250 lines
8.4 KiB
C++
Raw Normal View History

2016-08-13 22:57:50 +10:00
// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <vector>
#include "Common/Assert.h"
#include "VideoBackends/Vulkan/BoundingBox.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/StagingBuffer.h"
#include "VideoBackends/Vulkan/StateTracker.h"
#include "VideoBackends/Vulkan/Util.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
namespace Vulkan
{
BoundingBox::BoundingBox()
{
}
BoundingBox::~BoundingBox()
{
if (m_gpu_buffer != VK_NULL_HANDLE)
{
vkDestroyBuffer(g_vulkan_context->GetDevice(), m_gpu_buffer, nullptr);
vkFreeMemory(g_vulkan_context->GetDevice(), m_gpu_memory, nullptr);
}
}
bool BoundingBox::Initialize()
{
if (!g_vulkan_context->SupportsBoundingBox())
{
WARN_LOG(VIDEO, "Vulkan: Bounding box is unsupported by your device.");
return true;
}
if (!CreateGPUBuffer())
return false;
if (!CreateReadbackBuffer())
return false;
return true;
}
void BoundingBox::Flush(StateTracker* state_tracker)
{
if (m_gpu_buffer == VK_NULL_HANDLE)
return;
// Combine updates together, chances are the game would have written all 4.
bool updated_buffer = false;
for (size_t start = 0; start < 4; start++)
{
if (!m_values_dirty[start])
continue;
size_t count = 0;
std::array<s32, 4> write_values;
for (; (start + count) < 4; count++)
{
if (!m_values_dirty[start + count])
break;
m_readback_buffer->Read((start + count) * sizeof(s32), &write_values[count], sizeof(s32),
false);
m_values_dirty[start + count] = false;
}
// We can't issue vkCmdUpdateBuffer within a render pass.
// However, the writes must be serialized, so we can't put it in the init buffer.
if (!updated_buffer)
{
state_tracker->EndRenderPass();
// Ensure GPU buffer is in a state where it can be transferred to.
Util::BufferMemoryBarrier(
g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_WRITE_BIT, 0,
BUFFER_SIZE, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
updated_buffer = true;
}
vkCmdUpdateBuffer(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer,
start * sizeof(s32), count * sizeof(s32),
reinterpret_cast<const u32*>(write_values.data()));
}
// Restore fragment shader access to the buffer.
if (updated_buffer)
{
Util::BufferMemoryBarrier(
g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, 0, BUFFER_SIZE,
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT);
}
// We're now up-to-date.
m_valid = true;
}
void BoundingBox::Invalidate(StateTracker* state_tracker)
{
if (m_gpu_buffer == VK_NULL_HANDLE)
return;
m_valid = false;
}
s32 BoundingBox::Get(StateTracker* state_tracker, size_t index)
{
_assert_(index < NUM_VALUES);
if (!m_valid)
Readback(state_tracker);
s32 value;
m_readback_buffer->Read(index * sizeof(s32), &value, sizeof(value), false);
return value;
}
void BoundingBox::Set(StateTracker* state_tracker, size_t index, s32 value)
{
_assert_(index < NUM_VALUES);
// If we're currently valid, update the stored value in both our cache and the GPU buffer.
if (m_valid)
{
// Skip when it hasn't changed.
s32 current_value;
m_readback_buffer->Read(index * sizeof(s32), &current_value, sizeof(current_value), false);
if (current_value == value)
return;
}
// Flag as dirty, and update values.
m_readback_buffer->Write(index * sizeof(s32), &value, sizeof(value), true);
m_values_dirty[index] = true;
}
bool BoundingBox::CreateGPUBuffer()
{
VkBufferUsageFlags buffer_usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT;
VkBufferCreateInfo info = {
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkBufferCreateFlags flags
BUFFER_SIZE, // VkDeviceSize size
buffer_usage, // VkBufferUsageFlags usage
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode
0, // uint32_t queueFamilyIndexCount
nullptr // const uint32_t* pQueueFamilyIndices
};
VkBuffer buffer;
VkResult res = vkCreateBuffer(g_vulkan_context->GetDevice(), &info, nullptr, &buffer);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateBuffer failed: ");
return false;
}
VkMemoryRequirements memory_requirements;
vkGetBufferMemoryRequirements(g_vulkan_context->GetDevice(), buffer, &memory_requirements);
uint32_t memory_type_index = g_vulkan_context->GetMemoryType(memory_requirements.memoryTypeBits,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VkMemoryAllocateInfo memory_allocate_info = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
memory_requirements.size, // VkDeviceSize allocationSize
memory_type_index // uint32_t memoryTypeIndex
};
VkDeviceMemory memory;
res = vkAllocateMemory(g_vulkan_context->GetDevice(), &memory_allocate_info, nullptr, &memory);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkAllocateMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr);
return false;
}
res = vkBindBufferMemory(g_vulkan_context->GetDevice(), buffer, memory, 0);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkBindBufferMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr);
vkFreeMemory(g_vulkan_context->GetDevice(), memory, nullptr);
return false;
}
m_gpu_buffer = buffer;
m_gpu_memory = memory;
return true;
}
bool BoundingBox::CreateReadbackBuffer()
{
m_readback_buffer = StagingBuffer::Create(STAGING_BUFFER_TYPE_READBACK, BUFFER_SIZE,
VK_BUFFER_USAGE_TRANSFER_DST_BIT);
if (!m_readback_buffer || !m_readback_buffer->Map())
return false;
return true;
}
void BoundingBox::Readback(StateTracker* state_tracker)
{
// Can't be done within a render pass.
state_tracker->EndRenderPass();
// Ensure all writes are completed to the GPU buffer prior to the transfer.
Util::BufferMemoryBarrier(
g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, 0,
BUFFER_SIZE, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
m_readback_buffer->PrepareForGPUWrite(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT);
// Copy from GPU -> readback buffer.
VkBufferCopy region = {0, 0, BUFFER_SIZE};
vkCmdCopyBuffer(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer,
m_readback_buffer->GetBuffer(), 1, &region);
// Restore GPU buffer access.
Util::BufferMemoryBarrier(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer,
VK_ACCESS_TRANSFER_READ_BIT,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, 0, BUFFER_SIZE,
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT);
m_readback_buffer->FlushGPUCache(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
// Wait until these commands complete.
Util::ExecuteCurrentCommandsAndRestoreState(state_tracker, false, true);
// Cache is now valid.
m_readback_buffer->InvalidateCPUCache();
m_valid = true;
}
} // namespace Vulkan