Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1081 lines
21 KiB
ArmAsm
Raw Normal View History

/* DSP_MIXER -> PCM VOICE SOFTWARE PROCESSOR (8-16 Bits Mono/Stereo Voices)
// Thanks to Duddie for you hard work and documentation
Copyright (c) 2008 Hermes <www.entuwii.net>
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
*/
/********************************/
/** REGISTER NAMES **/
/********************************/
AR0: equ 0x00 ; address registers
AR1: equ 0x01
AR2: equ 0x02
AR3: equ 0x03 // used as jump function selector
IX0: equ 0x04 // LEFT_VOLUME accel
IX1: equ 0x05 // RIGHT_VOLUME accel
IX2: equ 0x06 // ADDRH_SMP accel
IX3: equ 0x07 // ADDRL_SMP accel
R08: equ 0x08 // fixed to 48000 value
R09: equ 0x09 // problems using this
R0A: equ 0x0a // ADDREH_SMP accel
R0B: equ 0x0b // ADDREL_SMP accel
ST0: equ 0x0c
ST1: equ 0x0d
ST2: equ 0x0e
ST3: equ 0x0f
CONFIG: equ 0x12
SR: equ 0x13
PRODL: equ 0x14
PRODM: equ 0x15
PRODH: equ 0x16
PRODM2: equ 0x17
AXL0: equ 0x18
AXL1: equ 0x19
AXH0: equ 0x1A // SMP_R accel
AXH1: equ 0x1b // SMP_L accel
ACC0: equ 0x1c // accumulator (global)
ACC1: equ 0x1d
ACL0: equ 0x1c // Low accumulator
ACL1: equ 0x1d
ACM0: equ 0x1e // Mid accumulator
ACM1: equ 0x1f
ACH0: equ 0x10 // Sign extended 8 bit register 0
ACH1: equ 0x11 // Sign extended 8 bit register 1
/********************************/
/** HARDWARE REGISTER ADDRESS **/
/********************************/
DSCR: equ 0xffc9 ; DSP DMA Control Reg
DSBL: equ 0xffcb ; DSP DMA Block Length
DSPA: equ 0xffcd ; DSP DMA DMEM Address
DSMAH: equ 0xffce ; DSP DMA Mem Address H
DSMAL: equ 0xffcf ; DSP DMA Mem Address L
DIRQ: equ 0xfffb ; DSP Irq Request
DMBH: equ 0xfffc ; DSP Mailbox H
DMBL: equ 0xfffd ; DSP Mailbox L
CMBH: equ 0xfffe ; CPU Mailbox H
CMBL: equ 0xffff ; CPU Mailbox L
DMA_TO_DSP: equ 0
DMA_TO_CPU: equ 1
/**************************************************************/
/* NUM_SAMPLES SLICE */
/**************************************************************/
NUM_SAMPLES: equ 1024 ; 1024 stereo samples 16 bits
/**************************************************************/
/* SOUND CHANNEL REGS */
/**************************************************************/
MEM_REG2: equ 0x0
MEM_VECTH: equ MEM_REG2
MEM_VECTL: equ MEM_REG2+1
RETURN: equ MEM_REG2+2
/**************************************************************/
/* CHANNEL DATAS */
/**************************************************************/
MEM_REG: equ MEM_REG2+0x10
ADDRH_SND: equ MEM_REG // Output buffer
ADDRL_SND: equ MEM_REG+1
DELAYH_SND: equ MEM_REG+2 // Delay samples High word
DELAYL_SND: equ MEM_REG+3 // Delay samples Low word
CHAN_REGS: equ MEM_REG+4 // specific regs for the channel
FLAGSH_SMP: equ CHAN_REGS+0 // countain number of bytes for step (1-> Mono 8 bits, 2-> Stereo 8 bits and Mono 16 bits, 4-> Stereo 16 bits)
FLAGSL_SMP: equ CHAN_REGS+1 // 0->Mono 8 bits, 1->Stereo 8 bits, 2->Mono 16 bits 3 -> Stereo 16 bits
ADDRH_SMP: equ CHAN_REGS+2 // start address
ADDRL_SMP: equ CHAN_REGS+3
ADDREH_SMP: equ CHAN_REGS+4 // end address
ADDREL_SMP: equ CHAN_REGS+5
FREQH_SMP: equ CHAN_REGS+6 // Freq in Hz to play
FREQL_SMP: equ CHAN_REGS+7
SMP_L: equ CHAN_REGS+8 // last sample for left (used to joint various buffers)
SMP_R: equ CHAN_REGS+9 // last sample for right (used to joint various buffers)
COUNTERH_SMP: equ CHAN_REGS+10 // pitch counter
COUNTERL_SMP: equ CHAN_REGS+11
LEFT_VOLUME: equ CHAN_REGS+12 // volume (0 to 255)
RIGHT_VOLUME: equ CHAN_REGS+13
ADDR2H_SMP: equ CHAN_REGS+14 // start address of buffer two (to joint)
ADDR2L_SMP: equ CHAN_REGS+15
ADDR2EH_SMP: equ CHAN_REGS+16 // end address of buffer two (to joint)
ADDR2EL_SMP: equ CHAN_REGS+17
LEFT_VOLUME2: equ CHAN_REGS+18 // volume (0 to 255) for buffer two
RIGHT_VOLUME2: equ CHAN_REGS+19
BACKUPH_SMP: equ CHAN_REGS+20 // start address backup
BACKUPL_SMP: equ CHAN_REGS+21
/**************************************************************/
/* VOICE SAMPLE BUFFER DATAS */
/**************************************************************/
MEM_SAMP: equ CHAN_REGS+0x20
data_end: equ MEM_SAMP+0x20
/**************************************************************/
/* SND OUTPUT DATAS */
/**************************************************************/
MEM_SND: equ data_end ; it need 2048 words (4096 bytes)
/*** START CODE ***/
/**************************************************************/
/* EXCEPTION TABLE */
/**************************************************************/
jmp exception0
jmp exception1
jmp exception2
jmp exception3
jmp exception4
jmp exception5
jmp exception6
jmp exception7
lri $CONFIG, #0xff
lri $SR,#0
s40
clr15
m0
/**************************************************************/
/* main */
/**************************************************************/
main:
// send init token to CPU
si @DMBH, #0xdcd1
si @DMBL, #0x0000
si @DIRQ, #1
recv_cmd:
// check if previous mail is received from the CPU
call wait_for_dsp_mail
// wait a mail from CPU
call wait_for_cpu_mail
si @DMBH, #0xdcd1
clr $ACC0
lri $ACM0,#0xcdd1
cmp
jz sys_command
clr $ACC1
lrs $ACM1, @CMBL
cmpi $ACM1, #0x111 // fill the internal sample buffer and process the voice internally
jz input_samples
cmpi $ACM1, #0x112 // get samples from the external buffer to the internal buffer and process the voice mixing the samples internally
jz input_samples2
cmpi $ACM1, #0x123 // get the address of the voice datas buffer (CHANNEL DATAS)
jz get_data_addr
cmpi $ACM1, #0x222 // process the voice mixing the samples internally
jz input_next_samples
cmpi $ACM1, #0x666 // send the samples for the internal buffer to the external buffer
jz send_samples
cmpi $ACM1, #0x777 // special: to dump the IROM Datas (remember disable others functions from the interrupt vector to use)
jz rom_dump_word // (CMBH+0x8000) countain the address of IROM
cmpi $ACM1, #0x888 // Used for test
jz polla_loca
cmpi $ACM1, #0x999
jz task_terminate
si @DMBL, #0x0004 // return 0 as ignore command
si @DIRQ, #0x1 // set the interrupt
jmp recv_cmd
task_terminate:
si @DMBL, #0x0003
si @DIRQ, #0x1
jmp recv_cmd
sys_command:
clr $ACC1
lrs $ACM1, @CMBL
cmpi $ACM1,#0x0001
jz run_nexttask
cmpi $ACM1,#0x0002
jz 0x8000
jmp recv_cmd
run_nexttask:
s40
call wait_for_cpu_mail
lrs $29,@CMBL
call wait_for_cpu_mail
lrs $29,@CMBL
call wait_for_cpu_mail
lrs $29,@CMBL
call wait_for_cpu_mail
lr $5,@CMBL
andi $31,#0x0fff
mrr $4,$31
call wait_for_cpu_mail
lr $7,@CMBL
call wait_for_cpu_mail
lr $6,@CMBL
call wait_for_cpu_mail
lr $0,@CMBL
call wait_for_cpu_mail
lrs $24,@CMBL
andi $31,#0x0fff
mrr $26,$31
call wait_for_cpu_mail
lrs $25,@CMBL
call wait_for_cpu_mail
lrs $27,@CMBL
sbclr #0x05
sbclr #0x06
jmp 0x80b5
halt
/**************************************************************************************************************************************/
// send the samples for the internal buffer to the external buffer
send_samples:
lri $AR0, #MEM_SND
lris $AXL1, #DMA_TO_CPU;
lri $AXL0, #NUM_SAMPLES*4 ; len
lr $ACM0, @ADDRH_SND
lr $ACL0, @ADDRL_SND
call do_dma
si @DMBL, #0x0004
si @DIRQ, #0x1 // set the interrupt
jmp recv_cmd
/**************************************************************************************************************************************/
// get the address of the voice datas buffer (CHANNEL DATAS)
get_data_addr:
call wait_for_cpu_mail
lrs $ACM0, @CMBH
lr $ACL0, @CMBL
sr @MEM_VECTH, $ACM0
sr @MEM_VECTL, $ACL0
si @DIRQ, #0x0 // clear the interrupt
jmp recv_cmd
/**************************************************************************************************************************************/
// fill the internal sample buffer and process the voice internally
input_samples:
clr $ACC0
lr $ACM0, @MEM_VECTH
lr $ACL0, @MEM_VECTL
lris $AXL0, #0x0004
sr @RETURN, $AXL0
si @DIRQ, #0x0000
// program DMA to get datas
lri $AR0, #MEM_REG
lris $AXL1, #DMA_TO_DSP
lris $AXL0, #64 ; len
call do_dma
lri $AR1, #MEM_SND
lri $ACL1, #0;
lri $AXL0, #NUM_SAMPLES
bloop $AXL0, loop_get1
srri @$AR1, $ACL1
srri @$AR1, $ACL1
loop_get1:
nop
lr $ACM0, @ADDRH_SND
lr $ACL0, @ADDRL_SND
jmp start_main
/**************************************************************************************************************************************/
// get samples from the external buffer to the internal buffer and process the voice mixing the samples internally
input_samples2:
clr $ACC0
lr $ACM0, @MEM_VECTH
lr $ACL0, @MEM_VECTL
lris $AXL0, #0x0004
sr @RETURN, $AXL0
si @DIRQ, #0x0000
// program DMA to get datas
lri $AR0, #MEM_REG
lri $AXL1, #DMA_TO_DSP
lris $AXL0, #64 ; len
call do_dma
lr $ACM0, @ADDRH_SND
lr $ACL0, @ADDRL_SND
lri $AR0, #MEM_SND
lris $AXL1, #DMA_TO_DSP;
lri $AXL0, #NUM_SAMPLES*4; len
call do_dma
jmp start_main
/**************************************************************************************************************************************/
// process the voice mixing the samples internally
input_next_samples:
clr $ACC0
lr $ACM0, @MEM_VECTH
lr $ACL0, @MEM_VECTL
lris $AXL0, #0x0004
sr @RETURN, $AXL0
si @DIRQ, #0x0000
// program DMA to get datas
lri $AR0, #MEM_REG
lris $AXL1, #DMA_TO_DSP
lris $AXL0, #64 ; len
call do_dma
/**************************************************************************************************************************************/
// mixing and control pitch to create 1024 Stereo Samples at 16 bits from here
start_main:
lri $R08, #48000
// load the previous samples used
lr $AXH0, @SMP_R
lr $AXH1, @SMP_L
// optimize the jump function to get MONO/STEREO 8/16 bits samples
lr $ACM1, @FLAGSL_SMP
andi $ACM1, #0x3
addi $ACM1, #sample_selector
mrr $AR3, $ACM1
ilrr $ACM1, @$AR3
mrr $AR3, $ACM1 // AR3 countain the jump loaded from sample selector
clr $ACC0
// test for channel paused
lr $ACM0, @FLAGSL_SMP
andcf $ACM0, #0x20
jlz end_main
// load the sample address
lr $ACM0, @ADDRH_SMP
lr $ACL0, @ADDRL_SMP
// test if ADDR_SMP & ADDR2H_SMP are zero
tst $ACC0
jnz do_not_change1
// set return as "change of buffer"
lris $AXL0, #0x0004
sr @RETURN, $AXL0
// change to buffer 2 if it is possible
call change_buffer
// stops if again 0 address
tst $ACC0
jz save_datas_end
do_not_change1:
// backup the external sample address
mrr $IX2, $ACM0
mrr $IX3, $ACL0
// load the counter pitch
//lr $r08, @COUNTERH_SMP
//lr $r09, @COUNTERL_SMP
// load the end address of the samples
lr $r0a, @ADDREH_SMP
lr $r0b, @ADDREL_SMP
// load AR1 with internal buffer address
lri $AR1, #MEM_SND
/////////////////////////////////////
// delay time section
/////////////////////////////////////
// load AXL0 with the samples to be processed
lri $AXL0, #NUM_SAMPLES
// test if DELAY == 0 and skip or not
clr $ACC0
clr $ACC1
lr $ACH0, @DELAYH_SND
lr $ACM0, @DELAYL_SND
tst $ACC0
jz no_delay
// samples left and right to 0
lris $AXH0, #0
lris $AXH1, #0
// load the samples to be processed in ACM1
mrr $ACM1, $AXL0
l_delay:
iar $AR1 // skip two samples
iar $AR1
decm $ACM1
jz exit_delay1 // exit1 if samples to be processed == 0
decm $ACM0
jz exit_delay2 // exit2 if delay time == 0
jmp l_delay
// store the remanent delay and ends
exit_delay1:
decm $ACM0
sr @DELAYH_SND, $ACH0
sr @DELAYL_SND, $ACM0
lris $AXL0,#0 ; exit from loop
jmp no_delay
exit_delay2:
// store delay=0 and continue
sr @DELAYH_SND, $ACH0
sr @DELAYL_SND, $ACM0
mrr $AXL0, $ACL1 // load remanent samples to be processed in AXL0
no_delay:
/////////////////////////////////////
// end of delay time section
/////////////////////////////////////
/* bucle de generacion de samples */
// load the sample buffer with address aligned to 32 bytes blocks (first time)
si @DSCR, #DMA_TO_DSP // very important!: load_smp_addr_align and jump_load_smp_addr need fix this DMA Register (I gain some cycles so)
// load_smp_addr_align input: $IX2:$IX3
call load_smp_addr_align
// load the volume registers
lr $IX0, @LEFT_VOLUME
lr $IX1, @RIGHT_VOLUME
// test the freq value
clr $ACL0
lr $ACH0, @FREQH_SMP
lr $ACM0, @FREQL_SMP
clr $ACC1
;lri $ACM1,#48000
mrr $ACM1, $R08
cmp
// select the output of the routine to process stereo-mono 8/16bits samples
lri $AR0, #get_sample // fast method <=48000
// if number is greater freq>48000 fix different routine
ifg
lri $AR0, #get_sample2 // slow method >48000
// loops for samples to be processed
bloop $AXL0, loop_end
//srri @$AR1, $AXH0 // put sample R
//srri @$AR1, $AXH1 // put sample L
// Mix right sample section
lrr $ACL0, @$AR1 // load in ACL0 the right sample from the internal buffer
movax $ACC1, $AXL1 // big trick :) load the current sample <<16 and sign extended
asl $ACC0,#24 // convert sample from buffer to 24 bit number with sign extended (ACH0:ACM0)
asr $ACC0,#-8
add $ACC0,$ACC1 // current_sample+buffer sample
cmpi $ACM0,#32767 // limit to 32767
jle right_skip
lri $ACM0, #32767
jmp right_skip2
right_skip:
cmpi $ACM0,#-32768 // limit to -32768
ifle
lri $ACM0, #-32768
right_skip2:
srri @$AR1, $ACM0 // store the right sample mixed to the internal buffer and increment AR1
// Mix left sample section
lrr $ACL0, @$AR1 // load in ACL0 the left sample from the internal buffer
movax $ACC1, $AXL0 // big trick :) load the current sample <<16 and sign extended
asl $ACC0, #24 // convert sample from buffer to 24 bit number with sign extended (ACH0:ACM0)
asr $ACC0, #-8
add $ACC0, $ACC1 // current_sample+buffer sample
cmpi $ACM0,#32767 // limit to 32767
jle left_skip
lri $ACM0, #32767
jmp left_skip2
left_skip:
cmpi $ACM0,#-32768 // limit to -32768
ifle
lri $ACM0, #-32768
left_skip2:
srri @$AR1, $ACM0 // store the left sample mixed to the internal buffer and increment AR1
// adds the counter with the voice frequency and test if it >=48000 to get the next sample
clr $ACL1
lr $ACH1, @COUNTERH_SMP
lr $ACM1, @COUNTERL_SMP
clr $ACL0
lr $ACH0, @FREQH_SMP
lr $ACM0, @FREQL_SMP
add $ACC1,$ACC0
clr $ACC0
//lri $ACM0,#48000
mrr $ACM0, $R08
cmp
jrl $AR0 //get_sample or get_sample2 method
sr @COUNTERH_SMP, $ACH1
sr @COUNTERL_SMP, $ACM1
jmp loop_end
// get a new sample for freq > 48000 Hz
get_sample2: // slow method
sub $ACC1,$ACC0 // restore the counter
// restore the external sample buffer address
clr $ACC0
mrr $ACM0, $IX2 // load ADDRH_SMP
mrr $ACL0, $IX3 // load ADDRL_SMP
lr $AXL1, @FLAGSH_SMP // add the step to get the next samples
addaxl $ACC0, $AXL1
mrr $IX2, $ACM0 // store ADDRH_SMP
mrr $IX3, $ACL0 // store ADDRL_SMP
mrr $ACM0, $ACL0
andf $ACM0, #0x1f
// load_smp_addr_align input: $IX2:$IX3 call if (ACM0 & 0x1f)==0
calllz load_smp_addr_align
clr $ACC0
//lri $ACM0,#48000
mrr $ACM0, $R08
cmp
jle get_sample2
sr @COUNTERH_SMP, $ACH1
sr @COUNTERL_SMP, $ACM1
mrr $ACM0, $IX2 // load ADDRH_SMP
mrr $ACL0, $IX3 // load ADDRL_SMP
clr $ACC1
mrr $ACM1, $r0a // load ADDREH_SMP
mrr $ACL1, $r0b // load ADDREL_SMP
// compares if the current address is >= end address to change the buffer or stops
cmp
// if addr>addr end get a new buffer (if you uses double buffer)
jge get_new_buffer
// load samples from dma, return $ar2 with the addr to get the samples and return using $ar0 to the routine to process 8-16bits Mono/Stereo
jmp jump_load_smp_addr
// get a new sample for freq <= 48000 Hz
get_sample: // fast method
sub $ACC1,$ACC0 // restore the counter
sr @COUNTERH_SMP, $ACH1
sr @COUNTERL_SMP, $ACM1
// restore the external sample buffer address
clr $ACC0
mrr $ACM0, $IX2 // load ADDRH_SMP
mrr $ACL0, $IX3 // load ADDRL_SMP
lr $AXL1, @FLAGSH_SMP // add the step to get the next samples
addaxl $ACC0, $AXL1
clr $ACC1
mrr $ACM1, $r0a // load ADDREH_SMP
mrr $ACL1, $r0b // load ADDREL_SMP
// compares if the current address is >= end address to change the buffer or stops
cmp
jge get_new_buffer
// load the new sample from the buffer
mrr $IX2, $ACM0 // store ADDRH_SMP
mrr $IX3, $ACL0 // store ADDRL_SMP
// load samples from dma, return $ar2 with the addr and return using $ar0 to the routine to process 8-16bits Mono/Stereo or addr_get_sample_again
jmp jump_load_smp_addr
sample_selector:
cw mono_8bits
cw mono_16bits
cw stereo_8bits
cw stereo_16bits
get_new_buffer:
// set return as "change of buffer": it need to change the sample address
lris $AXL0, #0x0004
sr @RETURN, $AXL0
call change_buffer // load add from addr2
// addr is 0 ? go to zero_samples and exit
tst $acc0
jz zero_samples
// load_smp_addr_align input: $IX2:$IX3
call load_smp_addr_align // force the load the samples cached (address aligned)
// jump_load_smp_addr: $IX2:$IX3
// load samples from dma, return $ar2 with the addr to get the samples and return using $ar0 to the routine to process 8-16bits Mono/Stereo
jmp jump_load_smp_addr
// set to 0 the current samples
zero_samples:
lris $AXH0, #0
lris $AXH1, #0
jmp out_samp
mono_8bits:
// 8 bits mono
mrr $ACM1, $IX3
lrri $ACL0, @$AR2
andf $ACM1, #0x1
iflz // obtain sample0-sample1 from 8bits packet
asr $ACL0, #-8
asl $ACL0, #8
mrr $AXH1,$ACL0
mrr $AXH0,$ACL0
jmp out_samp
stereo_8bits:
// 8 bits stereo
lrri $ACL0, @$AR2
mrr $ACM0, $ACL0
andi $ACM0, #0xff00
mrr $AXH1, $ACM0
lsl $ACL0, #8
mrr $AXH0, $ACL0
jmp out_samp
mono_16bits:
// 16 bits mono
lrri $AXH1, @$AR2
mrr $AXH0,$AXH1
jmp out_samp
stereo_16bits:
// 16 bits stereo
lrri $AXH1, @$AR2
lrri $AXH0, @$AR2
out_samp:
// multiply sample x volume
// LEFT_VOLUME
mrr $AXL0,$IX0
mul $AXL0,$AXH0
movp $ACL0
asr $ACL0,#-8
mrr $AXH0, $ACL0
// RIGHT VOLUME
mrr $AXL1,$IX1
mul $AXL1,$AXH1
movp $ACL0
asr $ACL0,#-8
mrr $AXH1, $ACL0
loop_end:
nop
end_process:
// load the sample address
clr $ACC0
mrr $ACM0, $IX2
mrr $ACL0, $IX3
tst $ACC0
jnz save_datas_end
// set return as "change of buffer"
lris $AXL0, #0x0004
sr @RETURN, $AXL0
// change to buffer 2 if it is possible
call change_buffer
save_datas_end:
sr @ADDRH_SMP, $IX2
sr @ADDRL_SMP, $IX3
sr @SMP_R, $AXH0
sr @SMP_L, $AXH1
end_main:
// program DMA to send the CHANNEL DATAS changed
clr $ACC0
lr $ACM0, @MEM_VECTH
lr $ACL0, @MEM_VECTL
lri $AR0, #MEM_REG
lris $AXL1, #DMA_TO_CPU
lris $AXL0, #64 ; len
call do_dma
si @DMBH, #0xdcd1
lr $ACL0, @RETURN
sr @DMBL, $ACL0
si @DIRQ, #0x1 // set the interrupt
jmp recv_cmd
change_buffer:
clr $ACC0
lr $ACM0, @LEFT_VOLUME2
lr $ACL0, @RIGHT_VOLUME2
sr @LEFT_VOLUME, $ACM0
sr @RIGHT_VOLUME, $ACL0
mrr $IX0, $ACM0
mrr $IX1, $ACL0
lr $ACM0, @ADDR2EH_SMP
lr $ACL0, @ADDR2EL_SMP
sr @ADDREH_SMP, $ACM0
sr @ADDREL_SMP, $ACL0
mrr $r0a, $ACM0
mrr $r0b, $ACL0
lr $ACM0, @ADDR2H_SMP
lr $ACL0, @ADDR2L_SMP
sr @ADDRH_SMP, $ACM0
sr @ADDRL_SMP, $ACL0
sr @BACKUPH_SMP, $ACM0
sr @BACKUPL_SMP, $ACL0
mrr $IX2, $ACM0
mrr $IX3, $ACL0
lr $ACM1, @FLAGSL_SMP
andcf $ACM1, #0x4
retlz
sr @ADDR2H_SMP, $ACH0
sr @ADDR2L_SMP, $ACH0
sr @ADDR2EH_SMP, $ACH0
sr @ADDR2EL_SMP, $ACH0
ret
/**************************************************************/
/* DMA ROUTINE */
/**************************************************************/
do_dma:
sr @DSMAH, $ACM0
sr @DSMAL, $ACL0
sr @DSPA, $AR0
sr @DSCR, $AXL1
sr @DSBL, $AXL0
wait_dma:
lrs $ACM1, @DSCR
andcf $ACM1, #0x4
jlz wait_dma
ret
wait_for_dsp_mail:
lrs $ACM1, @DMBH
andf $ACM1, #0x8000
jnz wait_for_dsp_mail
ret
wait_for_cpu_mail:
lrs $ACM1, @cmbh
andcf $ACM1, #0x8000
jlnz wait_for_cpu_mail
ret
load_smp_addr_align:
mrr $ACL0, $IX3 // load ADDRL_SMP
lsr $ACC0, #-5
lsl $ACC0, #5
sr @DSMAH, $IX2
sr @DSMAL, $ACL0
si @DSPA, #MEM_SAMP
;si @DSCR, #DMA_TO_DSP
si @DSBL, #0x20
wait_dma1:
lrs $ACM0, @DSCR
andcf $ACM0, #0x4
jlz wait_dma1
lri $AR2, #MEM_SAMP
ret
//////////////////////////////////////////
jump_load_smp_addr:
mrr $ACM0, $IX3 // load ADDRL_SMP
asr $ACC0, #-1
andi $ACM0, #0xf
jz jump_load_smp_dma
addi $ACM0, #MEM_SAMP
mrr $AR2, $ACM0
jmpr $AR3
jump_load_smp_dma:
sr @DSMAH, $IX2
sr @DSMAL, $IX3
si @DSPA, #MEM_SAMP
;si @DSCR, #DMA_TO_DSP // to gain some cycles
si @DSBL, #0x20
wait_dma2:
lrs $ACM0, @DSCR
andcf $ACM0, #0x4
jlz wait_dma2
lri $AR2, #MEM_SAMP
jmpr $AR3
// exception table
exception0: // RESET
rti
exception1: // STACK OVERFLOW
rti
exception2:
rti
exception3:
rti
exception4:
rti
exception5: // ACCELERATOR ADDRESS OVERFLOW
rti
exception6:
rti
exception7:
rti
// routine to read a word of the IROM space
rom_dump_word:
clr $ACC0
lr $ACM0, @CMBH
ori $ACM0, #0x8000
mrr $AR0, $ACM0
clr $ACC0
ilrr $ACM0, @$AR0
sr @DMBH, $ACL0
sr @DMBL, $ACM0
;si @DIRQ, #0x1 // set the interrupt
clr $ACC0
jmp recv_cmd
polla_loca:
clr $ACC0
lri $acm0, #0x0
andf $acm0,#0x1
sr @DMBH, $sr
sr @DMBL, $acm0
;si @DIRQ, #0x1 // set the interrupt
clr $ACC0
jmp recv_cmd