1435 lines
48 KiB
C++
Raw Normal View History

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include <math.h>
#include <strsafe.h>
#include "Timer.h"
#include "Debugger.h"
#include "DLCache.h"
#include "EmuWindow.h"
#include "Fifo.h"
#include "OnScreenDisplay.h"
#include "PixelEngine.h"
#include "Statistics.h"
#include "VertexShaderManager.h"
#include "VideoConfig.h"
#include "D3DBase.h"
#include "D3DUtil.h"
#include "FramebufferManager.h"
#include "GfxState.h"
#include "PixelShaderCache.h"
#include "Render.h"
#include "TextureCache.h"
#include "VertexShaderCache.h"
#include "Core.h"
#include "Movie.h"
#include "Television.h"
#include "Host.h"
#include "BPFunctions.h"
#include "AVIDump.h"
namespace DX11
{
static int s_fps = 0;
static u32 s_LastAA = 0;
static u32 s_blendMode;
static Television s_television;
ID3D11Buffer* access_efb_cbuf = NULL;
ID3D11BlendState* clearblendstates[4] = {NULL};
ID3D11DepthStencilState* cleardepthstates[3] = {NULL};
ID3D11BlendState* resetblendstate = NULL;
ID3D11DepthStencilState* resetdepthstate = NULL;
ID3D11RasterizerState* resetraststate = NULL;
static ID3D11Texture2D* s_screenshot_texture = NULL;
// GX pipeline state
struct
{
D3D11_SAMPLER_DESC sampdc[8];
D3D11_BLEND_DESC blenddc;
D3D11_DEPTH_STENCIL_DESC depthdc;
D3D11_RASTERIZER_DESC rastdc;
} gx_state;
// State translation lookup tables
static const D3D11_BLEND d3dSrcFactors[8] =
{
D3D11_BLEND_ZERO,
D3D11_BLEND_ONE,
D3D11_BLEND_DEST_COLOR,
D3D11_BLEND_INV_DEST_COLOR,
D3D11_BLEND_SRC_ALPHA,
D3D11_BLEND_INV_SRC_ALPHA, // NOTE: Use SRC1_ALPHA if dst alpha is enabled!
D3D11_BLEND_DEST_ALPHA,
D3D11_BLEND_INV_DEST_ALPHA
};
static const D3D11_BLEND d3dDestFactors[8] =
{
D3D11_BLEND_ZERO,
D3D11_BLEND_ONE,
D3D11_BLEND_SRC_COLOR,
D3D11_BLEND_INV_SRC_COLOR,
D3D11_BLEND_SRC_ALPHA,
D3D11_BLEND_INV_SRC_ALPHA, // NOTE: Use SRC1_ALPHA if dst alpha is enabled!
D3D11_BLEND_DEST_ALPHA,
D3D11_BLEND_INV_DEST_ALPHA
};
// 0 0x00
// 1 Source & destination
// 2 Source & ~destination
// 3 Source
// 4 ~Source & destination
// 5 Destination
// 6 Source ^ destination = Source & ~destination | ~Source & destination
// 7 Source | destination
// 8 ~(Source | destination)
// 9 ~(Source ^ destination) = ~Source & ~destination | Source & destination
// 10 ~Destination
// 11 Source | ~destination
// 12 ~Source
// 13 ~Source | destination
// 14 ~(Source & destination)
// 15 0xff
static const D3D11_BLEND_OP d3dLogicOps[16] =
{
D3D11_BLEND_OP_ADD,//0
D3D11_BLEND_OP_ADD,//1
D3D11_BLEND_OP_SUBTRACT,//2
D3D11_BLEND_OP_ADD,//3
D3D11_BLEND_OP_REV_SUBTRACT,//4
D3D11_BLEND_OP_ADD,//5
D3D11_BLEND_OP_MAX,//6
D3D11_BLEND_OP_ADD,//7
D3D11_BLEND_OP_MAX,//8
D3D11_BLEND_OP_MAX,//9
D3D11_BLEND_OP_ADD,//10
D3D11_BLEND_OP_ADD,//11
D3D11_BLEND_OP_ADD,//12
D3D11_BLEND_OP_ADD,//13
D3D11_BLEND_OP_ADD,//14
D3D11_BLEND_OP_ADD//15
};
static const D3D11_BLEND d3dLogicOpSrcFactors[16] =
{
D3D11_BLEND_ZERO,//0
D3D11_BLEND_DEST_COLOR,//1
D3D11_BLEND_ONE,//2
D3D11_BLEND_ONE,//3
D3D11_BLEND_DEST_COLOR,//4
D3D11_BLEND_ZERO,//5
D3D11_BLEND_INV_DEST_COLOR,//6
D3D11_BLEND_INV_DEST_COLOR,//7
D3D11_BLEND_INV_SRC_COLOR,//8
D3D11_BLEND_INV_SRC_COLOR,//9
D3D11_BLEND_INV_DEST_COLOR,//10
D3D11_BLEND_ONE,//11
D3D11_BLEND_INV_SRC_COLOR,//12
D3D11_BLEND_INV_SRC_COLOR,//13
D3D11_BLEND_INV_DEST_COLOR,//14
D3D11_BLEND_ONE//15
};
static const D3D11_BLEND d3dLogicOpDestFactors[16] =
{
D3D11_BLEND_ZERO,//0
D3D11_BLEND_ZERO,//1
D3D11_BLEND_INV_SRC_COLOR,//2
D3D11_BLEND_ZERO,//3
D3D11_BLEND_ONE,//4
D3D11_BLEND_ONE,//5
D3D11_BLEND_INV_SRC_COLOR,//6
D3D11_BLEND_ONE,//7
D3D11_BLEND_INV_DEST_COLOR,//8
D3D11_BLEND_SRC_COLOR,//9
D3D11_BLEND_INV_DEST_COLOR,//10
D3D11_BLEND_INV_DEST_COLOR,//11
D3D11_BLEND_INV_SRC_COLOR,//12
D3D11_BLEND_ONE,//13
D3D11_BLEND_INV_SRC_COLOR,//14
D3D11_BLEND_ONE//15
};
static const D3D11_CULL_MODE d3dCullModes[4] =
{
D3D11_CULL_NONE,
D3D11_CULL_BACK,
D3D11_CULL_FRONT,
D3D11_CULL_BACK
};
static const D3D11_COMPARISON_FUNC d3dCmpFuncs[8] =
{
D3D11_COMPARISON_NEVER,
D3D11_COMPARISON_LESS,
D3D11_COMPARISON_EQUAL,
D3D11_COMPARISON_LESS_EQUAL,
D3D11_COMPARISON_GREATER,
D3D11_COMPARISON_NOT_EQUAL,
D3D11_COMPARISON_GREATER_EQUAL,
D3D11_COMPARISON_ALWAYS
};
#define TEXF_NONE 0
#define TEXF_POINT 1
#define TEXF_LINEAR 2
static const unsigned int d3dMipFilters[4] =
{
TEXF_NONE,
TEXF_POINT,
TEXF_LINEAR,
TEXF_NONE, //reserved
};
static const D3D11_TEXTURE_ADDRESS_MODE d3dClamps[4] =
{
D3D11_TEXTURE_ADDRESS_CLAMP,
D3D11_TEXTURE_ADDRESS_WRAP,
D3D11_TEXTURE_ADDRESS_MIRROR,
D3D11_TEXTURE_ADDRESS_WRAP //reserved
};
void SetupDeviceObjects()
{
s_television.Init();
g_framebuffer_manager = new FramebufferManager;
HRESULT hr;
float colmat[20]= {0.0f};
colmat[0] = colmat[5] = colmat[10] = 1.0f;
D3D11_BUFFER_DESC cbdesc = CD3D11_BUFFER_DESC(20*sizeof(float), D3D11_BIND_CONSTANT_BUFFER, D3D11_USAGE_DEFAULT);
D3D11_SUBRESOURCE_DATA data;
data.pSysMem = colmat;
hr = D3D::device->CreateBuffer(&cbdesc, &data, &access_efb_cbuf);
CHECK(hr==S_OK, "Create constant buffer for Renderer::AccessEFB");
D3D::SetDebugObjectName((ID3D11DeviceChild*)access_efb_cbuf, "constant buffer for Renderer::AccessEFB");
D3D11_DEPTH_STENCIL_DESC ddesc;
ddesc.DepthEnable = FALSE;
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
ddesc.DepthFunc = D3D11_COMPARISON_ALWAYS;
ddesc.StencilEnable = FALSE;
ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK;
ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK;
hr = D3D::device->CreateDepthStencilState(&ddesc, &cleardepthstates[0]);
CHECK(hr==S_OK, "Create depth state for Renderer::ClearScreen");
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
ddesc.DepthEnable = TRUE;
hr = D3D::device->CreateDepthStencilState(&ddesc, &cleardepthstates[1]);
CHECK(hr==S_OK, "Create depth state for Renderer::ClearScreen");
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
hr = D3D::device->CreateDepthStencilState(&ddesc, &cleardepthstates[2]);
CHECK(hr==S_OK, "Create depth state for Renderer::ClearScreen");
D3D::SetDebugObjectName((ID3D11DeviceChild*)cleardepthstates[0], "depth state for Renderer::ClearScreen (depth buffer disabled)");
D3D::SetDebugObjectName((ID3D11DeviceChild*)cleardepthstates[1], "depth state for Renderer::ClearScreen (depth buffer enabled, writing enabled)");
D3D::SetDebugObjectName((ID3D11DeviceChild*)cleardepthstates[2], "depth state for Renderer::ClearScreen (depth buffer enabled, writing disabled)");
D3D11_BLEND_DESC blenddesc;
blenddesc.AlphaToCoverageEnable = FALSE;
blenddesc.IndependentBlendEnable = FALSE;
blenddesc.RenderTarget[0].BlendEnable = FALSE;
blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
blenddesc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
blenddesc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO;
blenddesc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
blenddesc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
blenddesc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
blenddesc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
hr = D3D::device->CreateBlendState(&blenddesc, &resetblendstate);
CHECK(hr==S_OK, "Create blend state for Renderer::ResetAPIState");
D3D::SetDebugObjectName((ID3D11DeviceChild*)resetblendstate, "blend state for Renderer::ResetAPIState");
clearblendstates[0] = resetblendstate;
resetblendstate->AddRef();
blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_RED|D3D11_COLOR_WRITE_ENABLE_GREEN|D3D11_COLOR_WRITE_ENABLE_BLUE;
hr = D3D::device->CreateBlendState(&blenddesc, &clearblendstates[1]);
CHECK(hr==S_OK, "Create blend state for Renderer::ClearScreen");
blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALPHA;
hr = D3D::device->CreateBlendState(&blenddesc, &clearblendstates[2]);
CHECK(hr==S_OK, "Create blend state for Renderer::ClearScreen");
blenddesc.RenderTarget[0].RenderTargetWriteMask = 0;
hr = D3D::device->CreateBlendState(&blenddesc, &clearblendstates[3]);
CHECK(hr==S_OK, "Create blend state for Renderer::ClearScreen");
ddesc.DepthEnable = FALSE;
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
ddesc.DepthFunc = D3D11_COMPARISON_LESS;
ddesc.StencilEnable = FALSE;
ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK;
ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK;
hr = D3D::device->CreateDepthStencilState(&ddesc, &resetdepthstate);
CHECK(hr==S_OK, "Create depth state for Renderer::ResetAPIState");
D3D::SetDebugObjectName((ID3D11DeviceChild*)resetdepthstate, "depth stencil state for Renderer::ResetAPIState");
D3D11_RASTERIZER_DESC rastdesc = CD3D11_RASTERIZER_DESC(D3D11_FILL_SOLID, D3D11_CULL_NONE, false, 0, 0.f, 0.f, false, false, false, false);
hr = D3D::device->CreateRasterizerState(&rastdesc, &resetraststate);
CHECK(hr==S_OK, "Create rasterizer state for Renderer::ResetAPIState");
D3D::SetDebugObjectName((ID3D11DeviceChild*)resetraststate, "rasterizer state for Renderer::ResetAPIState");
D3D11_TEXTURE2D_DESC scrtex_desc = CD3D11_TEXTURE2D_DESC(DXGI_FORMAT_R8G8B8A8_UNORM, D3D::GetBackBufferWidth(), D3D::GetBackBufferHeight(), 1, 1, 0, D3D11_USAGE_STAGING, D3D11_CPU_ACCESS_READ|D3D11_CPU_ACCESS_WRITE);
hr = D3D::device->CreateTexture2D(&scrtex_desc, NULL, &s_screenshot_texture);
CHECK(hr==S_OK, "Create screenshot staging texture");
D3D::SetDebugObjectName((ID3D11DeviceChild*)s_screenshot_texture, "staging screenshot texture");
}
// Kill off all device objects
void TeardownDeviceObjects()
{
delete g_framebuffer_manager;
SAFE_RELEASE(access_efb_cbuf);
SAFE_RELEASE(clearblendstates[0]);
SAFE_RELEASE(clearblendstates[1]);
SAFE_RELEASE(clearblendstates[2]);
SAFE_RELEASE(clearblendstates[3]);
SAFE_RELEASE(cleardepthstates[0]);
SAFE_RELEASE(cleardepthstates[1]);
SAFE_RELEASE(cleardepthstates[2]);
SAFE_RELEASE(resetblendstate);
SAFE_RELEASE(resetdepthstate);
SAFE_RELEASE(resetraststate);
SAFE_RELEASE(s_screenshot_texture);
s_television.Shutdown();
}
Renderer::Renderer()
{
int x, y, w_temp, h_temp;
s_blendMode = 0;
Host_GetRenderWindowSize(x, y, w_temp, h_temp);
D3D::Create(EmuWindow::GetWnd());
s_backbuffer_width = D3D::GetBackBufferWidth();
s_backbuffer_height = D3D::GetBackBufferHeight();
s_XFB_width = MAX_XFB_WIDTH;
s_XFB_height = MAX_XFB_HEIGHT;
TargetRectangle dst_rect;
ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect);
CalculateXYScale(dst_rect);
s_LastAA = g_ActiveConfig.iMultisampleMode;
s_LastEFBScale = g_ActiveConfig.iEFBScale;
CalculateTargetSize();
SetupDeviceObjects();
// Setup GX pipeline state
memset(&gx_state.blenddc, 0, sizeof(gx_state.blenddc));
gx_state.blenddc.AlphaToCoverageEnable = FALSE;
gx_state.blenddc.IndependentBlendEnable = FALSE;
gx_state.blenddc.RenderTarget[0].BlendEnable = FALSE;
gx_state.blenddc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
gx_state.blenddc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
gx_state.blenddc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO;
gx_state.blenddc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
gx_state.blenddc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
memset(&gx_state.depthdc, 0, sizeof(gx_state.depthdc));
gx_state.depthdc.DepthEnable = TRUE;
gx_state.depthdc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
gx_state.depthdc.DepthFunc = D3D11_COMPARISON_LESS;
gx_state.depthdc.StencilEnable = FALSE;
gx_state.depthdc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK;
gx_state.depthdc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK;
// TODO: Do we need to enable multisampling here?
gx_state.rastdc = CD3D11_RASTERIZER_DESC(D3D11_FILL_SOLID, D3D11_CULL_NONE, false, 0, 0.f, 0, false, true, false, false);
for (unsigned int k = 0;k < 8;k++)
{
float border[4] = {0.f, 0.f, 0.f, 0.f};
gx_state.sampdc[k] = CD3D11_SAMPLER_DESC(D3D11_FILTER_MIN_MAG_MIP_LINEAR, D3D11_TEXTURE_ADDRESS_CLAMP, D3D11_TEXTURE_ADDRESS_CLAMP, D3D11_TEXTURE_ADDRESS_CLAMP,
0.f, 1 << g_ActiveConfig.iMaxAnisotropy,
D3D11_COMPARISON_ALWAYS, border,
-D3D11_FLOAT32_MAX, D3D11_FLOAT32_MAX);
if(g_ActiveConfig.iMaxAnisotropy != 0) gx_state.sampdc[k].Filter = D3D11_FILTER_ANISOTROPIC;
}
// Clear EFB textures
float ClearColor[4] = { 0.f, 0.f, 0.f, 1.f };
D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(), ClearColor);
D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(), D3D11_CLEAR_DEPTH, 1.f, 0);
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)s_target_width, (float)s_target_height);
D3D::context->RSSetViewports(1, &vp);
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());
D3D::BeginFrame();
}
Renderer::~Renderer()
{
TeardownDeviceObjects();
D3D::EndFrame();
D3D::Present();
D3D::Close();
}
void Renderer::RenderText(const char *text, int left, int top, u32 color)
{
D3D::font.DrawTextScaled((float)left, (float)top, 20.f, 0.0f, color, text);
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(rc.bottom);
return result;
}
// With D3D, we have to resize the backbuffer if the window changed
// size.
bool Renderer::CheckForResize()
{
while (EmuWindow::IsSizing())
Sleep(10);
if (EmuWindow::GetParentWnd())
{
// Re-stretch window to parent window size again, if it has a parent window.
RECT rcParentWindow;
GetWindowRect(EmuWindow::GetParentWnd(), &rcParentWindow);
int width = rcParentWindow.right - rcParentWindow.left;
int height = rcParentWindow.bottom - rcParentWindow.top;
if (width != Renderer::GetBackbufferWidth() || height != Renderer::GetBackbufferHeight())
MoveWindow(EmuWindow::GetWnd(), 0, 0, width, height, FALSE);
}
RECT rcWindow;
GetClientRect(EmuWindow::GetWnd(), &rcWindow);
int client_width = rcWindow.right - rcWindow.left;
int client_height = rcWindow.bottom - rcWindow.top;
// Sanity check
if ((client_width != Renderer::GetBackbufferWidth() ||
client_height != Renderer::GetBackbufferHeight()) &&
client_width >= 4 && client_height >= 4)
{
return true;
}
return false;
}
void Renderer::SetScissorRect(const TargetRectangle& rc)
{
D3D::context->RSSetScissorRects(1, rc.AsRECT());
}
void Renderer::SetColorMask()
{
// Only enable alpha channel if it's supported by the current EFB format
UINT8 color_mask = 0;
if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24))
color_mask = D3D11_COLOR_WRITE_ENABLE_ALPHA;
if (bpmem.blendmode.colorupdate)
color_mask |= D3D11_COLOR_WRITE_ENABLE_RED | D3D11_COLOR_WRITE_ENABLE_GREEN | D3D11_COLOR_WRITE_ENABLE_BLUE;
gx_state.blenddc.RenderTarget[0].RenderTargetWriteMask = color_mask;
}
// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
// - GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
// - GX_PokeAlphaMode (TODO)
// - GX_PokeAlphaUpdate (TODO)
// - GX_PokeBlendMode (TODO)
// - GX_PokeColorUpdate (TODO)
// - GX_PokeDither (TODO)
// - GX_PokeDstAlpha (TODO)
// - GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
// TODO: This function currently is broken if anti-aliasing is enabled
D3D11_MAPPED_SUBRESOURCE map;
ID3D11Texture2D* read_tex;
if (!g_ActiveConfig.bEFBAccessEnable)
return 0;
if (type == POKE_Z)
{
static bool alert_only_once = true;
if (!alert_only_once) return 0;
PanicAlert("EFB: Poke Z not implemented (tried to poke z value %#x at (%d,%d))", poke_data, x, y);
alert_only_once = false;
return 0;
}
// Convert EFB dimensions to the ones of our render target
EFBRectangle efbPixelRc;
efbPixelRc.left = x;
efbPixelRc.top = y;
efbPixelRc.right = x + 1;
efbPixelRc.bottom = y + 1;
TargetRectangle targetPixelRc = Renderer::ConvertEFBRectangle(efbPixelRc);
// Take the mean of the resulting dimensions; TODO: Don't use the center pixel, compute the average color instead
D3D11_RECT RectToLock;
if(type == PEEK_COLOR || type == PEEK_Z)
{
RectToLock.left = (targetPixelRc.left + targetPixelRc.right) / 2;
RectToLock.top = (targetPixelRc.top + targetPixelRc.bottom) / 2;
RectToLock.right = RectToLock.left + 1;
RectToLock.bottom = RectToLock.top + 1;
}
else
{
RectToLock.left = targetPixelRc.left;
RectToLock.right = targetPixelRc.right;
RectToLock.top = targetPixelRc.top;
RectToLock.bottom = targetPixelRc.bottom;
}
if (type == PEEK_Z)
{
ResetAPIState(); // Reset any game specific settings
// depth buffers can only be completely CopySubresourceRegion'ed, so we're using drawShadedTexQuad instead
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, 1.f, 1.f);
D3D::context->RSSetViewports(1, &vp);
D3D::context->PSSetConstantBuffers(0, 1, &access_efb_cbuf);
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBDepthReadTexture()->GetRTV(), NULL);
D3D::SetPointCopySampler();
D3D::drawShadedTexQuad(FramebufferManager::GetEFBDepthTexture()->GetSRV(),
&RectToLock,
Renderer::GetTargetWidth(),
Renderer::GetTargetHeight(),
PixelShaderCache::GetDepthMatrixProgram(true),
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout());
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());
// copy to system memory
D3D11_BOX box = CD3D11_BOX(0, 0, 0, 1, 1, 1);
read_tex = FramebufferManager::GetEFBDepthStagingBuffer();
D3D::context->CopySubresourceRegion(read_tex, 0, 0, 0, 0, FramebufferManager::GetEFBDepthReadTexture()->GetTex(), 0, &box);
RestoreAPIState(); // restore game state
// read the data from system memory
D3D::context->Map(read_tex, 0, D3D11_MAP_READ, 0, &map);
float val = *(float*)map.pData;
u32 ret = 0;
if(bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
ret = ((u32)(val * 0xffff));
}
else
{
ret = ((u32)(val * 0xffffff));
}
D3D::context->Unmap(read_tex, 0);
// TODO: in RE0 this value is often off by one in Video_DX9 (where this code is derived from), which causes lighting to disappear
return ret;
}
else if (type == PEEK_COLOR)
{
// we can directly copy to system memory here
read_tex = FramebufferManager::GetEFBColorStagingBuffer();
D3D11_BOX box = CD3D11_BOX(RectToLock.left, RectToLock.top, 0, RectToLock.right, RectToLock.bottom, 1);
D3D::context->CopySubresourceRegion(read_tex, 0, 0, 0, 0, FramebufferManager::GetEFBColorTexture()->GetTex(), 0, &box);
// read the data from system memory
D3D::context->Map(read_tex, 0, D3D11_MAP_READ, 0, &map);
u32 ret = 0;
if(map.pData)
ret = *(u32*)map.pData;
D3D::context->Unmap(read_tex, 0);
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode;
PixelEngine::Read16((u16&)alpha_read_mode, PE_ALPHAREAD);
if (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24)
{
ret = RGBA8ToRGBA6ToRGBA8(ret);
}
else if (bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
ret = RGBA8ToRGB565ToRGBA8(ret);
}
if(bpmem.zcontrol.pixel_format != PIXELFMT_RGBA6_Z24)
{
ret |= 0xFF000000;
}
if(alpha_read_mode.ReadMode == 2) return ret; // GX_READ_NONE
else if(alpha_read_mode.ReadMode == 1) return (ret | 0xFF000000); // GX_READ_FF
else /*if(alpha_read_mode.ReadMode == 0)*/ return (ret & 0x00FFFFFF); // GX_READ_00
}
else //if(type == POKE_COLOR)
{
u32 rgbaColor = (poke_data & 0xFF00FF00) | ((poke_data >> 16) & 0xFF) | ((poke_data << 16) & 0xFF0000);
// TODO: The first five PE registers may change behavior of EFB pokes, this isn't implemented, yet.
ResetAPIState();
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), NULL);
D3D::drawColorQuad(rgbaColor, (float)RectToLock.left * 2.f / (float)Renderer::GetTargetWidth() - 1.f,
- (float)RectToLock.top * 2.f / (float)Renderer::GetTargetHeight() + 1.f,
(float)RectToLock.right * 2.f / (float)Renderer::GetTargetWidth() - 1.f,
- (float)RectToLock.bottom * 2.f / (float)Renderer::GetTargetHeight() + 1.f);
RestoreAPIState();
return 0;
}
}
// Viewport correction:
// Say you want a viewport at (ix, iy) with size (iw, ih),
// but your viewport must be clamped at (ax, ay) with size (aw, ah).
// Just multiply the projection matrix with the following to get the same
// effect:
// [ (iw/aw) 0 0 ((iw - 2*(ax-ix)) / aw - 1) ]
// [ 0 (ih/ah) 0 ((-ih + 2*(ay-iy)) / ah + 1) ]
// [ 0 0 1 0 ]
// [ 0 0 0 1 ]
static void ViewportCorrectionMatrix(Matrix44& result,
float ix, float iy, float iw, float ih, // Intended viewport (x, y, width, height)
float ax, float ay, float aw, float ah) // Actual viewport (x, y, width, height)
{
Matrix44::LoadIdentity(result);
if (aw == 0.f || ah == 0.f)
return;
result.data[4*0+0] = iw / aw;
result.data[4*0+3] = (iw - 2.f * (ax - ix)) / aw - 1.f;
result.data[4*1+1] = ih / ah;
result.data[4*1+3] = (-ih + 2.f * (ay - iy)) / ah + 1.f;
}
// Called from VertexShaderManager
void Renderer::UpdateViewport(Matrix44& vpCorrection)
{
// reversed gxsetviewport(xorig, yorig, width, height, nearz, farz)
// [0] = width/2
// [1] = height/2
// [2] = 16777215 * (farz - nearz)
// [3] = xorig + width/2 + 342
// [4] = yorig + height/2 + 342
// [5] = 16777215 * farz
int scissorXOff = bpmem.scissorOffset.x * 2;
int scissorYOff = bpmem.scissorOffset.y * 2;
// TODO: ceil, floor or just cast to int?
// TODO: Directly use the floats instead of rounding them?
int intendedX = Renderer::EFBToScaledX((int)ceil(xfregs.viewport.xOrig - xfregs.viewport.wd - scissorXOff));
int intendedY = Renderer::EFBToScaledY((int)ceil(xfregs.viewport.yOrig + xfregs.viewport.ht - scissorYOff));
int intendedWd = Renderer::EFBToScaledX((int)ceil(2.0f * xfregs.viewport.wd));
int intendedHt = Renderer::EFBToScaledY((int)ceil(-2.0f * xfregs.viewport.ht));
if (intendedWd < 0)
{
intendedX += intendedWd;
intendedWd = -intendedWd;
}
if (intendedHt < 0)
{
intendedY += intendedHt;
intendedHt = -intendedHt;
}
// In D3D, the viewport rectangle must fit within the render target.
int X = intendedX;
if (X < 0)
X = 0;
int Y = intendedY;
if (Y < 0)
Y = 0;
int Wd = intendedWd;
if (X + Wd > GetTargetWidth())
Wd = GetTargetWidth() - X;
int Ht = intendedHt;
if (Y + Ht > GetTargetHeight())
Ht = GetTargetHeight() - Y;
2012-02-09 17:18:46 +13:00
// If GX viewport is off the render target, we must clamp our viewport
// within the bounds. Use the correction matrix to compensate.
ViewportCorrectionMatrix(vpCorrection,
2012-02-09 17:18:46 +13:00
(float)intendedX, (float)intendedY,
(float)intendedWd, (float)intendedHt,
(float)X, (float)Y,
(float)Wd, (float)Ht);
// Some games set invalids values for z min and z max so fix them to the max an min alowed and let the shaders do this work
2012-02-09 17:18:46 +13:00
D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)X, (float)Y,
(float)Wd, (float)Ht,
0.f, // (xfregs.viewport.farZ - xfregs.viewport.zRange) / 16777216.0f;
1.f); // xfregs.viewport.farZ / 16777216.0f;
D3D::context->RSSetViewports(1, &vp);
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z)
{
ResetAPIState();
if (colorEnable && alphaEnable) D3D::stateman->PushBlendState(clearblendstates[0]);
else if (colorEnable) D3D::stateman->PushBlendState(clearblendstates[1]);
else if (alphaEnable) D3D::stateman->PushBlendState(clearblendstates[2]);
else D3D::stateman->PushBlendState(clearblendstates[3]);
// TODO: Should we enable Z testing here?
/*if (!bpmem.zmode.testenable) D3D::stateman->PushDepthState(cleardepthstates[0]);
else */if (zEnable) D3D::stateman->PushDepthState(cleardepthstates[1]);
else /*if (!zEnable)*/ D3D::stateman->PushDepthState(cleardepthstates[2]);
// Update the view port for clearing the picture
TargetRectangle targetRc = Renderer::ConvertEFBRectangle(rc);
D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)targetRc.left, (float)targetRc.top, (float)targetRc.GetWidth(), (float)targetRc.GetHeight(), 0.f, 1.f);
D3D::context->RSSetViewports(1, &vp);
// Color is passed in bgra mode so we need to convert it to rgba
u32 rgbaColor = (color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000);
D3D::drawClearQuad(rgbaColor, (z & 0xFFFFFF) / float(0xFFFFFF), PixelShaderCache::GetClearProgram(), VertexShaderCache::GetClearVertexShader(), VertexShaderCache::GetClearInputLayout());
D3D::stateman->PopDepthState();
D3D::stateman->PopBlendState();
RestoreAPIState();
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
// TODO: MSAA support..
D3D11_RECT source = CD3D11_RECT(0, 0, g_renderer->GetTargetWidth(), g_renderer->GetTargetHeight());
ID3D11PixelShader* pixel_shader;
if (convtype == 0) pixel_shader = PixelShaderCache::ReinterpRGB8ToRGBA6(true);
else if (convtype == 2) pixel_shader = PixelShaderCache::ReinterpRGBA6ToRGB8(true);
else
{
ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d", convtype);
return;
}
// convert data and set the target texture as our new EFB
g_renderer->ResetAPIState();
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)g_renderer->GetTargetWidth(), (float)g_renderer->GetTargetHeight());
D3D::context->RSSetViewports(1, &vp);
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTempTexture()->GetRTV(), NULL);
D3D::SetPointCopySampler();
D3D::drawShadedTexQuad(FramebufferManager::GetEFBColorTexture()->GetSRV(), &source, g_renderer->GetTargetWidth(), g_renderer->GetTargetHeight(), pixel_shader, VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout());
g_renderer->RestoreAPIState();
FramebufferManager::SwapReinterpretTexture();
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());
}
void SetSrcBlend(D3D11_BLEND val)
{
// Colors should blend against SRC_ALPHA
if (val == D3D11_BLEND_SRC1_ALPHA)
val = D3D11_BLEND_SRC_ALPHA;
else if (val == D3D11_BLEND_INV_SRC1_ALPHA)
val = D3D11_BLEND_INV_SRC_ALPHA;
if (val == D3D11_BLEND_SRC_COLOR)
gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_SRC_ALPHA;
else if (val == D3D11_BLEND_INV_SRC_COLOR)
gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA;
else if (val == D3D11_BLEND_DEST_COLOR)
gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_DEST_ALPHA;
else if (val == D3D11_BLEND_INV_DEST_COLOR)
gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA;
else
gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = val;
gx_state.blenddc.RenderTarget[0].SrcBlend = val;
}
void SetDestBlend(D3D11_BLEND val)
{
// Colors should blend against SRC_ALPHA
if (val == D3D11_BLEND_SRC1_ALPHA)
val = D3D11_BLEND_SRC_ALPHA;
else if (val == D3D11_BLEND_INV_SRC1_ALPHA)
val = D3D11_BLEND_INV_SRC_ALPHA;
if (val == D3D11_BLEND_SRC_COLOR)
gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_SRC_ALPHA;
else if (val == D3D11_BLEND_INV_SRC_COLOR)
gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_SRC_ALPHA;
else if (val == D3D11_BLEND_DEST_COLOR)
gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_DEST_ALPHA;
else if (val == D3D11_BLEND_INV_DEST_COLOR)
gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_INV_DEST_ALPHA;
else
gx_state.blenddc.RenderTarget[0].DestBlendAlpha = val;
gx_state.blenddc.RenderTarget[0].DestBlend = val;
}
void SetBlendOp(D3D11_BLEND_OP val)
{
gx_state.blenddc.RenderTarget[0].BlendOp = val;
gx_state.blenddc.RenderTarget[0].BlendOpAlpha = val;
}
void Renderer::SetBlendMode(bool forceUpdate)
{
if (bpmem.blendmode.logicopenable && !forceUpdate)
return;
if (bpmem.blendmode.subtract) // enable blending src 1 dst 1
{
gx_state.blenddc.RenderTarget[0].BlendEnable = true;
SetBlendOp(D3D11_BLEND_OP_REV_SUBTRACT);
SetSrcBlend(d3dSrcFactors[1]);
SetDestBlend(d3dDestFactors[1]);
}
else
{
gx_state.blenddc.RenderTarget[0].BlendEnable = bpmem.blendmode.blendenable && (!( bpmem.blendmode.srcfactor == 1 && bpmem.blendmode.dstfactor == 0));
if (bpmem.blendmode.blendenable && (!( bpmem.blendmode.srcfactor == 1 && bpmem.blendmode.dstfactor == 0)))
{
SetBlendOp(D3D11_BLEND_OP_ADD);
SetSrcBlend(d3dSrcFactors[bpmem.blendmode.srcfactor]);
SetDestBlend(d3dDestFactors[bpmem.blendmode.dstfactor]);
}
}
}
bool Renderer::SaveScreenshot(const std::string &filename, const TargetRectangle &rc)
{
// copy back buffer to system memory
D3D::context->CopyResource(s_screenshot_texture, (ID3D11Resource*)D3D::GetBackBuffer()->GetTex());
// D3DX11SaveTextureToFileA doesn't allow us to ignore the alpha channel, so we need to strip it out ourselves
D3D11_MAPPED_SUBRESOURCE map;
D3D::context->Map(s_screenshot_texture, 0, D3D11_MAP_READ_WRITE, 0, &map);
for (unsigned int y = 0; y < D3D::GetBackBufferHeight(); ++y)
{
u8* ptr = (u8*)map.pData + y * map.RowPitch + 3;
for (unsigned int x = 0; x < D3D::GetBackBufferWidth(); ++x)
{
*ptr = 0xFF;
ptr += 4;
}
}
D3D::context->Unmap(s_screenshot_texture, 0);
// ready to be saved
HRESULT hr = PD3DX11SaveTextureToFileA(D3D::context, s_screenshot_texture, D3DX11_IFF_PNG, filename.c_str());
return SUCCEEDED(hr);
}
void formatBufferDump(const char *in, char *out, int w, int h, int p)
{
for (int y = 0; y < h; ++y)
{
2011-09-08 17:52:01 +02:00
const u8 *line = (u8*)(in + (h - y - 1) * p);
for (int x = 0; x < w; ++x)
{
2011-09-08 17:52:01 +02:00
out[0] = line[2];
out[1] = line[1];
out[2] = line[0];
out += 3;
line += 4;
2011-09-08 17:52:01 +02:00
}
}
}
// This function has the final picture. We adjust the aspect ratio here.
void Renderer::Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight,const EFBRectangle& rc,float Gamma)
{
if (g_bSkipCurrentFrame || (!XFBWrited && (!g_ActiveConfig.bUseXFB || !g_ActiveConfig.bUseRealXFB)) || !fbWidth || !fbHeight)
{
if (g_ActiveConfig.bDumpFrames && frame_data)
AVIDump::AddFrame(frame_data);
Core::Callback_VideoCopiedToXFB(false);
return;
}
// this function is called after the XFB field is changed, not after
// EFB is copied to XFB. In this way, flickering is reduced in games
// and seems to also give more FPS in ZTP
u32 xfbCount = 0;
const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount);
if ((!xfbSourceList || xfbCount == 0) && g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB)
{
if (g_ActiveConfig.bDumpFrames && frame_data)
AVIDump::AddFrame(frame_data);
Core::Callback_VideoCopiedToXFB(false);
return;
}
ResetAPIState();
// Prepare to copy the XFBs to our backbuffer
TargetRectangle dst_rect;
ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect);
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)s_backbuffer_width, (float)s_backbuffer_height);
D3D::context->RSSetViewports(1, &vp);
float ClearColor[4] = { 0.f, 0.f, 0.f, 1.f };
D3D::context->ClearRenderTargetView(D3D::GetBackBuffer()->GetRTV(), ClearColor);
int X = dst_rect.left;
int Y = dst_rect.top;
int Width = dst_rect.right - dst_rect.left;
int Height = dst_rect.bottom - dst_rect.top;
if (X < 0) X = 0;
if (Y < 0) Y = 0;
if (X > s_backbuffer_width) X = s_backbuffer_width;
if (Y > s_backbuffer_height) Y = s_backbuffer_height;
if (Width < 0) Width = 0;
if (Height < 0) Height = 0;
if (Width > (s_backbuffer_width - X)) Width = s_backbuffer_width - X;
if (Height > (s_backbuffer_height - Y)) Height = s_backbuffer_height - Y;
vp = CD3D11_VIEWPORT((float)X, (float)Y, (float)Width, (float)Height);
D3D::context->RSSetViewports(1, &vp);
D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), NULL);
// activate linear filtering for the buffer copies
D3D::SetLinearCopySampler();
if (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB)
{
// TODO: Television should be used to render Virtual XFB mode as well.
s_television.Submit(xfbAddr, fbWidth, fbHeight);
s_television.Render();
}
else if(g_ActiveConfig.bUseXFB)
{
const XFBSourceBase* xfbSource;
// draw each xfb source
for (u32 i = 0; i < xfbCount; ++i)
{
xfbSource = xfbSourceList[i];
MathUtil::Rectangle<float> sourceRc;
sourceRc.left = 0;
sourceRc.top = 0;
sourceRc.right = (float)xfbSource->texWidth;
sourceRc.bottom = (float)xfbSource->texHeight;
MathUtil::Rectangle<float> drawRc;
if (g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB)
{
// use virtual xfb with offset
int xfbHeight = xfbSource->srcHeight;
int xfbWidth = xfbSource->srcWidth;
int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbWidth * 2);
drawRc.top = 1.0f - (2.0f * (hOffset) / (float)fbHeight);
drawRc.bottom = 1.0f - (2.0f * (hOffset + xfbHeight) / (float)fbHeight);
drawRc.left = -(xfbWidth / (float)fbWidth);
drawRc.right = (xfbWidth / (float)fbWidth);
// The following code disables auto stretch. Kept for reference.
// scale draw area for a 1 to 1 pixel mapping with the draw target
//float vScale = (float)fbHeight / (float)s_backbuffer_height;
//float hScale = (float)fbWidth / (float)s_backbuffer_width;
//drawRc.top *= vScale;
//drawRc.bottom *= vScale;
//drawRc.left *= hScale;
//drawRc.right *= hScale;
}
else
{
drawRc.top = 1;
drawRc.bottom = -1;
drawRc.left = -1;
drawRc.right = 1;
}
xfbSource->Draw(sourceRc, drawRc, 0, 0);
}
}
else
{
TargetRectangle targetRc = Renderer::ConvertEFBRectangle(rc);
// TODO: Improve sampling algorithm for the pixel shader so that we can use the multisampled EFB texture as source
D3DTexture2D* read_texture = FramebufferManager::GetResolvedEFBColorTexture();
D3D::drawShadedTexQuad(read_texture->GetSRV(), targetRc.AsRECT(), Renderer::GetTargetWidth(), Renderer::GetTargetHeight(), PixelShaderCache::GetColorCopyProgram(false),VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), Gamma);
}
// done with drawing the game stuff, good moment to save a screenshot
if (s_bScreenshot)
{
SaveScreenshot(s_sScreenshotName, dst_rect);
s_bScreenshot = false;
}
// Dump frames
static int w = 0, h = 0;
if (g_ActiveConfig.bDumpFrames)
{
static int s_recordWidth;
static int s_recordHeight;
D3D::context->CopyResource(s_screenshot_texture, (ID3D11Resource*)D3D::GetBackBuffer()->GetTex());
if (!bLastFrameDumped)
{
s_recordWidth = dst_rect.GetWidth();
s_recordHeight = dst_rect.GetHeight();
bAVIDumping = AVIDump::Start(EmuWindow::GetParentWnd(), s_recordWidth, s_recordHeight);
if (!bAVIDumping)
{
PanicAlert("Error dumping frames to AVI.");
}
else
{
char msg [255];
sprintf_s(msg,255, "Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)",
File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), s_recordWidth, s_recordHeight);
OSD::AddMessage(msg, 2000);
}
}
if (bAVIDumping)
{
D3D11_MAPPED_SUBRESOURCE map;
D3D::context->Map(s_screenshot_texture, 0, D3D11_MAP_READ, 0, &map);
if (!frame_data || w != s_recordWidth || h != s_recordHeight)
{
delete[] frame_data;
frame_data = new char[3 * s_recordWidth * s_recordHeight];
w = s_recordWidth;
h = s_recordHeight;
}
2011-09-08 17:52:01 +02:00
char* source_ptr = (char*)map.pData + dst_rect.left*4 + dst_rect.top*map.RowPitch;
formatBufferDump(source_ptr, frame_data, s_recordWidth, s_recordHeight, map.RowPitch);
AVIDump::AddFrame(frame_data);
D3D::context->Unmap(s_screenshot_texture, 0);
}
bLastFrameDumped = true;
}
else
{
if (bLastFrameDumped && bAVIDumping)
{
SAFE_DELETE_ARRAY(frame_data);
w = h = 0;
AVIDump::Stop();
bAVIDumping = false;
OSD::AddMessage("Stop dumping frames to AVI", 2000);
}
bLastFrameDumped = false;
}
// Finish up the current frame, print some stats
if (g_ActiveConfig.bShowFPS)
{
char fps[20];
StringCchPrintfA(fps, 20, "FPS: %d\n", s_fps);
D3D::font.DrawTextScaled(0, 0, 20, 0.0f, 0xFF00FFFF, fps);
}
if (g_ActiveConfig.bShowInputDisplay)
{
char inputDisplay[1000];
StringCchPrintfA(inputDisplay, 1000, Movie::GetInputDisplay().c_str());
D3D::font.DrawTextScaled(0, 30, 20, 0.0f, 0xFF00FFFF, inputDisplay);
}
Renderer::DrawDebugText();
if (g_ActiveConfig.bOverlayStats)
{
char buf[32768];
Statistics::ToString(buf);
D3D::font.DrawTextScaled(0, 30, 20, 0.0f, 0xFF00FFFF, buf);
}
else if (g_ActiveConfig.bOverlayProjStats)
{
char buf[32768];
Statistics::ToStringProj(buf);
D3D::font.DrawTextScaled(0, 30, 20, 0.0f, 0xFF00FFFF, buf);
}
OSD::DrawMessages();
D3D::EndFrame();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
DLCache::ProgressiveCleanup();
TextureCache::Cleanup();
// Reload textures if this settings changes
if (g_Config.bUseNativeMips != g_ActiveConfig.bUseNativeMips)
TextureCache::Invalidate(false);
// Enable configuration changes
UpdateActiveConfig();
SetWindowSize(fbWidth, fbHeight);
const bool windowResized = CheckForResize();
bool xfbchanged = false;
if (s_XFB_width != fbWidth || s_XFB_height != fbHeight)
{
xfbchanged = true;
s_XFB_width = fbWidth;
s_XFB_height = fbHeight;
if (s_XFB_width < 1) s_XFB_width = MAX_XFB_WIDTH;
if (s_XFB_width > MAX_XFB_WIDTH) s_XFB_width = MAX_XFB_WIDTH;
if (s_XFB_height < 1) s_XFB_height = MAX_XFB_HEIGHT;
if (s_XFB_height > MAX_XFB_HEIGHT) s_XFB_height = MAX_XFB_HEIGHT;
}
// update FPS counter
static int fpscount = 0;
static unsigned long lasttime = 0;
if (Common::Timer::GetTimeMs() - lasttime >= 1000)
{
lasttime = Common::Timer::GetTimeMs();
s_fps = fpscount;
fpscount = 0;
}
if (XFBWrited)
++fpscount;
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
// Flip/present backbuffer to frontbuffer here
D3D::Present();
// resize the back buffers NOW to avoid flickering
if (xfbchanged ||
windowResized ||
s_LastEFBScale != g_ActiveConfig.iEFBScale ||
s_LastAA != g_ActiveConfig.iMultisampleMode)
{
s_LastAA = g_ActiveConfig.iMultisampleMode;
PixelShaderCache::InvalidateMSAAShaders();
// TODO: Aren't we still holding a reference to the back buffer right now?
D3D::Reset();
s_backbuffer_width = D3D::GetBackBufferWidth();
s_backbuffer_height = D3D::GetBackBufferHeight();
ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect);
CalculateXYScale(dst_rect);
s_LastEFBScale = g_ActiveConfig.iEFBScale;
CalculateTargetSize();
D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), NULL);
delete g_framebuffer_manager;
g_framebuffer_manager = new FramebufferManager;
float clear_col[4] = { 0.f, 0.f, 0.f, 1.f };
D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(), clear_col);
D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(), D3D11_CLEAR_DEPTH, 1.f, 0);
}
// begin next frame
Renderer::RestoreAPIState();
D3D::BeginFrame();
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());
VertexShaderManager::SetViewportChanged();
Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
XFBWrited = false;
}
// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
D3D::stateman->PushBlendState(resetblendstate);
D3D::stateman->PushDepthState(resetdepthstate);
D3D::stateman->PushRasterizerState(resetraststate);
}
void Renderer::RestoreAPIState()
{
// Gets us back into a more game-like state.
D3D::stateman->PopBlendState();
D3D::stateman->PopDepthState();
D3D::stateman->PopRasterizerState();
VertexShaderManager::SetViewportChanged();
BPFunctions::SetScissor();
}
void Renderer::ApplyState(bool bUseDstAlpha)
{
HRESULT hr;
if (bUseDstAlpha)
{
// Colors should blend against SRC1_ALPHA
if (gx_state.blenddc.RenderTarget[0].SrcBlend == D3D11_BLEND_SRC_ALPHA)
gx_state.blenddc.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC1_ALPHA;
else if (gx_state.blenddc.RenderTarget[0].SrcBlend == D3D11_BLEND_INV_SRC_ALPHA)
gx_state.blenddc.RenderTarget[0].SrcBlend = D3D11_BLEND_INV_SRC1_ALPHA;
// Colors should blend against SRC1_ALPHA
if (gx_state.blenddc.RenderTarget[0].DestBlend == D3D11_BLEND_SRC_ALPHA)
gx_state.blenddc.RenderTarget[0].DestBlend = D3D11_BLEND_SRC1_ALPHA;
else if (gx_state.blenddc.RenderTarget[0].DestBlend == D3D11_BLEND_INV_SRC_ALPHA)
gx_state.blenddc.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC1_ALPHA;
gx_state.blenddc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
gx_state.blenddc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
gx_state.blenddc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
}
ID3D11BlendState* blstate;
hr = D3D::device->CreateBlendState(&gx_state.blenddc, &blstate);
if (FAILED(hr)) PanicAlert("Failed to create blend state at %s %d\n", __FILE__, __LINE__);
D3D::stateman->PushBlendState(blstate);
D3D::SetDebugObjectName((ID3D11DeviceChild*)blstate, "blend state used to emulate the GX pipeline");
SAFE_RELEASE(blstate);
ID3D11DepthStencilState* depth_state;
hr = D3D::device->CreateDepthStencilState(&gx_state.depthdc, &depth_state);
if (SUCCEEDED(hr)) D3D::SetDebugObjectName((ID3D11DeviceChild*)depth_state, "depth-stencil state used to emulate the GX pipeline");
else PanicAlert("Failed to create depth state at %s %d\n", __FILE__, __LINE__);
D3D::stateman->PushDepthState(depth_state);
SAFE_RELEASE(depth_state);
gx_state.rastdc.FillMode = (g_ActiveConfig.bWireFrame) ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID;
ID3D11RasterizerState* raststate;
hr = D3D::device->CreateRasterizerState(&gx_state.rastdc, &raststate);
if (FAILED(hr)) PanicAlert("Failed to create rasterizer state at %s %d\n", __FILE__, __LINE__);
D3D::SetDebugObjectName((ID3D11DeviceChild*)raststate, "rasterizer state used to emulate the GX pipeline");
D3D::stateman->PushRasterizerState(raststate);
SAFE_RELEASE(raststate);
ID3D11SamplerState* samplerstate[8];
for (unsigned int stage = 0; stage < 8; stage++)
{
// TODO: unnecessary state changes, we should store a list of shader resources
//if (shader_resources[stage])
{
if(g_ActiveConfig.iMaxAnisotropy > 0) gx_state.sampdc[stage].Filter = D3D11_FILTER_ANISOTROPIC;
hr = D3D::device->CreateSamplerState(&gx_state.sampdc[stage], &samplerstate[stage]);
if (FAILED(hr)) PanicAlert("Fail %s %d, stage=%d\n", __FILE__, __LINE__, stage);
else D3D::SetDebugObjectName((ID3D11DeviceChild*)samplerstate[stage], "sampler state used to emulate the GX pipeline");
}
// else samplerstate[stage] = NULL;
}
D3D::context->PSSetSamplers(0, 8, samplerstate);
for (unsigned int stage = 0; stage < 8; stage++)
SAFE_RELEASE(samplerstate[stage]);
D3D::stateman->Apply();
if (bUseDstAlpha)
{
// restore actual state
SetBlendMode(false);
SetLogicOpMode();
}
D3D::context->PSSetConstantBuffers(0, 1, &PixelShaderCache::GetConstantBuffer());
D3D::context->VSSetConstantBuffers(0, 1, &VertexShaderCache::GetConstantBuffer());
D3D::context->PSSetShader(PixelShaderCache::GetActiveShader(), NULL, 0);
D3D::context->VSSetShader(VertexShaderCache::GetActiveShader(), NULL, 0);
}
void Renderer::RestoreState()
{
ID3D11ShaderResourceView* shader_resources[8] = { NULL };
D3D::context->PSSetShaderResources(0, 8, shader_resources);
D3D::stateman->PopBlendState();
D3D::stateman->PopDepthState();
D3D::stateman->PopRasterizerState();
}
void Renderer::ApplyCullDisable()
{
D3D11_RASTERIZER_DESC rastDesc = gx_state.rastdc;
rastDesc.CullMode = D3D11_CULL_NONE;
ID3D11RasterizerState* raststate;
HRESULT hr = D3D::device->CreateRasterizerState(&rastDesc, &raststate);
if (FAILED(hr)) PanicAlert("Failed to create culling-disabled rasterizer state at %s %d\n", __FILE__, __LINE__);
D3D::SetDebugObjectName((ID3D11DeviceChild*)raststate, "rasterizer state (culling disabled) used to emulate the GX pipeline");
D3D::stateman->PushRasterizerState(raststate);
SAFE_RELEASE(raststate);
D3D::stateman->Apply();
}
void Renderer::RestoreCull()
{
D3D::stateman->PopRasterizerState();
}
void Renderer::SetGenerationMode()
{
// rastdc.FrontCounterClockwise must be false for this to work
gx_state.rastdc.CullMode = d3dCullModes[bpmem.genMode.cullmode];
}
void Renderer::SetDepthMode()
{
if (bpmem.zmode.testenable)
{
gx_state.depthdc.DepthEnable = TRUE;
gx_state.depthdc.DepthWriteMask = bpmem.zmode.updateenable ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO;
gx_state.depthdc.DepthFunc = d3dCmpFuncs[bpmem.zmode.func];
}
else
{
// if the test is disabled write is disabled too
gx_state.depthdc.DepthEnable = FALSE;
gx_state.depthdc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
}
}
void Renderer::SetLogicOpMode()
{
if (bpmem.blendmode.logicopenable && bpmem.blendmode.logicmode != 3)
{
s_blendMode = 0;
gx_state.blenddc.RenderTarget[0].BlendEnable = true;
SetBlendOp(d3dLogicOps[bpmem.blendmode.logicmode]);
SetSrcBlend(d3dLogicOpSrcFactors[bpmem.blendmode.logicmode]);
SetDestBlend(d3dLogicOpDestFactors[bpmem.blendmode.logicmode]);
}
else
{
SetBlendMode(true);
}
}
void Renderer::SetDitherMode()
{
// TODO: Set dither mode to bpmem.blendmode.dither
}
void Renderer::SetLineWidth()
{
// TODO
}
void Renderer::SetSamplerState(int stage, int texindex)
{
const FourTexUnits &tex = bpmem.tex[texindex];
const TexMode0 &tm0 = tex.texMode0[stage];
const TexMode1 &tm1 = tex.texMode1[stage];
unsigned int mip;
mip = (tm0.min_filter == 8) ? TEXF_NONE:d3dMipFilters[tm0.min_filter & 3];
if ((tm0.min_filter & 3) && (tm0.min_filter != 8) && ((tm1.max_lod >> 4) == 0)) mip = TEXF_NONE;
if (texindex) stage += 4;
// TODO: Clarify whether these values are correct
// NOTE: since there's no "no filter" in DX11 we're using point filters in these cases
if (g_ActiveConfig.bForceFiltering)
{
gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
}
else if (tm0.min_filter & 4) // linear min filter
{
if (tm0.mag_filter) // linear mag filter
{
if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT;
else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT;
else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
}
else // point mag filter
{
if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT;
else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT;
else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR;
}
}
else // point min filter
{
if (tm0.mag_filter) // linear mag filter
{
if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT;
else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT;
else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR;
}
else // point mag filter
{
if (mip == TEXF_NONE) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_POINT;
else if (mip == TEXF_POINT) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_MIP_POINT;
else if (mip == TEXF_LINEAR) gx_state.sampdc[stage].Filter = D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR;
}
}
gx_state.sampdc[stage].AddressU = d3dClamps[tm0.wrap_s];
gx_state.sampdc[stage].AddressV = d3dClamps[tm0.wrap_t];
// When mipfilter is set to "none", just disable mipmapping altogether
gx_state.sampdc[stage].MaxLOD = (mip == TEXF_NONE) ? 0.0f : (float)tm1.max_lod/16.f;
gx_state.sampdc[stage].MinLOD = (float)tm1.min_lod/16.f;
gx_state.sampdc[stage].MipLODBias = (float)tm0.lod_bias/32.0f;
}
void Renderer::SetInterlacingMode()
{
// TODO
}
} // namespace DX11