cemu_graphic_packs/Resolutions/LegoStarWars_Resolution/66681ef93c67091e_0000000000000000_vs.txt
Crementif f81f8299e1
Update Lego Star Wars packs to v4
Even though the game isn't playable with Vulkan, let's just have everything converted for tidiness sake.
2020-01-18 20:02:21 +01:00

163 lines
6.7 KiB
Plaintext

#version 420
#extension GL_ARB_texture_gather : enable
#extension GL_ARB_separate_shader_objects : enable
#ifdef VULKAN
#define ATTR_LAYOUT(__vkSet, __location) layout(set = __vkSet, location = __location)
#define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation, std140)
#define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation)
#define SET_POSITION(_v) gl_Position = _v; gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0
#define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale.xy,gl_FragCoord.zw)
#define gl_VertexID gl_VertexIndex
#define gl_InstanceID gl_InstanceIndex
#else
#define ATTR_LAYOUT(__vkSet, __location) layout(location = __location)
#define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation, std140)
#define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation)
#define SET_POSITION(_v) gl_Position = _v
#define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale,gl_FragCoord.zw)
#endif
// This shader was automatically converted to be cross-compatible with Vulkan and OpenGL.
// shader 66681ef93c67091e
// Used for: Bloom and motion blur
const float resXScale = ($width/$gameWidth);
#ifdef VULKAN
layout(set = 0, binding = 0) uniform ufBlock
{
uniform ivec4 uf_remappedVS[7];
// uniform vec2 uf_windowSpaceToClipSpaceTransform; // Cemu optimized this uf_variable away in Cemu 1.15.7
};
#else
uniform ivec4 uf_remappedVS[7];
// uniform vec2 uf_windowSpaceToClipSpaceTransform; // Cemu optimized this uf_variable away in Cemu 1.15.7
#endif
// uf_windowSpaceToClipSpaceTransform was moved to the ufBlock
ATTR_LAYOUT(0, 0) in uvec4 attrDataSem0;
ATTR_LAYOUT(0, 1) in uvec4 attrDataSem1;
ATTR_LAYOUT(0, 2) in uvec4 attrDataSem2;
ATTR_LAYOUT(0, 3) in uvec4 attrDataSem5;
out gl_PerVertex
{
vec4 gl_Position;
float gl_PointSize;
};
layout(location = 0) out vec4 passParameterSem128;
layout(location = 1) out vec4 passParameterSem129;
layout(location = 2) out vec4 passParameterSem130;
layout(location = 3) out vec4 passParameterSem131;
layout(location = 4) out vec4 passParameterSem132;
int clampFI32(int v)
{
if( v == 0x7FFFFFFF )
return floatBitsToInt(1.0);
else if( v == 0xFFFFFFFF )
return floatBitsToInt(0.0);
return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0));
}
float mul_nonIEEE(float a, float b){return mix(0.0, a*b, (a != 0.0) && (b != 0.0));}
void main()
{
vec4 R0f = vec4(0.0);
vec4 R1f = vec4(0.0);
vec4 R2f = vec4(0.0);
vec4 R3f = vec4(0.0);
vec4 R4f = vec4(0.0);
vec4 R5f = vec4(0.0);
vec4 R125f = vec4(0.0);
vec4 R126f = vec4(0.0);
vec4 R127f = vec4(0.0);
uvec4 attrDecoder;
float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f;
vec4 PV0f = vec4(0.0), PV1f = vec4(0.0);
float PS0f = 0.0, PS1f = 0.0;
vec4 tempf = vec4(0.0);
float tempResultf;
int tempResulti;
ivec4 ARi = ivec4(0);
bool predResult = true;
vec3 cubeMapSTM;
int cubeMapFaceId;
R0f = floatBitsToInt(ivec4(gl_VertexID, 0, 0, gl_InstanceID));
attrDecoder.xyz = attrDataSem0.xyz;
attrDecoder.xyz = (attrDecoder.xyz>>24)|((attrDecoder.xyz>>8)&0xFF00)|((attrDecoder.xyz<<8)&0xFF0000)|((attrDecoder.xyz<<24));
attrDecoder.w = 0;
R1f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(floatBitsToInt(1.0)));
attrDecoder.xy = attrDataSem5.xy;
attrDecoder.xy = (attrDecoder.xy>>24)|((attrDecoder.xy>>8)&0xFF00)|((attrDecoder.xy<<8)&0xFF0000)|((attrDecoder.xy<<24));
attrDecoder.z = 0;
attrDecoder.w = 0;
R2f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(floatBitsToInt(0.0)), intBitsToFloat(floatBitsToInt(1.0)));
// 0
PV0f.z = -(R1f.y);
PV0f.z /= 2.0;
PV0f.w = R1f.x;
PV0f.w /= 2.0;
R0f.w = intBitsToFloat(uf_remappedVS[0].w);
PS0f = R0f.w;
// 1
PV1f.x = PV0f.z + 0.5;
PV1f.y = PV0f.w + 0.5;
R0f.z = intBitsToFloat(uf_remappedVS[0].z) * (intBitsToFloat(0x3e4cc000)/resXScale);
R2f.w = intBitsToFloat(uf_remappedVS[1].w);
R2f.z = intBitsToFloat(uf_remappedVS[1].z) * (intBitsToFloat(0x3e4cc000)/resXScale);
PS1f = R2f.z;
// 2
R127f.y = (mul_nonIEEE(PV1f.x,intBitsToFloat(uf_remappedVS[2].w)) + intBitsToFloat(uf_remappedVS[2].y));
PV0f.y = R127f.y;
R127f.z = (mul_nonIEEE(PV1f.y,intBitsToFloat(uf_remappedVS[2].z)) + intBitsToFloat(uf_remappedVS[2].x));
PV0f.z = R127f.z;
// 3
R127f.x = intBitsToFloat(uf_remappedVS[0].x) + PV0f.z;
R126f.y = intBitsToFloat(uf_remappedVS[1].y) + PV0f.y;
R126f.z = intBitsToFloat(uf_remappedVS[1].x) + PV0f.z;
R127f.w = intBitsToFloat(uf_remappedVS[0].y) + PV0f.y;
// 4
R126f.x = intBitsToFloat(uf_remappedVS[3].x) + R127f.z;
R125f.y = intBitsToFloat(uf_remappedVS[4].y) + R127f.y;
R125f.z = intBitsToFloat(uf_remappedVS[4].x) + R127f.z;
R126f.w = intBitsToFloat(uf_remappedVS[3].y) + R127f.y;
// 5
R125f.x = intBitsToFloat(uf_remappedVS[5].x) + R127f.z;
R3f.z = intBitsToFloat(uf_remappedVS[3].z) * (intBitsToFloat(0x3e4cc000)/resXScale);
R125f.w = intBitsToFloat(uf_remappedVS[5].y) + R127f.y;
R3f.w = intBitsToFloat(uf_remappedVS[3].w);
PS1f = R3f.w;
// 6
R0f.x = (mul_nonIEEE(R127f.x,intBitsToFloat(uf_remappedVS[6].x)) + intBitsToFloat(uf_remappedVS[6].z));
R0f.y = (mul_nonIEEE(R127f.w,intBitsToFloat(uf_remappedVS[6].y)) + intBitsToFloat(uf_remappedVS[6].w));
R2f.x = (mul_nonIEEE(R126f.z,intBitsToFloat(uf_remappedVS[6].x)) + intBitsToFloat(uf_remappedVS[6].z));
PS0f = R2f.x;
// 7
R3f.x = (mul_nonIEEE(R126f.x,intBitsToFloat(uf_remappedVS[6].x)) + intBitsToFloat(uf_remappedVS[6].z));
R2f.y = (mul_nonIEEE(R126f.y,intBitsToFloat(uf_remappedVS[6].y)) + intBitsToFloat(uf_remappedVS[6].w));
R3f.y = (mul_nonIEEE(R126f.w,intBitsToFloat(uf_remappedVS[6].y)) + intBitsToFloat(uf_remappedVS[6].w));
PS1f = R3f.y;
// 8
R4f.z = intBitsToFloat(uf_remappedVS[4].z) * (intBitsToFloat(0x3e4cc000)/resXScale);
R4f.w = intBitsToFloat(uf_remappedVS[4].w);
R5f.w = intBitsToFloat(uf_remappedVS[5].w);
PS0f = R5f.w;
// 9
R4f.x = (mul_nonIEEE(R125f.z,intBitsToFloat(uf_remappedVS[6].x)) + intBitsToFloat(uf_remappedVS[6].z));
R4f.y = (mul_nonIEEE(R125f.y,intBitsToFloat(uf_remappedVS[6].y)) + intBitsToFloat(uf_remappedVS[6].w));
R5f.x = (mul_nonIEEE(R125f.x,intBitsToFloat(uf_remappedVS[6].x)) + intBitsToFloat(uf_remappedVS[6].z));
PS1f = R5f.x;
// 10
R5f.y = (mul_nonIEEE(R125f.w,intBitsToFloat(uf_remappedVS[6].y)) + intBitsToFloat(uf_remappedVS[6].w));
// 11
R5f.z = intBitsToFloat(uf_remappedVS[5].z) * (intBitsToFloat(0x3e4cc000)/resXScale);
// export
SET_POSITION(vec4(R1f.x, R1f.y, R1f.z, R1f.w));
// export
passParameterSem128 = vec4(R0f.x, R0f.y, R0f.z, R0f.w);
// export
passParameterSem129 = vec4(R2f.x, R2f.y, R2f.z, R2f.w);
// export
passParameterSem130 = vec4(R3f.x, R3f.y, R3f.z, R3f.w);
// export
passParameterSem131 = vec4(R4f.x, R4f.y, R4f.z, R4f.w);
// export
passParameterSem132 = vec4(R5f.x, R5f.y, R5f.z, R5f.w);
}