270 lines
7.2 KiB
C++
Raw Normal View History

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Common.h"
#include "VideoCommon.h"
#include "XFMemory.h"
#include "CPMemory.h"
#include "VertexManagerBase.h"
#include "VertexShaderManager.h"
#include "PixelShaderManager.h"
#include "HW/Memmap.h"
void XFMemWritten(u32 transferSize, u32 baseAddress)
{
VertexManager::Flush();
VertexShaderManager::InvalidateXFRange(baseAddress, baseAddress + transferSize);
PixelShaderManager::InvalidateXFRange(baseAddress, baseAddress + transferSize);
}
void XFRegWritten(int transferSize, u32 baseAddress, u32 *pData)
{
u32 address = baseAddress;
u32 dataIndex = 0;
while (transferSize > 0 && address < 0x1058)
{
u32 newValue = pData[dataIndex];
u32 nextAddress = address + 1;
switch (address)
{
case XFMEM_ERROR:
case XFMEM_DIAG:
case XFMEM_STATE0: // internal state 0
case XFMEM_STATE1: // internal state 1
case XFMEM_CLOCK:
case XFMEM_SETGPMETRIC:
nextAddress = 0x1007;
break;
case XFMEM_CLIPDISABLE:
//if (data & 1) {} // disable clipping detection
//if (data & 2) {} // disable trivial rejection
//if (data & 4) {} // disable cpoly clipping acceleration
break;
case XFMEM_VTXSPECS: //__GXXfVtxSpecs, wrote 0004
break;
case XFMEM_SETNUMCHAN:
if (xfregs.numChan.numColorChans != (newValue & 3))
VertexManager::Flush();
break;
case XFMEM_SETCHAN0_AMBCOLOR: // Channel Ambient Color
case XFMEM_SETCHAN1_AMBCOLOR:
{
u8 chan = address - XFMEM_SETCHAN0_AMBCOLOR;
if (xfregs.ambColor[chan] != newValue)
{
VertexManager::Flush();
VertexShaderManager::SetMaterialColorChanged(chan);
PixelShaderManager::SetMaterialColorChanged(chan);
}
break;
}
case XFMEM_SETCHAN0_MATCOLOR: // Channel Material Color
case XFMEM_SETCHAN1_MATCOLOR:
{
u8 chan = address - XFMEM_SETCHAN0_MATCOLOR;
if (xfregs.matColor[chan] != newValue)
{
VertexManager::Flush();
VertexShaderManager::SetMaterialColorChanged(chan + 2);
PixelShaderManager::SetMaterialColorChanged(chan + 2);
}
break;
}
case XFMEM_SETCHAN0_COLOR: // Channel Color
case XFMEM_SETCHAN1_COLOR:
case XFMEM_SETCHAN0_ALPHA: // Channel Alpha
case XFMEM_SETCHAN1_ALPHA:
if (((u32*)&xfregs)[address - 0x1000] != (newValue & 0x7fff))
VertexManager::Flush();
break;
case XFMEM_DUALTEX:
if (xfregs.dualTexTrans.enabled != (newValue & 1))
VertexManager::Flush();
break;
case XFMEM_SETMATRIXINDA:
//_assert_msg_(GX_XF, 0, "XF matrixindex0");
VertexShaderManager::SetTexMatrixChangedA(newValue);
break;
case XFMEM_SETMATRIXINDB:
//_assert_msg_(GX_XF, 0, "XF matrixindex1");
VertexShaderManager::SetTexMatrixChangedB(newValue);
break;
case XFMEM_SETVIEWPORT:
case XFMEM_SETVIEWPORT+1:
case XFMEM_SETVIEWPORT+2:
case XFMEM_SETVIEWPORT+3:
case XFMEM_SETVIEWPORT+4:
case XFMEM_SETVIEWPORT+5:
VertexManager::Flush();
VertexShaderManager::SetViewportChanged();
PixelShaderManager::SetViewportChanged();
nextAddress = XFMEM_SETVIEWPORT + 6;
break;
case XFMEM_SETPROJECTION:
case XFMEM_SETPROJECTION+1:
case XFMEM_SETPROJECTION+2:
case XFMEM_SETPROJECTION+3:
case XFMEM_SETPROJECTION+4:
case XFMEM_SETPROJECTION+5:
case XFMEM_SETPROJECTION+6:
VertexManager::Flush();
VertexShaderManager::SetProjectionChanged();
nextAddress = XFMEM_SETPROJECTION + 7;
break;
case XFMEM_SETNUMTEXGENS: // GXSetNumTexGens
if (xfregs.numTexGen.numTexGens != (newValue & 15))
VertexManager::Flush();
break;
case XFMEM_SETTEXMTXINFO:
case XFMEM_SETTEXMTXINFO+1:
case XFMEM_SETTEXMTXINFO+2:
case XFMEM_SETTEXMTXINFO+3:
case XFMEM_SETTEXMTXINFO+4:
case XFMEM_SETTEXMTXINFO+5:
case XFMEM_SETTEXMTXINFO+6:
case XFMEM_SETTEXMTXINFO+7:
VertexManager::Flush();
nextAddress = XFMEM_SETTEXMTXINFO + 8;
break;
case XFMEM_SETPOSMTXINFO:
case XFMEM_SETPOSMTXINFO+1:
case XFMEM_SETPOSMTXINFO+2:
case XFMEM_SETPOSMTXINFO+3:
case XFMEM_SETPOSMTXINFO+4:
case XFMEM_SETPOSMTXINFO+5:
case XFMEM_SETPOSMTXINFO+6:
case XFMEM_SETPOSMTXINFO+7:
VertexManager::Flush();
nextAddress = XFMEM_SETPOSMTXINFO + 8;
break;
// --------------
// Unknown Regs
// --------------
// Maybe these are for Normals?
case 0x1048: //xfregs.texcoords[0].nrmmtxinfo.hex = data; break; ??
case 0x1049:
case 0x104a:
case 0x104b:
case 0x104c:
case 0x104d:
case 0x104e:
case 0x104f:
DEBUG_LOG(VIDEO, "Possible Normal Mtx XF reg?: %x=%x\n", address, newValue);
break;
case 0x1013:
case 0x1014:
case 0x1015:
case 0x1016:
case 0x1017:
default:
WARN_LOG(VIDEO, "Unknown XF Reg: %x=%x\n", address, newValue);
break;
}
int transferred = nextAddress - address;
address = nextAddress;
transferSize -= transferred;
dataIndex += transferred;
}
}
void LoadXFReg(u32 transferSize, u32 baseAddress, u32 *pData)
{
// do not allow writes past registers
if (baseAddress + transferSize > 0x1058)
{
INFO_LOG(VIDEO, "xf load exceeds address space: %x %d bytes\n", baseAddress, transferSize);
if (baseAddress >= 0x1058)
transferSize = 0;
else
transferSize = 0x1058 - baseAddress;
}
// write to XF mem
if (baseAddress < 0x1000 && transferSize > 0)
{
u32 end = baseAddress + transferSize;
u32 xfMemBase = baseAddress;
u32 xfMemTransferSize = transferSize;
if (end >= 0x1000)
{
xfMemTransferSize = 0x1000 - baseAddress;
baseAddress = 0x1000;
transferSize = end - 0x1000;
}
else
{
transferSize = 0;
}
XFMemWritten(xfMemTransferSize, xfMemBase);
memcpy_gc(&xfmem[xfMemBase], pData, xfMemTransferSize * 4);
pData += xfMemTransferSize;
}
// write to XF regs
if (transferSize > 0)
{
XFRegWritten(transferSize, baseAddress, pData);
memcpy_gc((u32*)(&xfregs) + (baseAddress - 0x1000), pData, transferSize * 4);
}
}
// TODO - verify that it is correct. Seems to work, though.
void LoadIndexedXF(u32 val, int refarray)
{
int index = val >> 16;
int address = val & 0xFFF; // check mask
int size = ((val >> 12) & 0xF) + 1;
//load stuff from array to address in xf mem
XFMemWritten(size, address);
for (int i = 0; i < size; i++)
xfmem[address + i] = Memory::Read_U32(arraybases[refarray] + arraystrides[refarray] * index + i * 4);
}