
|
|
const vec2 greenfilter = vec2(0.30, 1.0); // RG_
|
|
const vec2 magentafilter2 = magentafilter.rb; // R_B
|
|
|
|
vec3 tcol = color.rgb;
|
|
|
|
vec2 negative_mul_r = tcol.rg * (1.0 / (RGBNegativeAmount.r * Power));
|
|
vec2 negative_mul_g = tcol.rg * (1.0 / (RGBNegativeAmount.g * Power));
|
|
vec2 negative_mul_b = tcol.rb * (1.0 / (RGBNegativeAmount.b * Power));
|
|
vec3 output_r = dot(redorangefilter, negative_mul_r).xxx + cyanfilter;
|
|
vec3 output_g = dot(greenfilter, negative_mul_g).xxx + magentafilter;
|
|
vec3 output_b = dot(magentafilter2, negative_mul_b).xxx + yellowfilter;
|
|
|
|
return mix(tcol, output_r * output_g * output_b, Strength);
|
|
}
|
|
|
|
// Levels
|
|
|
|
vec3 LevelsPass(vec3 inputColor) {
|
|
float black_point_float = BlackPoint / 255.0;
|
|
float white_point_float = WhitePoint == BlackPoint ? (255.0 / 0.00025) : (255.0 / (WhitePoint - BlackPoint)); // Avoid division by zero if the white and black point are the same
|
|
|
|
vec3 color = inputColor;
|
|
color = color * white_point_float - (black_point_float * white_point_float);
|
|
|
|
return color;
|
|
}
|
|
|
|
//FilmPass
|
|
vec3 FilmPass(vec3 inputColor) {
|
|
|
|
vec3 B = inputColor.rgb;
|
|
vec3 G = B;
|
|
vec3 H = vec3(0.01);
|
|
|
|
B = clamp(B, 0.0, 1.);
|
|
B = pow(vec3(B), vec3(Linearization));
|
|
B = mix(H, B, Contrast);
|
|
|
|
vec3 LumCoeff = vec3(0.212656, 0.715158, 0.072186);
|
|
float A = dot(B.rgb, LumCoeff);
|
|
vec3 D = vec3(A);
|
|
|
|
B = pow(B, 1.0 / vec3(BaseGamma));
|
|
|
|
float a = RedCurve;
|
|
float b = GreenCurve;
|
|
float c = BlueCurve;
|
|
float d = BaseCurve;
|
|
|
|
float y = 1.0 / (1.0 + exp(a / 2.0));
|
|
float z = 1.0 / (1.0 + exp(b / 2.0));
|
|
float w = 1.0 / (1.0 + exp(c / 2.0));
|
|
float v = 1.0 / (1.0 + exp(d / 2.0));
|
|
|
|
vec3 C = B;
|
|
|
|
D.r = (1.0 / (1.0 + exp(-a * (D.r - 0.5))) - y) / (1.0 - 2.0 * y);
|
|
D.g = (1.0 / (1.0 + exp(-b * (D.g - 0.5))) - z) / (1.0 - 2.0 * z);
|
|
D.b = (1.0 / (1.0 + exp(-c * (D.b - 0.5))) - w) / (1.0 - 2.0 * w);
|
|
|
|
D = pow(D, 1.0 / vec3(EffectGamma));
|
|
|
|
vec3 Di = 1.0 - D;
|
|
|
|
D = mix(D, Di, Bleach);
|
|
|
|
D.r = pow(abs(D.r), 1.0 / EffectGammaR);
|
|
D.g = pow(abs(D.g), 1.0 / EffectGammaG);
|
|
D.b = pow(abs(D.b), 1.0 / EffectGammaB);
|
|
|
|
if (D.r < 0.5)
|
|
C.r = (2.0 * D.r - 1.0) * (B.r - B.r * B.r) + B.r;
|
|
else
|
|
C.r = (2.0 * D.r - 1.0) * (sqrt(B.r) - B.r) + B.r;
|
|
|
|
if (D.g < 0.5)
|
|
C.g = (2.0 * D.g - 1.0) * (B.g - B.g * B.g) + B.g;
|
|
else
|
|
C.g = (2.0 * D.g - 1.0) * (sqrt(B.g) - B.g) + B.g;
|
|
|
|
if (D.b < 0.5)
|
|
C.b = (2.0 * D.b - 1.0) * (B.b - B.b * B.b) + B.b;
|
|
else
|
|
C.b = (2.0 * D.b - 1.0) * (sqrt(B.b) - B.b) + B.b;
|
|
|
|
vec3 F = mix(B, C, Strength);
|
|
|
|
F = (1.0 / (1.0 + exp(-d * (F - 0.5))) - v) / (1.0 - 2.0 * v);
|
|
|
|
float r2R = 1.0 - Saturation;
|
|
float g2R = 0.0 + Saturation;
|
|
float b2R = 0.0 + Saturation;
|
|
|
|
float r2G = 0.0 + Saturation;
|
|
float g2G = (1.0 - Fade) - Saturation;
|
|
float b2G = (0.0 + Fade) + Saturation;
|
|
|
|
float r2B = 0.0 + Saturation;
|
|
float g2B = (0.0 + Fade) + Saturation;
|
|
float b2B = (1.0 - Fade) - Saturation;
|
|
|
|
vec3 iF = F;
|
|
|
|
F.r = (iF.r * r2R + iF.g * g2R + iF.b * b2R);
|
|
F.g = (iF.r * r2G + iF.g * g2G + iF.b * b2G);
|
|
F.b = (iF.r * r2B + iF.g * g2B + iF.b * b2B);
|
|
|
|
float N = dot(F.rgb, LumCoeff);
|
|
vec3 Cn = F;
|
|
|
|
if (N < 0.5)
|
|
Cn = (2.0 * N - 1.0) * (F - F * F) + F;
|
|
else
|
|
Cn = (2.0 * N - 1.0) * (sqrt(F) - F) + F;
|
|
|
|
Cn = pow(max(Cn, 0), 1.0 / vec3(Linearization));
|
|
|
|
vec3 Fn = mix(B, Cn, Strength);
|
|
return Fn;
|
|
}
|
|
|
|
//Lift Gamma Gain
|
|
|
|
vec3 LiftGammaGainPass(vec3 colorInput)
|
|
{
|
|
// -- Get input --
|
|
vec3 color = colorInput;
|
|
|
|
// -- Lift --
|
|
|
|
color = color * (1.5 - 0.5 * RGB_Lift) + 0.5 * RGB_Lift - 0.5;
|
|
color = clamp(color, 0.0, 1.0); //isn't strictly necessary, but doesn't cost performance.
|
|
|
|
// -- Gain --
|
|
color *= RGB_Gain;
|
|
|
|
// -- Gamma --
|
|
color = pow(color, 1.0 / RGB_Gamma); //Gamma
|
|
|
|
// -- Return output --
|
|
return clamp(color, 0.0, 1.0);
|
|
}
|
|
|
|
//VibrancePass
|
|
vec3 VibrancePass(vec3 color) {
|
|
|
|
const vec3 coefLuma = vec3(0.2126, 0.7152, 0.0722);
|
|
float luma = dot(coefLuma, color);
|
|
|
|
float max_color = max(color.r, max(color.g, color.b)); // Find the strongest color
|
|
float min_color = min(color.r, min(color.g, color.b)); // Find the weakest color
|
|
|
|
float color_saturation = max_color - min_color; // The difference between the two is the saturation
|
|
|
|
// Extrapolate between luma and original by 1 + (1-saturation) - current
|
|
vec3 coeffVibrance = VibranceRGBBalance * Vibrance;
|
|
|
|
color = mix(vec3(luma), color, 1.0 + (coeffVibrance * (1.0 - (sign(coeffVibrance) * color_saturation))));
|
|
|
|
return color;
|
|
}
|
|
|
|
//LumaShapening
|
|
|
|
#define px (1.0/1280.0*uf_fragCoordScale.x)
|
|
#define py (1.0/720.0*uf_fragCoordScale.y)
|
|
#define CoefLuma vec3(0.2126, 0.7152, 0.0722)
|
|
|
|
float lumasharping(sampler2D tex, vec2 pos) {
|
|
vec4 colorInput = texture(tex, pos);
|
|
|
|
vec3 ori = colorInput.rgb;
|
|
|
|
// -- Combining the strength and luma multipliers --
|
|
vec3 sharp_strength_luma = (CoefLuma * sharp_strength);
|
|
|
|
// -- Gaussian filter --
|
|
// [ .25, .50, .25] [ 1 , 2 , 1 ]
|
|
// [ .50, 1, .50] = [ 2 , 4 , 2 ]
|
|
// [ .25, .50, .25] [ 1 , 2 , 1 ]
|
|
|
|
vec3 blur_ori = texture(tex, pos + vec2(px, -py) * 0.5 * offset_bias).rgb; // South East
|
|
blur_ori += texture(tex, pos + vec2(-px, -py) * 0.5 * offset_bias).rgb; // South West
|
|
blur_ori += texture(tex, pos + vec2(px, py) * 0.5 * offset_bias).rgb; // North East
|
|
blur_ori += texture(tex, pos + vec2(-px, py) * 0.5 * offset_bias).rgb; // North West
|
|
|
|
blur_ori *= 0.25; // ( /= 4) Divide by the number of texture fetches
|
|
|
|
// -- Calculate the sharpening --
|
|
vec3 sharp = ori - blur_ori; //Subtracting the blurred image from the original image
|
|
|
|
// -- Adjust strength of the sharpening and clamp it--
|
|
vec4 sharp_strength_luma_clamp = vec4(sharp_strength_luma * (0.5 / sharp_clamp), 0.5); //Roll part of the clamp into the dot
|
|
|
|
float sharp_luma = clamp((dot(vec4(sharp, 1.0), sharp_strength_luma_clamp)), 0.0, 1.0); //Calculate the luma, adjust the strength, scale up and clamp
|
|
sharp_luma = (sharp_clamp * 2.0) * sharp_luma - sharp_clamp; //scale down
|
|
|
|
return sharp_luma;
|
|
}
|
|
|
|
//Fake High Dynamic Range.
|
|
|
|
vec3 HDRPass(sampler2D tex, vec2 pos) {
|
|
vec3 color = texture(tex, pos).rgb;
|
|
|
|
vec3 bloom_sum1 = texture(tex, pos + vec2(1.5, -1.5) * radius1 * vec2(px, py)).rgb;
|
|
bloom_sum1 += texture(tex, pos + vec2(-1.5, -1.5) * radius1 * vec2(px, py)).rgb;
|
|
bloom_sum1 += texture(tex, pos + vec2(1.5, 1.5) * radius1 * vec2(px, py)).rgb;
|
|
bloom_sum1 += texture(tex, pos + vec2(-1.5, 1.5) * radius1 * vec2(px, py)).rgb;
|
|
bloom_sum1 += texture(tex, pos + vec2(0.0, -2.5) * radius1 * vec2(px, py)).rgb;
|
|
bloom_sum1 += texture(tex, pos + vec2(0.0, 2.5) * radius1 * vec2(px, py)).rgb;
|
|
bloom_sum1 += texture(tex, pos + vec2(-2.5, 0.0) * radius1 * vec2(px, py)).rgb;
|
|
bloom_sum1 += texture(tex, pos + vec2(2.5, 0.0) * radius1 * vec2(px, py)).rgb;
|
|
|
|
bloom_sum1 *= 0.005;
|
|
|
|
vec3 bloom_sum2 = texture(tex, pos + vec2(1.5, -1.5) * radius2 * vec2(px, py)).rgb;
|
|
bloom_sum2 += texture(tex, pos + vec2(-1.5, -1.5) * radius2 * vec2(px, py)).rgb;
|
|
bloom_sum2 += texture(tex, pos + vec2(1.5, 1.5) * radius2 * vec2(px, py)).rgb;
|
|
bloom_sum2 += texture(tex, pos + vec2(-1.5, 1.5) * radius2 * vec2(px, py)).rgb;
|
|
bloom_sum2 += texture(tex, pos + vec2(0.0, -2.5) * radius2 * vec2(px, py)).rgb;
|
|
bloom_sum2 += texture(tex, pos + vec2(0.0, 2.5) * radius2 * vec2(px, py)).rgb;
|
|
bloom_sum2 += texture(tex, pos + vec2(-2.5, 0.0) * radius2 * vec2(px, py)).rgb;
|
|
bloom_sum2 += texture(tex, pos + vec2(2.5, 0.0) * radius2 * vec2(px, py)).rgb;
|
|
|
|
bloom_sum2 *= 0.010;
|
|
|
|
float dist = radius2 - radius1;
|
|
vec3 HDR = (color + (bloom_sum2 - bloom_sum1)) * dist;
|
|
|
|
vec3 blend = HDR + color;
|
|
color = pow(abs(blend), vec3(abs(HDRPower))) + HDR;
|
|
|
|
return color;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
vec4 R0f = vec4(0.0);
|
|
vec4 R1f = vec4(0.0);
|
|
vec4 R123f = vec4(0.0);
|
|
vec4 R125f = vec4(0.0);
|
|
vec4 R126f = vec4(0.0);
|
|
vec4 R127f = vec4(0.0);
|
|
float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f;
|
|
vec4 PV0f = vec4(0.0), PV1f = vec4(0.0);
|
|
float PS0f = 0.0, PS1f = 0.0;
|
|
vec4 tempf = vec4(0.0);
|
|
float tempResultf;
|
|
int tempResulti;
|
|
ivec4 ARi = ivec4(0);
|
|
bool predResult = true;
|
|
vec3 cubeMapSTM;
|
|
int cubeMapFaceId;
|
|
R0f = passParameterSem0;
|
|
vec3 bloom = texture(textureUnitPS0, passParameterSem0.xy).xyz;
|
|
#if (adjust_bloom == 1)
|
|
bloom *= bloomFactor;
|
|
#endif
|
|
#if (HDRpassing == 1)
|
|
R0f.xyz = HDRPass(textureUnitPS1, passParameterSem0.xy);
|
|
#endif
|
|
#if (HDRpassing == 0)
|
|
R0f.xyz = texture(textureUnitPS1, passParameterSem0.xy).xyz;
|
|
#endif
|
|
#if (lumapassing == 1)
|
|
float smask = lumasharping(textureUnitPS1, passParameterSem0.xy);
|
|
R0f.xyz += vec3(smask);
|
|
#endif
|
|
// -- Original shader code
|
|
// 0
|
|
R126f.x = R1f.x + R0f.x;
|
|
PV0f.x = R126f.x;
|
|
R127f.y = R1f.y + R0f.y;
|
|
PV0f.y = R127f.y;
|
|
R126f.z = R1f.z + R0f.z;
|
|
PV0f.z = R126f.z;
|
|
R125f.w = 1.0;
|
|
// 1
|
|
tempf.x = dot(vec4(PV0f.x, PV0f.y, PV0f.z, -0.0), vec4(intBitsToFloat(0x3e99096c), intBitsToFloat(0x3f162b6b), intBitsToFloat(0x3dea4a8c), 0.0));
|
|
PV1f.x = tempf.x;
|
|
PV1f.y = tempf.x;
|
|
PV1f.z = tempf.x;
|
|
PV1f.w = tempf.x;
|
|
// 2
|
|
R127f.x = -(R127f.y) * intBitsToFloat(0x3fb8aa3b);
|
|
PV0f.y = -(PV1f.x) * intBitsToFloat(0x3fb8aa3b);
|
|
R127f.z = -(R126f.x) * intBitsToFloat(0x3fb8aa3b);
|
|
R127f.w = -(R126f.z) * intBitsToFloat(0x3fb8aa3b);
|
|
R126f.w = 1.0 / PV1f.x;
|
|
PS0f = R126f.w;
|
|
// 3
|
|
PS1f = exp2(PV0f.y);
|
|
// 4
|
|
PV0f.x = -(PS1f)+1.0;
|
|
PS0f = exp2(R127f.x);
|
|
// 5
|
|
R127f.x = -(PS0f)+1.0;
|
|
R126f.y = mul_nonIEEE(PV0f.x, PV0f.x);
|
|
PV1f.z = PV0f.x * R126f.w;
|
|
PS1f = exp2(R127f.w);
|
|
// 6
|
|
backupReg0f = R126f.x;
|
|
backupReg1f = R127f.z;
|
|
R126f.x = mul_nonIEEE(backupReg0f, PV1f.z);
|
|
PV0f.y = -(PS1f)+1.0;
|
|
R127f.z = mul_nonIEEE(R126f.z, PV1f.z);
|
|
PV0f.z = R127f.z;
|
|
R127f.w = mul_nonIEEE(R127f.y, PV1f.z);
|
|
PV0f.w = R127f.w;
|
|
PS0f = exp2(backupReg1f);
|
|
// 7
|
|
PV1f.x = R127f.x + -(PV0f.w);
|
|
PV1f.y = PV0f.y + -(PV0f.z);
|
|
PV1f.w = -(PS0f)+1.0;
|
|
// 8
|
|
backupReg0f = R127f.z;
|
|
R127f.x = (mul_nonIEEE(PV1f.x, R126f.y) + R127f.w);
|
|
R127f.x = clamp(R127f.x, 0.0, 1.0);
|
|
PV0f.x = R127f.x;
|
|
PV0f.y = PV1f.w + -(R126f.x);
|
|
R127f.z = (mul_nonIEEE(PV1f.y, R126f.y) + backupReg0f);
|
|
R127f.z = clamp(R127f.z, 0.0, 1.0);
|
|
PV0f.z = R127f.z;
|
|
// 9
|
|
backupReg0f = R126f.x;
|
|
R126f.x = (mul_nonIEEE(PV0f.y, R126f.y) + backupReg0f);
|
|
R126f.x = clamp(R126f.x, 0.0, 1.0);
|
|
PV1f.x = R126f.x;
|
|
PV1f.w = max(PV0f.x, PV0f.z);
|
|
// 10
|
|
tempf.x = dot(vec4(PV1f.x, R127f.x, R127f.z, R125f.w), vec4(intBitsToFloat(0x3f2aaaab), intBitsToFloat(0x3f2aaaab), intBitsToFloat(0x3f2aaaab), -(1.0)));
|
|
PV0f.x = tempf.x;
|
|
PV0f.y = tempf.x;
|
|
PV0f.z = tempf.x;
|
|
PV0f.w = tempf.x;
|
|
R126f.z = max(PV1f.x, PV1f.w);
|
|
PS0f = R126f.z;
|
|
// 11
|
|
backupReg0f = R127f.x;
|
|
backupReg1f = R127f.z;
|
|
R127f.x = R126f.x + -(PS0f);
|
|
R123f.y = (mul_nonIEEE(-(PV0f.x), PV0f.x) + 1.0);
|
|
PV1f.y = R123f.y;
|
|
R127f.z = backupReg0f + -(PS0f);
|
|
R125f.w = backupReg1f + -(PS0f);
|
|
// 12
|
|
R123f.x = (mul_nonIEEE(PV1f.y, intBitsToFloat(uf_remappedPS[0].y)) + intBitsToFloat(uf_remappedPS[0].x));
|
|
PV0f.x = R123f.x;
|
|
// 13
|
|
R0f.x = (mul_nonIEEE(R127f.x, PV0f.x) + R126f.z);
|
|
R0f.y = (mul_nonIEEE(R127f.z, PV0f.x) + R126f.z);
|
|
R0f.z = (mul_nonIEEE(R125f.w, PV0f.x) + R126f.z);
|
|
|
|
// -- End original shader code
|
|
|
|
passPixelColor0 = vec4(R0f.x, R0f.y, R0f.z, R0f.w);
|
|
|
|
vec3 color = (passPixelColor0.xyz);
|
|
color += bloom;
|
|
#if (Tone_map == 1)
|
|
color = ReshadeToneMap(color);
|
|
#endif
|
|
#if (Tone_map == 2)
|
|
color = linearToneMapping(color);
|
|
#endif
|
|
#if (Tone_map == 3)
|
|
color = simpleReinhardToneMapping(color);
|
|
#endif
|
|
#if (Tone_map == 4)
|
|
color = lumaBasedReinhardToneMapping(color);
|
|
#endif
|
|
#if (Tone_map == 5)
|
|
color = whitePreservingLumaBasedReinhardToneMapping(color);
|
|
#endif
|
|
#if (Tone_map == 6)
|
|
color = RomBinDaHouseToneMapping(color);
|
|
#endif
|
|
#if (Tone_map == 7)
|
|
color = filmicToneMapping(color);
|
|
#endif
|
|
#if (Tone_map == 8)
|
|
color = Uncharted2ToneMapping(color);
|
|
#endif
|
|
#if (blacknwhitepass == 1)
|
|
color = LevelsPass(color);
|
|
#endif
|
|
#if (Techine == 1)
|
|
color = Technicolor2(color);
|
|
#endif
|
|
#if (Tech == 1)
|
|
color = TechnicolorPass(color);
|
|
#endif
|
|
#if (Filmicpass == 1)
|
|
color = FilmPass(color);
|
|
#endif
|
|
#if (CurvesPss == 1)
|
|
color = CurvesPass(color);
|
|
#endif
|
|
#if (lggpass == 1)
|
|
color = LiftGammaGainPass(color);
|
|
#endif
|
|
#if (vibpass == 1)
|
|
color = VibrancePass(color);
|
|
#endif
|
|
passPixelColor0 = vec4(color, R0f.w);
|
|
} |