mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-21 21:41:17 +01:00
235 lines
5.7 KiB
C
235 lines
5.7 KiB
C
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
/// \file lz_decoder.h
|
||
|
/// \brief LZ out window
|
||
|
///
|
||
|
// Authors: Igor Pavlov
|
||
|
// Lasse Collin
|
||
|
//
|
||
|
// This file has been put into the public domain.
|
||
|
// You can do whatever you want with this file.
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
#ifndef LZMA_LZ_DECODER_H
|
||
|
#define LZMA_LZ_DECODER_H
|
||
|
|
||
|
#include "common.h"
|
||
|
|
||
|
|
||
|
typedef struct {
|
||
|
/// Pointer to the dictionary buffer. It can be an allocated buffer
|
||
|
/// internal to liblzma, or it can a be a buffer given by the
|
||
|
/// application when in single-call mode (not implemented yet).
|
||
|
uint8_t *buf;
|
||
|
|
||
|
/// Write position in dictionary. The next byte will be written to
|
||
|
/// buf[pos].
|
||
|
size_t pos;
|
||
|
|
||
|
/// Indicates how full the dictionary is. This is used by
|
||
|
/// dict_is_distance_valid() to detect corrupt files that would
|
||
|
/// read beyond the beginning of the dictionary.
|
||
|
size_t full;
|
||
|
|
||
|
/// Write limit
|
||
|
size_t limit;
|
||
|
|
||
|
/// Size of the dictionary
|
||
|
size_t size;
|
||
|
|
||
|
/// True when dictionary should be reset before decoding more data.
|
||
|
bool need_reset;
|
||
|
|
||
|
} lzma_dict;
|
||
|
|
||
|
|
||
|
typedef struct {
|
||
|
size_t dict_size;
|
||
|
const uint8_t *preset_dict;
|
||
|
size_t preset_dict_size;
|
||
|
} lzma_lz_options;
|
||
|
|
||
|
|
||
|
typedef struct {
|
||
|
/// Data specific to the LZ-based decoder
|
||
|
void *coder;
|
||
|
|
||
|
/// Function to decode from in[] to *dict
|
||
|
lzma_ret (*code)(void *coder,
|
||
|
lzma_dict *restrict dict, const uint8_t *restrict in,
|
||
|
size_t *restrict in_pos, size_t in_size);
|
||
|
|
||
|
void (*reset)(void *coder, const void *options);
|
||
|
|
||
|
/// Set the uncompressed size
|
||
|
void (*set_uncompressed)(void *coder, lzma_vli uncompressed_size);
|
||
|
|
||
|
/// Free allocated resources
|
||
|
void (*end)(void *coder, const lzma_allocator *allocator);
|
||
|
|
||
|
} lzma_lz_decoder;
|
||
|
|
||
|
|
||
|
#define LZMA_LZ_DECODER_INIT \
|
||
|
(lzma_lz_decoder){ \
|
||
|
.coder = NULL, \
|
||
|
.code = NULL, \
|
||
|
.reset = NULL, \
|
||
|
.set_uncompressed = NULL, \
|
||
|
.end = NULL, \
|
||
|
}
|
||
|
|
||
|
|
||
|
extern lzma_ret lzma_lz_decoder_init(lzma_next_coder *next,
|
||
|
const lzma_allocator *allocator,
|
||
|
const lzma_filter_info *filters,
|
||
|
lzma_ret (*lz_init)(lzma_lz_decoder *lz,
|
||
|
const lzma_allocator *allocator, const void *options,
|
||
|
lzma_lz_options *lz_options));
|
||
|
|
||
|
extern uint64_t lzma_lz_decoder_memusage(size_t dictionary_size);
|
||
|
|
||
|
extern void lzma_lz_decoder_uncompressed(
|
||
|
void *coder, lzma_vli uncompressed_size);
|
||
|
|
||
|
|
||
|
//////////////////////
|
||
|
// Inline functions //
|
||
|
//////////////////////
|
||
|
|
||
|
/// Get a byte from the history buffer.
|
||
|
static inline uint8_t
|
||
|
dict_get(const lzma_dict *const dict, const uint32_t distance)
|
||
|
{
|
||
|
return dict->buf[dict->pos - distance - 1
|
||
|
+ (distance < dict->pos ? 0 : dict->size)];
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Test if dictionary is empty.
|
||
|
static inline bool
|
||
|
dict_is_empty(const lzma_dict *const dict)
|
||
|
{
|
||
|
return dict->full == 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Validate the match distance
|
||
|
static inline bool
|
||
|
dict_is_distance_valid(const lzma_dict *const dict, const size_t distance)
|
||
|
{
|
||
|
return dict->full > distance;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Repeat *len bytes at distance.
|
||
|
static inline bool
|
||
|
dict_repeat(lzma_dict *dict, uint32_t distance, uint32_t *len)
|
||
|
{
|
||
|
// Don't write past the end of the dictionary.
|
||
|
const size_t dict_avail = dict->limit - dict->pos;
|
||
|
uint32_t left = my_min(dict_avail, *len);
|
||
|
*len -= left;
|
||
|
|
||
|
// Repeat a block of data from the history. Because memcpy() is faster
|
||
|
// than copying byte by byte in a loop, the copying process gets split
|
||
|
// into three cases.
|
||
|
if (distance < left) {
|
||
|
// Source and target areas overlap, thus we can't use
|
||
|
// memcpy() nor even memmove() safely.
|
||
|
do {
|
||
|
dict->buf[dict->pos] = dict_get(dict, distance);
|
||
|
++dict->pos;
|
||
|
} while (--left > 0);
|
||
|
|
||
|
} else if (distance < dict->pos) {
|
||
|
// The easiest and fastest case
|
||
|
memcpy(dict->buf + dict->pos,
|
||
|
dict->buf + dict->pos - distance - 1,
|
||
|
left);
|
||
|
dict->pos += left;
|
||
|
|
||
|
} else {
|
||
|
// The bigger the dictionary, the more rare this
|
||
|
// case occurs. We need to "wrap" the dict, thus
|
||
|
// we might need two memcpy() to copy all the data.
|
||
|
assert(dict->full == dict->size);
|
||
|
const uint32_t copy_pos
|
||
|
= dict->pos - distance - 1 + dict->size;
|
||
|
uint32_t copy_size = dict->size - copy_pos;
|
||
|
|
||
|
if (copy_size < left) {
|
||
|
memmove(dict->buf + dict->pos, dict->buf + copy_pos,
|
||
|
copy_size);
|
||
|
dict->pos += copy_size;
|
||
|
copy_size = left - copy_size;
|
||
|
memcpy(dict->buf + dict->pos, dict->buf, copy_size);
|
||
|
dict->pos += copy_size;
|
||
|
} else {
|
||
|
memmove(dict->buf + dict->pos, dict->buf + copy_pos,
|
||
|
left);
|
||
|
dict->pos += left;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Update how full the dictionary is.
|
||
|
if (dict->full < dict->pos)
|
||
|
dict->full = dict->pos;
|
||
|
|
||
|
return unlikely(*len != 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Puts one byte into the dictionary. Returns true if the dictionary was
|
||
|
/// already full and the byte couldn't be added.
|
||
|
static inline bool
|
||
|
dict_put(lzma_dict *dict, uint8_t byte)
|
||
|
{
|
||
|
if (unlikely(dict->pos == dict->limit))
|
||
|
return true;
|
||
|
|
||
|
dict->buf[dict->pos++] = byte;
|
||
|
|
||
|
if (dict->pos > dict->full)
|
||
|
dict->full = dict->pos;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Copies arbitrary amount of data into the dictionary.
|
||
|
static inline void
|
||
|
dict_write(lzma_dict *restrict dict, const uint8_t *restrict in,
|
||
|
size_t *restrict in_pos, size_t in_size,
|
||
|
size_t *restrict left)
|
||
|
{
|
||
|
// NOTE: If we are being given more data than the size of the
|
||
|
// dictionary, it could be possible to optimize the LZ decoder
|
||
|
// so that not everything needs to go through the dictionary.
|
||
|
// This shouldn't be very common thing in practice though, and
|
||
|
// the slowdown of one extra memcpy() isn't bad compared to how
|
||
|
// much time it would have taken if the data were compressed.
|
||
|
|
||
|
if (in_size - *in_pos > *left)
|
||
|
in_size = *in_pos + *left;
|
||
|
|
||
|
*left -= lzma_bufcpy(in, in_pos, in_size,
|
||
|
dict->buf, &dict->pos, dict->limit);
|
||
|
|
||
|
if (dict->pos > dict->full)
|
||
|
dict->full = dict->pos;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void
|
||
|
dict_reset(lzma_dict *dict)
|
||
|
{
|
||
|
dict->need_reset = true;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#endif
|