dolphin/Source/Core/Common/FatFsUtil.cpp

855 lines
23 KiB
C++
Raw Normal View History

// Copyright 2022 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/FatFsUtil.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <mutex>
#include <string>
#include <string_view>
#include <vector>
#include <fmt/format.h>
// Does not compile if diskio.h is included first.
// clang-format off
#include "ff.h"
#include "diskio.h"
// clang-format on
#include "Common/Align.h"
#include "Common/FileUtil.h"
#include "Common/IOFile.h"
#include "Common/Logging/Log.h"
#include "Common/ScopeGuard.h"
#include "Common/StringUtil.h"
#include "Core/Config/MainSettings.h"
enum : u32
{
SECTOR_SIZE = 512,
MAX_CLUSTER_SIZE = 64 * SECTOR_SIZE,
};
static std::mutex s_fatfs_mutex;
static Common::FatFsCallbacks* s_callbacks;
namespace
{
int SDCardDiskRead(File::IOFile* image, u8 pdrv, u8* buff, u32 sector, unsigned int count)
{
const u64 offset = static_cast<u64>(sector) * SECTOR_SIZE;
if (!image->Seek(offset, File::SeekOrigin::Begin))
{
ERROR_LOG_FMT(COMMON, "SD image seek failed (offset={})", offset);
return RES_ERROR;
}
const size_t size = static_cast<size_t>(count) * SECTOR_SIZE;
if (!image->ReadBytes(buff, size))
{
ERROR_LOG_FMT(COMMON, "SD image read failed (offset={}, size={})", offset, size);
return RES_ERROR;
}
return RES_OK;
}
int SDCardDiskWrite(File::IOFile* image, u8 pdrv, const u8* buff, u32 sector, unsigned int count)
{
const u64 offset = static_cast<u64>(sector) * SECTOR_SIZE;
if (!image->Seek(offset, File::SeekOrigin::Begin))
{
ERROR_LOG_FMT(COMMON, "SD image seek failed (offset={})", offset);
return RES_ERROR;
}
const size_t size = static_cast<size_t>(count) * SECTOR_SIZE;
if (!image->WriteBytes(buff, size))
{
ERROR_LOG_FMT(COMMON, "SD image write failed (offset={}, size={})", offset, size);
return RES_ERROR;
}
return RES_OK;
}
int SDCardDiskIOCtl(File::IOFile* image, u8 pdrv, u8 cmd, void* buff)
{
switch (cmd)
{
case CTRL_SYNC:
return RES_OK;
case GET_SECTOR_COUNT:
*reinterpret_cast<LBA_t*>(buff) = image->GetSize() / SECTOR_SIZE;
return RES_OK;
default:
WARN_LOG_FMT(COMMON, "Unexpected SD image ioctl {}", cmd);
return RES_OK;
}
}
u32 GetSystemTimeFAT()
{
const std::time_t time = std::time(nullptr);
std::tm tm;
#ifdef _WIN32
localtime_s(&tm, &time);
#else
localtime_r(&time, &tm);
#endif
DWORD fattime = 0;
fattime |= (tm.tm_year - 80) << 25;
fattime |= (tm.tm_mon + 1) << 21;
fattime |= tm.tm_mday << 16;
fattime |= tm.tm_hour << 11;
fattime |= tm.tm_min << 5;
fattime |= std::min(tm.tm_sec, 59) >> 1;
return fattime;
}
} // namespace
namespace Common
{
FatFsCallbacks::FatFsCallbacks() = default;
FatFsCallbacks::~FatFsCallbacks() = default;
u8 FatFsCallbacks::DiskInitialize(u8 pdrv)
{
return 0;
}
u8 FatFsCallbacks::DiskStatus(u8 pdrv)
{
return 0;
}
u32 FatFsCallbacks::GetCurrentTimeFAT()
{
return GetSystemTimeFAT();
}
} // namespace Common
namespace
{
class SDCardFatFsCallbacks : public Common::FatFsCallbacks
{
public:
int DiskRead(u8 pdrv, u8* buff, u32 sector, unsigned int count) override
{
return SDCardDiskRead(m_image, pdrv, buff, sector, count);
}
int DiskWrite(u8 pdrv, const u8* buff, u32 sector, unsigned int count) override
{
return SDCardDiskWrite(m_image, pdrv, buff, sector, count);
}
int DiskIOCtl(u8 pdrv, u8 cmd, void* buff) override
{
return SDCardDiskIOCtl(m_image, pdrv, cmd, buff);
}
u32 GetCurrentTimeFAT() override
{
if (m_deterministic)
return 0;
return GetSystemTimeFAT();
}
File::IOFile* m_image = nullptr;
bool m_deterministic = false;
};
} // namespace
extern "C" DSTATUS disk_status(BYTE pdrv)
{
return static_cast<DSTATUS>(s_callbacks->DiskStatus(pdrv));
}
extern "C" DSTATUS disk_initialize(BYTE pdrv)
{
return static_cast<DSTATUS>(s_callbacks->DiskInitialize(pdrv));
}
extern "C" DRESULT disk_read(BYTE pdrv, BYTE* buff, LBA_t sector, UINT count)
{
return static_cast<DRESULT>(s_callbacks->DiskRead(pdrv, buff, sector, count));
}
extern "C" DRESULT disk_write(BYTE pdrv, const BYTE* buff, LBA_t sector, UINT count)
{
return static_cast<DRESULT>(s_callbacks->DiskWrite(pdrv, buff, sector, count));
}
extern "C" DRESULT disk_ioctl(BYTE pdrv, BYTE cmd, void* buff)
{
return static_cast<DRESULT>(s_callbacks->DiskIOCtl(pdrv, cmd, buff));
}
extern "C" DWORD get_fattime(void)
{
return static_cast<DWORD>(s_callbacks->GetCurrentTimeFAT());
}
#if FF_USE_LFN == 3 // match ff.h; currently unused by Dolphin
extern "C" void* ff_memalloc(UINT msize)
{
return std::malloc(msize);
}
extern "C" void ff_memfree(void* mblock)
{
return std::free(mblock);
}
#endif
#if FF_FS_REENTRANT
extern "C" int ff_cre_syncobj(BYTE vol, FF_SYNC_t* sobj)
{
*sobj = new std::recursive_mutex();
return *sobj != nullptr;
}
extern "C" int ff_req_grant(FF_SYNC_t sobj)
{
std::recursive_mutex* m = reinterpret_cast<std::recursive_mutex*>(sobj);
m->lock();
return 1;
}
extern "C" void ff_rel_grant(FF_SYNC_t sobj)
{
std::recursive_mutex* m = reinterpret_cast<std::recursive_mutex*>(sobj);
m->unlock();
}
extern "C" int ff_del_syncobj(FF_SYNC_t sobj)
{
delete reinterpret_cast<std::recursive_mutex*>(sobj);
return 1;
}
#endif
static const char* FatFsErrorToString(FRESULT error_code)
{
// These are taken from the comment next to each value in ff.h
switch (error_code)
{
case FR_OK:
return "Succeeded";
case FR_DISK_ERR:
return "A hard error occurred in the low level disk I/O layer";
case FR_INT_ERR:
return "Assertion failed";
case FR_NOT_READY:
return "The physical drive cannot work";
case FR_NO_FILE:
return "Could not find the file";
case FR_NO_PATH:
return "Could not find the path";
case FR_INVALID_NAME:
return "The path name format is invalid";
case FR_DENIED:
return "Access denied due to prohibited access or directory full";
case FR_EXIST:
return "Access denied due to prohibited access";
case FR_INVALID_OBJECT:
return "The file/directory object is invalid";
case FR_WRITE_PROTECTED:
return "The physical drive is write protected";
case FR_INVALID_DRIVE:
return "The logical drive number is invalid";
case FR_NOT_ENABLED:
return "The volume has no work area";
case FR_NO_FILESYSTEM:
return "There is no valid FAT volume";
case FR_MKFS_ABORTED:
return "The f_mkfs() aborted due to any problem";
case FR_TIMEOUT:
return "Could not get a grant to access the volume within defined period";
case FR_LOCKED:
return "The operation is rejected according to the file sharing policy";
case FR_NOT_ENOUGH_CORE:
return "LFN working buffer could not be allocated";
case FR_TOO_MANY_OPEN_FILES:
return "Number of open files > FF_FS_LOCK";
case FR_INVALID_PARAMETER:
return "Given parameter is invalid";
default:
return "Unknown error";
}
}
namespace Common
{
static constexpr u64 MebibytesToBytes(u64 mebibytes)
{
return mebibytes * 1024 * 1024;
}
static constexpr u64 GibibytesToBytes(u64 gibibytes)
{
return gibibytes * 1024 * 1024 * 1024;
}
static bool CheckIfFATCompatible(const File::FSTEntry& entry)
{
if (!entry.isDirectory)
return true;
if (entry.children.size() > 65536)
{
ERROR_LOG_FMT(COMMON, "Directory {} has too many entries ({})", entry.physicalName,
entry.children.size());
return false;
}
for (const File::FSTEntry& child : entry.children)
{
const size_t size = UTF8ToUTF16(child.virtualName).size();
if (size > 255)
{
ERROR_LOG_FMT(COMMON, "Filename {0} (in directory {1}) is too long ({2})", child.virtualName,
entry.physicalName, size);
return false;
}
if (child.size >= GibibytesToBytes(4))
{
ERROR_LOG_FMT(COMMON, "File {0} (in directory {1}) is too large ({2})", child.virtualName,
entry.physicalName, child.size);
return false;
}
if (!CheckIfFATCompatible(child))
return false;
}
return true;
}
static u64 GetSize(const File::FSTEntry& entry)
{
if (!entry.isDirectory)
return AlignUp(entry.size, MAX_CLUSTER_SIZE);
u64 size = 0;
for (const File::FSTEntry& child : entry.children)
{
size += 32;
// For simplicity, assume that all names are LFN.
const u64 num_lfn_entries = (UTF8ToUTF16(child.virtualName).size() + 13 - 1) / 13;
size += num_lfn_entries * 32;
}
size = AlignUp(size, MAX_CLUSTER_SIZE);
for (const File::FSTEntry& child : entry.children)
size += GetSize(child);
return size;
}
static bool Pack(const std::function<bool()>& cancelled, const File::FSTEntry& entry, bool is_root,
std::vector<u8>& tmp_buffer)
{
if (cancelled())
return false;
if (!entry.isDirectory)
{
File::IOFile src(entry.physicalName, "rb");
if (!src)
{
ERROR_LOG_FMT(COMMON, "Failed to open file {}", entry.physicalName);
return false;
}
FIL dst{};
const auto open_error_code =
f_open(&dst, entry.virtualName.c_str(), FA_CREATE_ALWAYS | FA_WRITE);
if (open_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to open file {} in SD image: {}", entry.physicalName,
FatFsErrorToString(open_error_code));
return false;
}
const size_t src_size = src.GetSize();
if (src.GetSize() != entry.size)
{
ERROR_LOG_FMT(COMMON, "File at {} does not match previously read filesize ({} != {})",
entry.physicalName, entry.size, src_size);
return false;
}
if (entry.size >= GibibytesToBytes(4))
{
ERROR_LOG_FMT(COMMON, "File at {} is too large to fit into FAT ({} >= 4GiB)",
entry.physicalName, entry.size);
return false;
}
u64 size = entry.size;
while (size > 0)
{
if (cancelled())
return false;
u32 chunk_size = static_cast<u32>(std::min(size, static_cast<u64>(tmp_buffer.size())));
if (!src.ReadBytes(tmp_buffer.data(), chunk_size))
{
ERROR_LOG_FMT(COMMON, "Failed to read data from file at {}", entry.physicalName);
return false;
}
u32 written_size;
const auto write_error_code = f_write(&dst, tmp_buffer.data(), chunk_size, &written_size);
if (write_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to write file {} to SD image: {}", entry.physicalName,
FatFsErrorToString(write_error_code));
return false;
}
if (written_size != chunk_size)
{
ERROR_LOG_FMT(COMMON, "Failed to write bytes of file {} to SD image ({} != {})",
entry.physicalName, written_size, chunk_size);
return false;
}
size -= chunk_size;
}
const auto close_error_code = f_close(&dst);
if (close_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to close file {} in SD image: {}", entry.physicalName,
FatFsErrorToString(close_error_code));
return false;
}
if (!src.Close())
{
ERROR_LOG_FMT(COMMON, "Failed to close file {}", entry.physicalName);
return false;
}
return true;
}
if (!is_root)
{
const auto mkdir_error_code = f_mkdir(entry.virtualName.c_str());
if (mkdir_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to make directory {} in SD image: {}", entry.physicalName,
FatFsErrorToString(mkdir_error_code));
return false;
}
const auto chdir_error_code = f_chdir(entry.virtualName.c_str());
if (chdir_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to entry directory {} in SD image: {}", entry.physicalName,
FatFsErrorToString(chdir_error_code));
return false;
}
}
for (const File::FSTEntry& child : entry.children)
{
if (!Pack(cancelled, child, false, tmp_buffer))
return false;
}
if (!is_root)
{
const auto chdir_up_error_code = f_chdir("..");
if (chdir_up_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to leave directory {} in SD image: {}", entry.physicalName,
FatFsErrorToString(chdir_up_error_code));
return false;
}
}
return true;
}
static void SortFST(File::FSTEntry* root)
{
std::sort(root->children.begin(), root->children.end(),
[](const File::FSTEntry& lhs, const File::FSTEntry& rhs) {
return lhs.virtualName < rhs.virtualName;
});
for (auto& child : root->children)
SortFST(&child);
}
bool SyncSDFolderToSDImage(const std::function<bool()>& cancelled, bool deterministic)
{
const std::string source_dir = File::GetUserPath(D_WIISDCARDSYNCFOLDER_IDX);
const std::string image_path = File::GetUserPath(F_WIISDCARDIMAGE_IDX);
if (source_dir.empty() || image_path.empty())
return false;
INFO_LOG_FMT(COMMON, "Starting SD card conversion from folder {} to file {}", source_dir,
image_path);
if (!File::IsDirectory(source_dir))
{
ERROR_LOG_FMT(COMMON, "{} is not a directory, not converting", source_dir);
return false;
}
File::FSTEntry root = File::ScanDirectoryTree(source_dir, true);
if (deterministic)
SortFST(&root);
if (!CheckIfFATCompatible(root))
return false;
u64 size = Config::Get(Config::MAIN_WII_SD_CARD_FILESIZE);
if (size == 0)
{
size = GetSize(root);
// Allocate a reasonable amount of free space
size += std::clamp(size / 2, MebibytesToBytes(512), GibibytesToBytes(8));
}
size = AlignUp(size, MAX_CLUSTER_SIZE);
std::lock_guard lk(s_fatfs_mutex);
SDCardFatFsCallbacks callbacks;
s_callbacks = &callbacks;
Common::ScopeGuard callbacks_guard{[] { s_callbacks = nullptr; }};
File::IOFile image;
callbacks.m_image = &image;
callbacks.m_deterministic = deterministic;
const std::string temp_image_path = File::GetTempFilenameForAtomicWrite(image_path);
if (!image.Open(temp_image_path, "w+b"))
{
ERROR_LOG_FMT(COMMON, "Failed to create or overwrite SD image at {}", image_path);
return false;
}
// delete temp file in failure case
Common::ScopeGuard image_delete_guard{[&] {
image.Close();
File::Delete(temp_image_path);
}};
if (!image.Resize(size))
{
ERROR_LOG_FMT(COMMON, "Failed to allocate {} bytes for SD image at {}", size, image_path);
return false;
}
MKFS_PARM options = {};
options.fmt = FM_FAT32;
options.n_fat = 0; // Number of FATs: automatic
options.align = 1; // Alignment of the data region (in sectors)
options.n_root = 0; // Number of root directory entries: automatic (and unused for FAT32)
options.au_size = 0; // Cluster size: automatic
std::vector<u8> tmp_buffer(MAX_CLUSTER_SIZE);
const auto mkfs_error_code =
f_mkfs("", &options, tmp_buffer.data(), static_cast<UINT>(tmp_buffer.size()));
if (mkfs_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to initialize SD image filesystem: {}",
FatFsErrorToString(mkfs_error_code));
return false;
}
FATFS fs{};
const auto mount_error_code = f_mount(&fs, "", 0);
if (mount_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to mount SD image filesystem: {}",
FatFsErrorToString(mount_error_code));
return false;
}
Common::ScopeGuard unmount_guard{[] { f_unmount(""); }};
if (!Pack(cancelled, root, true, tmp_buffer))
{
ERROR_LOG_FMT(COMMON, "Failed to pack folder {} to SD image at {}", source_dir,
temp_image_path);
return false;
}
unmount_guard.Exit(); // unmount before closing the image
if (!image.Close())
{
ERROR_LOG_FMT(COMMON, "Failed to close SD image at {}", temp_image_path);
return false;
}
if (!File::Rename(temp_image_path, image_path))
{
ERROR_LOG_FMT(COMMON, "Failed to rename SD image from {} to {}", temp_image_path, image_path);
return false;
}
image_delete_guard.Dismiss(); // no need to delete the temp file anymore after the rename
INFO_LOG_FMT(COMMON, "Successfully packed folder {} to SD image at {}", source_dir, image_path);
return true;
}
static bool Unpack(const std::function<bool()>& cancelled, const std::string path,
bool is_directory, const char* name, std::vector<u8>& tmp_buffer)
{
if (cancelled())
return false;
if (!is_directory)
{
FIL src{};
const auto open_error_code = f_open(&src, name, FA_READ);
if (open_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to open file {} in SD image: {}", path,
FatFsErrorToString(open_error_code));
return false;
}
File::IOFile dst(path, "wb");
if (!dst)
{
ERROR_LOG_FMT(COMMON, "Failed to open file {}", path);
return false;
}
u32 size = f_size(&src);
while (size > 0)
{
if (cancelled())
return false;
u32 chunk_size = std::min(size, static_cast<u32>(tmp_buffer.size()));
u32 read_size;
const auto read_error_code = f_read(&src, tmp_buffer.data(), chunk_size, &read_size);
if (read_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to read from file {} in SD image: {}", path,
FatFsErrorToString(read_error_code));
return false;
}
if (read_size != chunk_size)
{
ERROR_LOG_FMT(COMMON, "Failed to read bytes of file {} in SD image ({} != {})", path,
read_size, chunk_size);
return false;
}
if (!dst.WriteBytes(tmp_buffer.data(), chunk_size))
{
ERROR_LOG_FMT(COMMON, "Failed to write to file {}", path);
return false;
}
size -= chunk_size;
}
if (!dst.Close())
{
ERROR_LOG_FMT(COMMON, "Failed to close file {}", path);
return false;
}
const auto close_error_code = f_close(&src);
if (close_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to close file {} in SD image: {}", path,
FatFsErrorToString(close_error_code));
return false;
}
return true;
}
if (!File::CreateDir(path))
{
ERROR_LOG_FMT(COMMON, "Failed to create directory {}", path);
return false;
}
const auto chdir_error_code = f_chdir(name);
if (chdir_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to enter directory {} in SD image: {}", path,
FatFsErrorToString(chdir_error_code));
return false;
}
DIR directory{};
const auto opendir_error_code = f_opendir(&directory, ".");
if (opendir_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to open directory {} in SD image: {}", path,
FatFsErrorToString(opendir_error_code));
return false;
}
FILINFO entry{};
while (true)
{
const auto readdir_error_code = f_readdir(&directory, &entry);
if (readdir_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to read directory {} in SD image: {}", path,
FatFsErrorToString(readdir_error_code));
return false;
}
if (entry.fname[0] == '\0')
break;
if (entry.fname[0] == '?' && entry.fname[1] == '\0' && entry.altname[0] == '\0')
{
// FATFS indicates entries that have neither a short nor a long filename this way.
// These are likely corrupted file entries so just skip them.
continue;
}
const std::string_view childname = entry.fname;
// Check for path traversal attacks.
const bool is_path_traversal_attack =
(childname.find("\\") != std::string_view::npos) ||
(childname.find('/') != std::string_view::npos) ||
std::all_of(childname.begin(), childname.end(), [](char c) { return c == '.'; });
if (is_path_traversal_attack)
{
ERROR_LOG_FMT(
COMMON,
"Path traversal attack detected in directory {} in SD image, child filename is {}", path,
childname);
return false;
}
if (!Unpack(cancelled, fmt::format("{}/{}", path, childname), entry.fattrib & AM_DIR,
entry.fname, tmp_buffer))
{
return false;
}
}
const auto closedir_error_code = f_closedir(&directory);
if (closedir_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to close directory {} in SD image: {}", path,
FatFsErrorToString(closedir_error_code));
return false;
}
const auto chdir_up_error_code = f_chdir("..");
if (chdir_up_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to leave directory {} in SD image: {}", path,
FatFsErrorToString(chdir_up_error_code));
return false;
}
return true;
}
bool SyncSDImageToSDFolder(const std::function<bool()>& cancelled)
{
const std::string image_path = File::GetUserPath(F_WIISDCARDIMAGE_IDX);
const std::string target_dir = File::GetUserPath(D_WIISDCARDSYNCFOLDER_IDX);
if (image_path.empty() || target_dir.empty())
return false;
std::lock_guard lk(s_fatfs_mutex);
SDCardFatFsCallbacks callbacks;
s_callbacks = &callbacks;
Common::ScopeGuard callbacks_guard{[] { s_callbacks = nullptr; }};
INFO_LOG_FMT(COMMON, "Starting SD card conversion from file {} to folder {}", image_path,
target_dir);
File::IOFile image;
callbacks.m_image = &image;
// this shouldn't matter since we're not modifying the SD image here, but initialize it to
// something consistent just in case
callbacks.m_deterministic = true;
if (!image.Open(image_path, "r+b"))
{
ERROR_LOG_FMT(COMMON, "Failed to open SD image at {}", image_path);
return false;
}
FATFS fs{};
const auto mount_error_code = f_mount(&fs, "", 0);
if (mount_error_code != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to mount SD image file system: {}",
FatFsErrorToString(mount_error_code));
return false;
}
Common::ScopeGuard unmount_guard{[] { f_unmount(""); }};
// Unpack() and GetTempFilenameForAtomicWrite() don't want the trailing separator.
const std::string target_dir_without_slash = target_dir.substr(0, target_dir.length() - 1);
// Most systems don't offer atomic directory renaming, so it's simpler to directly work on the
// actual one and rollback if needed.
const bool target_dir_exists = File::IsDirectory(target_dir);
const std::string backup_target_dir_without_slash =
File::GetTempFilenameForAtomicWrite(target_dir_without_slash);
if (target_dir_exists)
{
if (!File::Rename(target_dir_without_slash, backup_target_dir_without_slash))
{
ERROR_LOG_FMT(COMMON, "Failed to move old SD folder to {}", backup_target_dir_without_slash);
return false;
}
}
std::vector<u8> tmp_buffer(MAX_CLUSTER_SIZE);
if (!Unpack(cancelled, target_dir_without_slash, true, "", tmp_buffer))
{
ERROR_LOG_FMT(COMMON, "Failed to unpack SD image {} to {}", image_path, target_dir);
File::DeleteDirRecursively(target_dir_without_slash);
if (target_dir_exists)
File::Rename(backup_target_dir_without_slash, target_dir_without_slash);
return false;
}
unmount_guard.Exit(); // unmount before closing the image
if (target_dir_exists)
File::DeleteDirRecursively(backup_target_dir_without_slash);
// even if this fails the conversion has already succeeded, so we still return true
if (!image.Close())
ERROR_LOG_FMT(COMMON, "Failed to close SD image {}", image_path);
INFO_LOG_FMT(COMMON, "Successfully unpacked SD image {} to {}", image_path, target_dir);
return true;
}
void RunInFatFsContext(FatFsCallbacks& callbacks, const std::function<void()>& function)
{
std::lock_guard lk(s_fatfs_mutex);
s_callbacks = &callbacks;
Common::ScopeGuard callbacks_guard{[] { s_callbacks = nullptr; }};
function();
}
} // namespace Common