mirror of
https://github.com/cemu-project/cemu_graphic_packs.git
synced 2024-11-25 19:16:52 +01:00
215 lines
7.0 KiB
Plaintext
215 lines
7.0 KiB
Plaintext
#version 420
|
|
#extension GL_ARB_texture_gather : enable
|
|
// shader ff71dcd2ad4defdc
|
|
//AA ps
|
|
const float resScale = 4.0;
|
|
|
|
//old contrasty, or just copy paste clarity
|
|
const float gamma = 0.85; // 1.0 is neutral Botw is already colour graded at this stage
|
|
const float exposure = 1.03; // 1.0 is neutral
|
|
const float vibrance = 0.02; // 0.0 is neutral
|
|
const float crushContrast = 0.00; // 0.0 is neutral. Use small increments, loss of shadow detail
|
|
|
|
vec3 contrasty(vec3 colour){
|
|
vec3 fColour = (colour.xyz);
|
|
fColour = max(vec3(0.0), fColour - vec3(crushContrast));
|
|
fColour = clamp(exposure * fColour, 0.0, 1.0);
|
|
fColour = pow(fColour, vec3(1.0 / gamma));
|
|
float luminance = fColour.r*0.299 + fColour.g*0.587 + fColour.b*0.114;
|
|
float mn = min(min(fColour.r, fColour.g), fColour.b);
|
|
float mx = max(max(fColour.r, fColour.g), fColour.b);
|
|
float sat = (1.0 - (mx - mn)) * (1.0 - mx) * luminance * 5.0;
|
|
vec3 lightness = vec3((mn + mx) / 2.0);
|
|
// vibrance
|
|
fColour = mix(fColour, mix(fColour, lightness, -vibrance), sat);
|
|
return fColour;
|
|
}
|
|
|
|
uniform ivec4 uf_remappedPS[4];
|
|
layout(binding = 0) uniform sampler2D textureUnitPS0;// Tex0 addr 0xf5807800 res 1920x1080x1 dim 1 tm: 4 format 0019 compSel: 0 1 2 3 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler0 ClampX/Y/Z: 2 2 2 border: 1
|
|
layout(binding = 1) uniform sampler2D textureUnitPS1;// Tex1 addr 0xf4000800 res 1920x1080x1 dim 1 tm: 4 format 0001 compSel: 0 4 4 5 mipView: 0x0 (num 0x1) sliceView: 0x0 (num 0x1) Sampler1 ClampX/Y/Z: 2 2 2 border: 1
|
|
layout(location = 0) in vec4 passParameterSem2;
|
|
layout(location = 0) out vec4 passPixelColor0;
|
|
uniform vec2 uf_fragCoordScale;
|
|
int clampFI32(int v)
|
|
{
|
|
if( v == 0x7FFFFFFF )
|
|
return floatBitsToInt(1.0);
|
|
else if( v == 0xFFFFFFFF )
|
|
return floatBitsToInt(0.0);
|
|
return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0));
|
|
}
|
|
float mul_nonIEEE(float a, float b){ if( a == 0.0 || b == 0.0 ) return 0.0; return a*b; }
|
|
void main()
|
|
{
|
|
vec4 R0f = vec4(0.0);
|
|
vec4 R1f = vec4(0.0);
|
|
vec4 R2f = vec4(0.0);
|
|
vec4 R3f = vec4(0.0);
|
|
vec4 R4f = vec4(0.0);
|
|
vec4 R123f = vec4(0.0);
|
|
vec4 R126f = vec4(0.0);
|
|
vec4 R127f = vec4(0.0);
|
|
float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f;
|
|
vec4 PV0f = vec4(0.0), PV1f = vec4(0.0);
|
|
float PS0f = 0.0, PS1f = 0.0;
|
|
vec4 tempf = vec4(0.0);
|
|
float tempResultf;
|
|
int tempResulti;
|
|
ivec4 ARi = ivec4(0);
|
|
bool predResult = true;
|
|
bool activeMaskStack[2];
|
|
bool activeMaskStackC[3];
|
|
activeMaskStack[0] = false;
|
|
activeMaskStackC[0] = false;
|
|
activeMaskStackC[1] = false;
|
|
activeMaskStack[0] = true;
|
|
activeMaskStackC[0] = true;
|
|
activeMaskStackC[1] = true;
|
|
vec3 cubeMapSTM;
|
|
int cubeMapFaceId;
|
|
R0f = passParameterSem2;
|
|
if( activeMaskStackC[1] == true ) {
|
|
R1f.xyzw = (textureGather(textureUnitPS1, R0f.xy).wzxy);
|
|
R2f.xyzw = (texture(textureUnitPS0, R0f.xy).xyzw);
|
|
}
|
|
if( activeMaskStackC[1] == true ) {
|
|
activeMaskStack[1] = activeMaskStack[0];
|
|
activeMaskStackC[2] = activeMaskStackC[1];
|
|
// 0
|
|
PV0f.x = R1f.y + R1f.x;
|
|
R127f.y = intBitsToFloat(uf_remappedPS[0].z) * 0.25;
|
|
PV0f.z = R1f.w + -(R1f.x);
|
|
PV0f.w = R1f.z + -(R1f.y);
|
|
R127f.z = mul_nonIEEE(R2f.x, intBitsToFloat(uf_remappedPS[1].x));
|
|
PS0f = R127f.z;
|
|
// 1
|
|
R127f.x = PV0f.w + -(PV0f.z);
|
|
PV1f.x = R127f.x;
|
|
R126f.y = PV0f.w + PV0f.z;
|
|
PV1f.y = R126f.y;
|
|
PV1f.z = R1f.z + PV0f.x;
|
|
R127f.w = min(R1f.z, R1f.x);
|
|
R126f.w = min(R1f.w, R1f.y);
|
|
PS1f = R126f.w;
|
|
// 2
|
|
PV0f.x = R1f.w + PV1f.z;
|
|
PV0f.y = max(PV1f.x, -(PV1f.x));
|
|
PV0f.z = max(PV1f.y, -(PV1f.y));
|
|
PV0f.w = max(R1f.z, R1f.x);
|
|
PS0f = max(R1f.w, R1f.y);
|
|
// 3
|
|
PV1f.x = min(PV0f.z, PV0f.y);
|
|
R123f.y = (mul_nonIEEE(R2f.y,intBitsToFloat(uf_remappedPS[1].y)) + R127f.z);
|
|
PV1f.y = R123f.y;
|
|
R127f.z = min(R127f.w, R126f.w);
|
|
PV1f.z = R127f.z;
|
|
R123f.w = (mul_nonIEEE(R127f.y,PV0f.x) + intBitsToFloat(uf_remappedPS[0].w));
|
|
PV1f.w = R123f.w;
|
|
R127f.w = max(PV0f.w, PS0f);
|
|
PS1f = R127f.w;
|
|
// 4
|
|
PV0f.x = mul_nonIEEE(PS1f, intBitsToFloat(uf_remappedPS[2].x));
|
|
PV0f.y = max(PV1f.y, PS1f);
|
|
PV0f.z = min(PV1f.y, PV1f.z);
|
|
PV0f.w = max(PV1f.w, PV1f.x);
|
|
R4f.z = -(PV1f.z) + PS1f;
|
|
PS0f = R4f.z;
|
|
// 5
|
|
R3f.x = max(PV0f.x, intBitsToFloat(uf_remappedPS[2].y));
|
|
R3f.y = -(PV0f.z) + PV0f.y;
|
|
R4f.w = R127f.z + R127f.w;
|
|
PS1f = 1.0 / PV0f.w;
|
|
// 6
|
|
PV0f.x = mul_nonIEEE(R127f.x, PS1f); //p
|
|
PV0f.y = mul_nonIEEE(R126f.y, PS1f);
|
|
// 7
|
|
PV1f.z = max(PV0f.x, -(intBitsToFloat(uf_remappedPS[0].y))); //p
|
|
PV1f.w = max(PV0f.y, -(intBitsToFloat(uf_remappedPS[0].y)));
|
|
// 8
|
|
R1f.x = min(PV1f.w, intBitsToFloat(uf_remappedPS[0].y));
|
|
R1f.y = min(PV1f.z, intBitsToFloat(uf_remappedPS[0].y));
|
|
// 9
|
|
predResult = (R3f.y > R3f.x);
|
|
activeMaskStack[1] = predResult;
|
|
activeMaskStackC[2] = predResult == true && activeMaskStackC[1] == true;
|
|
}
|
|
else {
|
|
activeMaskStack[1] = false;
|
|
activeMaskStackC[2] = false;
|
|
}
|
|
if( activeMaskStackC[2] == true ) {
|
|
// 0
|
|
R3f.x = (mul_nonIEEE(R1f.x,-(intBitsToFloat(uf_remappedPS[3].z) / resScale)) + R0f.x);
|
|
R3f.y = (mul_nonIEEE(R1f.y,-(intBitsToFloat(uf_remappedPS[3].w) / resScale)) + R0f.y);
|
|
R0f.z = (mul_nonIEEE(R1f.x,intBitsToFloat(uf_remappedPS[3].z)) + R0f.x); //leave out, looks better on avg
|
|
R0f.w = (mul_nonIEEE(R1f.y,intBitsToFloat(uf_remappedPS[3].w)) + R0f.y);//leave out, looks better on avg
|
|
R4f.x = (mul_nonIEEE(R1f.x,-(intBitsToFloat(uf_remappedPS[3].x) / resScale)) + R0f.x);
|
|
PS0f = R4f.x;
|
|
// 1
|
|
R4f.y = (mul_nonIEEE(R1f.y,-(intBitsToFloat(uf_remappedPS[3].y)/resScale)) + R0f.y);
|
|
R3f.z = (mul_nonIEEE(R1f.x,intBitsToFloat(uf_remappedPS[3].x) / resScale) + R0f.x);
|
|
R3f.w = (mul_nonIEEE(R1f.y,intBitsToFloat(uf_remappedPS[3].y) / resScale) + R0f.y);
|
|
}
|
|
if( activeMaskStackC[2] == true ) {
|
|
R1f.xyzw = (texture(textureUnitPS0, R0f.zw).xyzw);
|
|
R0f.xyzw = (texture(textureUnitPS0, R3f.xy).xyzw);
|
|
R2f.xyzw = (texture(textureUnitPS0, R4f.xy).xyzw);
|
|
R3f.xyzw = (texture(textureUnitPS0, R3f.zw).xyzw);
|
|
}
|
|
if( activeMaskStackC[2] == true ) {
|
|
// 0
|
|
R127f.xyz = vec3(R0f.x,R0f.w,R0f.z) + vec3(R1f.x,R1f.w,R1f.z);
|
|
PV0f.x = R127f.x;
|
|
PV0f.y = R127f.y;
|
|
PV0f.z = R127f.z;
|
|
R127f.w = R0f.y + R1f.y;
|
|
PV0f.w = R127f.w;
|
|
// 1
|
|
PV1f.x = R2f.x + PV0f.x;
|
|
PV1f.y = R2f.w + PV0f.y;
|
|
PV1f.z = R2f.z + PV0f.z;
|
|
PV1f.w = R2f.y + PV0f.w;
|
|
// 2
|
|
R126f.x = R3f.x + PV1f.x;
|
|
R126f.x /= 2.0;
|
|
PV0f.x = R126f.x;
|
|
R126f.y = R3f.w + PV1f.y;
|
|
R126f.y /= 2.0;
|
|
PV0f.y = R126f.y;
|
|
R126f.z = R3f.z + PV1f.z;
|
|
R126f.z /= 2.0;
|
|
PV0f.z = R126f.z;
|
|
R126f.w = R3f.y + PV1f.w;
|
|
R126f.w /= 2.0;
|
|
PV0f.w = R126f.w;
|
|
// 3
|
|
backupReg0f = R127f.y;
|
|
R123f.x = (mul_nonIEEE(PV0f.x,intBitsToFloat(uf_remappedPS[1].x)) + -(R4f.w));
|
|
PV1f.x = R123f.x;
|
|
R127f.yzw = vec3(R127f.z,R127f.w,R127f.x) + vec3(-(PV0f.z),-(PV0f.w),-(PV0f.x));
|
|
R127f.x = backupReg0f + -(PV0f.y);
|
|
PS1f = R127f.x;
|
|
// 4
|
|
R123f.w = (mul_nonIEEE(R126f.w,intBitsToFloat(uf_remappedPS[1].y)) + PV1f.x);
|
|
PV0f.w = R123f.w;
|
|
// 5
|
|
PV1f.z = max(PV0f.w, -(PV0f.w));
|
|
// 6
|
|
PV0f.y = -(R4f.z) + PV1f.z;
|
|
// 7
|
|
R123f.x = intBitsToFloat(((PV0f.y >= 0.0)?(floatBitsToInt(1.0)):(0)));
|
|
PV1f.x = R123f.x;
|
|
// 8
|
|
R2f.x = (mul_nonIEEE(R127f.w,PV1f.x) + R126f.x)/2.0;
|
|
R2f.y = (mul_nonIEEE(R127f.z,PV1f.x) + R126f.w)/2.0;
|
|
R2f.z = (mul_nonIEEE(R127f.y,PV1f.x) + R126f.z)/2.0;
|
|
R2f.w = (mul_nonIEEE(R127f.x,PV1f.x) + R126f.y)/2.0;
|
|
}
|
|
activeMaskStackC[1] = activeMaskStack[0] == true && activeMaskStackC[0] == true;
|
|
// export
|
|
|
|
R2f.xyz = contrasty(R2f.xyz);
|
|
passPixelColor0 = vec4(R2f.x, R2f.y, R2f.z, R2f.w);
|
|
}
|