571 lines
12 KiB
C++
Raw Normal View History

// Copyright 2013 Dolphin Emulator Project
2015-05-18 01:08:10 +02:00
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <cassert>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "InputCommon/ControlReference/ExpressionParser.h"
using namespace ciface::Core;
namespace ciface
{
namespace ExpressionParser
{
enum TokenType
{
TOK_DISCARD,
TOK_INVALID,
TOK_EOF,
TOK_LPAREN,
TOK_RPAREN,
TOK_AND,
TOK_OR,
TOK_NOT,
TOK_ADD,
TOK_CONTROL,
};
inline std::string OpName(TokenType op)
{
switch (op)
{
case TOK_AND:
return "And";
case TOK_OR:
return "Or";
case TOK_NOT:
return "Not";
case TOK_ADD:
return "Add";
default:
assert(false);
return "";
}
}
class Token
{
public:
TokenType type;
ControlQualifier qualifier;
Token(TokenType type_) : type(type_) {}
Token(TokenType type_, ControlQualifier qualifier_) : type(type_), qualifier(qualifier_) {}
operator std::string() const
{
switch (type)
{
case TOK_DISCARD:
return "Discard";
case TOK_EOF:
return "EOF";
case TOK_LPAREN:
return "(";
case TOK_RPAREN:
return ")";
case TOK_AND:
return "&";
case TOK_OR:
return "|";
case TOK_NOT:
return "!";
case TOK_ADD:
return "+";
case TOK_CONTROL:
return "Device(" + (std::string)qualifier + ")";
case TOK_INVALID:
break;
}
return "Invalid";
}
};
class Lexer
{
public:
std::string expr;
std::string::iterator it;
Lexer(const std::string& expr_) : expr(expr_) { it = expr.begin(); }
bool FetchBacktickString(std::string& value, char otherDelim = 0)
{
value = "";
while (it != expr.end())
{
char c = *it;
++it;
if (c == '`')
return false;
if (c > 0 && c == otherDelim)
return true;
value += c;
}
return false;
}
Token GetFullyQualifiedControl()
{
ControlQualifier qualifier;
std::string value;
if (FetchBacktickString(value, ':'))
{
// Found colon, this is the device name
qualifier.has_device = true;
qualifier.device_qualifier.FromString(value);
FetchBacktickString(value);
}
qualifier.control_name = value;
return Token(TOK_CONTROL, qualifier);
}
Token GetBarewordsControl(char c)
{
std::string name;
name += c;
while (it != expr.end())
{
c = *it;
if (!isalpha(c))
break;
name += c;
++it;
}
ControlQualifier qualifier;
qualifier.control_name = name;
return Token(TOK_CONTROL, qualifier);
}
Token NextToken()
{
if (it == expr.end())
return Token(TOK_EOF);
char c = *it++;
switch (c)
{
case ' ':
case '\t':
case '\n':
case '\r':
return Token(TOK_DISCARD);
case '(':
return Token(TOK_LPAREN);
case ')':
return Token(TOK_RPAREN);
case '&':
return Token(TOK_AND);
case '|':
return Token(TOK_OR);
case '!':
return Token(TOK_NOT);
case '+':
return Token(TOK_ADD);
case '`':
return GetFullyQualifiedControl();
default:
if (isalpha(c))
return GetBarewordsControl(c);
else
return Token(TOK_INVALID);
}
}
ParseStatus Tokenize(std::vector<Token>& tokens)
{
while (true)
{
Token tok = NextToken();
if (tok.type == TOK_DISCARD)
continue;
if (tok.type == TOK_INVALID)
{
tokens.clear();
return ParseStatus::SyntaxError;
}
tokens.push_back(tok);
if (tok.type == TOK_EOF)
break;
}
return ParseStatus::Successful;
}
};
class ExpressionNode
{
public:
virtual ~ExpressionNode() {}
virtual ControlState GetValue() const { return 0; }
virtual void SetValue(ControlState state) {}
virtual int CountNumControls() const { return 0; }
virtual operator std::string() const { return ""; }
};
class DummyExpression : public ExpressionNode
{
public:
std::string name;
DummyExpression(const std::string& name_) : name(name_) {}
ControlState GetValue() const override { return 0.0; }
void SetValue(ControlState value) override {}
int CountNumControls() const override { return 0; }
operator std::string() const override { return "`" + name + "`"; }
};
class ControlExpression : public ExpressionNode
{
public:
ControlQualifier qualifier;
Device::Control* control;
ControlExpression(ControlQualifier qualifier_, std::shared_ptr<Device> device,
Device::Control* control_)
: qualifier(qualifier_), control(control_), m_device(device)
{
}
ControlState GetValue() const override { return control->ToInput()->GetState(); }
void SetValue(ControlState value) override { control->ToOutput()->SetState(value); }
int CountNumControls() const override { return 1; }
operator std::string() const override { return "`" + (std::string)qualifier + "`"; }
private:
std::shared_ptr<Device> m_device;
};
class BinaryExpression : public ExpressionNode
{
public:
TokenType op;
ExpressionNode* lhs;
ExpressionNode* rhs;
BinaryExpression(TokenType op_, ExpressionNode* lhs_, ExpressionNode* rhs_)
: op(op_), lhs(lhs_), rhs(rhs_)
{
}
virtual ~BinaryExpression()
{
delete lhs;
delete rhs;
}
ControlState GetValue() const override
{
ControlState lhsValue = lhs->GetValue();
ControlState rhsValue = rhs->GetValue();
switch (op)
{
case TOK_AND:
return std::min(lhsValue, rhsValue);
case TOK_OR:
return std::max(lhsValue, rhsValue);
case TOK_ADD:
return std::min(lhsValue + rhsValue, 1.0);
default:
assert(false);
return 0;
}
}
void SetValue(ControlState value) override
{
// Don't do anything special with the op we have.
// Treat "A & B" the same as "A | B".
lhs->SetValue(value);
rhs->SetValue(value);
}
int CountNumControls() const override
{
return lhs->CountNumControls() + rhs->CountNumControls();
}
operator std::string() const override
{
return OpName(op) + "(" + (std::string)(*lhs) + ", " + (std::string)(*rhs) + ")";
}
};
class UnaryExpression : public ExpressionNode
{
public:
TokenType op;
ExpressionNode* inner;
UnaryExpression(TokenType op_, ExpressionNode* inner_) : op(op_), inner(inner_) {}
virtual ~UnaryExpression() { delete inner; }
ControlState GetValue() const override
{
ControlState value = inner->GetValue();
switch (op)
{
case TOK_NOT:
return 1.0 - value;
default:
assert(false);
return 0;
}
}
void SetValue(ControlState value) override
{
switch (op)
{
case TOK_NOT:
inner->SetValue(1.0 - value);
break;
default:
assert(false);
}
}
int CountNumControls() const override { return inner->CountNumControls(); }
operator std::string() const override { return OpName(op) + "(" + (std::string)(*inner) + ")"; }
};
std::shared_ptr<Device> ControlFinder::FindDevice(ControlQualifier qualifier) const
{
if (qualifier.has_device)
return container.FindDevice(qualifier.device_qualifier);
else
return container.FindDevice(default_device);
}
Device::Control* ControlFinder::FindControl(ControlQualifier qualifier) const
{
const std::shared_ptr<Device> device = FindDevice(qualifier);
if (!device)
return nullptr;
if (is_input)
return device->FindInput(qualifier.control_name);
else
return device->FindOutput(qualifier.control_name);
}
class Parser
{
public:
Parser(std::vector<Token> tokens_, ControlFinder& finder_) : tokens(tokens_), finder(finder_)
{
m_it = tokens.begin();
}
ParseStatus Parse(Expression** expr_out)
{
ExpressionNode* node;
ParseStatus status = Toplevel(&node);
if (status != ParseStatus::Successful)
return status;
*expr_out = new Expression(node);
return ParseStatus::Successful;
}
private:
std::vector<Token> tokens;
std::vector<Token>::iterator m_it;
ControlFinder& finder;
Token Chew() { return *m_it++; }
Token Peek() { return *m_it; }
bool Expects(TokenType type)
{
Token tok = Chew();
return tok.type == type;
}
ParseStatus Atom(ExpressionNode** expr_out)
{
Token tok = Chew();
switch (tok.type)
{
case TOK_CONTROL:
{
std::shared_ptr<Device> device = finder.FindDevice(tok.qualifier);
Device::Control* control = finder.FindControl(tok.qualifier);
if (control == nullptr)
{
*expr_out = new DummyExpression(tok.qualifier);
return ParseStatus::NoDevice;
}
*expr_out = new ControlExpression(tok.qualifier, device, control);
return ParseStatus::Successful;
}
case TOK_LPAREN:
return Paren(expr_out);
default:
return ParseStatus::SyntaxError;
}
}
bool IsUnaryExpression(TokenType type)
{
switch (type)
{
case TOK_NOT:
return true;
default:
return false;
}
}
ParseStatus Unary(ExpressionNode** expr_out)
{
if (IsUnaryExpression(Peek().type))
{
Token tok = Chew();
ExpressionNode* atom_expr;
ParseStatus status = Atom(&atom_expr);
if (status == ParseStatus::SyntaxError)
return status;
*expr_out = new UnaryExpression(tok.type, atom_expr);
return ParseStatus::Successful;
}
return Atom(expr_out);
}
bool IsBinaryToken(TokenType type)
{
switch (type)
{
case TOK_AND:
case TOK_OR:
case TOK_ADD:
return true;
default:
return false;
}
}
ParseStatus Binary(ExpressionNode** expr_out)
{
ParseStatus status = Unary(expr_out);
if (status == ParseStatus::SyntaxError)
return status;
while (IsBinaryToken(Peek().type))
{
Token tok = Chew();
ExpressionNode* unary_expr;
status = Unary(&unary_expr);
if (status == ParseStatus::SyntaxError)
{
delete *expr_out;
return status;
}
*expr_out = new BinaryExpression(tok.type, *expr_out, unary_expr);
}
return ParseStatus::Successful;
}
ParseStatus Paren(ExpressionNode** expr_out)
{
ParseStatus status;
// lparen already chewed
if ((status = Toplevel(expr_out)) != ParseStatus::Successful)
return status;
if (!Expects(TOK_RPAREN))
{
delete *expr_out;
return ParseStatus::SyntaxError;
}
return ParseStatus::Successful;
}
ParseStatus Toplevel(ExpressionNode** expr_out) { return Binary(expr_out); }
};
ControlState Expression::GetValue() const
{
return node->GetValue();
}
void Expression::SetValue(ControlState value)
{
node->SetValue(value);
}
Expression::Expression(ExpressionNode* node_)
{
node = node_;
num_controls = node->CountNumControls();
}
Expression::~Expression()
{
delete node;
}
static ParseStatus ParseExpressionInner(const std::string& str, ControlFinder& finder,
Expression** expr_out)
{
ParseStatus status;
Expression* expr;
*expr_out = nullptr;
if (str == "")
return ParseStatus::Successful;
Lexer l(str);
std::vector<Token> tokens;
status = l.Tokenize(tokens);
if (status != ParseStatus::Successful)
return status;
Parser p(tokens, finder);
status = p.Parse(&expr);
if (status != ParseStatus::Successful)
return status;
*expr_out = expr;
return ParseStatus::Successful;
}
ParseStatus ParseExpression(const std::string& str, ControlFinder& finder, Expression** expr_out)
{
// Add compatibility with old simple expressions, which are simple
// barewords control names.
ControlQualifier qualifier;
qualifier.control_name = str;
qualifier.has_device = false;
std::shared_ptr<Device> device = finder.FindDevice(qualifier);
Device::Control* control = finder.FindControl(qualifier);
if (control)
{
*expr_out = new Expression(new ControlExpression(qualifier, device, control));
return ParseStatus::Successful;
}
return ParseExpressionInner(str, finder, expr_out);
}
}
}