dolphin/Source/Core/Common/Src/x64Emitter.h

773 lines
24 KiB
C
Raw Normal View History

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!!
#ifndef _DOLPHIN_INTEL_CODEGEN_
#define _DOLPHIN_INTEL_CODEGEN_
#include "Common.h"
#include "MemoryUtil.h"
namespace Gen
{
enum X64Reg
{
EAX = 0, EBX = 3, ECX = 1, EDX = 2,
ESI = 6, EDI = 7, EBP = 5, ESP = 4,
RAX = 0, RBX = 3, RCX = 1, RDX = 2,
RSI = 6, RDI = 7, RBP = 5, RSP = 4,
R8 = 8, R9 = 9, R10 = 10,R11 = 11,
R12 = 12,R13 = 13,R14 = 14,R15 = 15,
AL = 0, BL = 3, CL = 1, DL = 2,
SIL = 6, DIL = 7, BPL = 5, SPL = 4,
AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106,
AX = 0, BX = 3, CX = 1, DX = 2,
SI = 6, DI = 7, BP = 5, SP = 4,
XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,
INVALID_REG = 0xFFFFFFFF
};
enum CCFlags
{
CC_O = 0,
CC_NO = 1,
CC_B = 2, CC_C = 2, CC_NAE = 2,
CC_NB = 3, CC_NC = 3, CC_AE = 3,
CC_Z = 4, CC_E = 4,
CC_NZ = 5, CC_NE = 5,
CC_BE = 6, CC_NA = 6,
CC_NBE = 7, CC_A = 7,
CC_S = 8,
CC_NS = 9,
CC_P = 0xA, CC_PE = 0xA,
CC_NP = 0xB, CC_PO = 0xB,
CC_L = 0xC, CC_NGE = 0xC,
CC_NL = 0xD, CC_GE = 0xD,
CC_LE = 0xE, CC_NG = 0xE,
CC_NLE = 0xF, CC_G = 0xF
};
enum
{
NUMGPRs = 16,
NUMXMMs = 16,
};
enum
{
SCALE_NONE = 0,
SCALE_1 = 1,
SCALE_2 = 2,
SCALE_4 = 4,
SCALE_8 = 8,
SCALE_ATREG = 16,
//SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
SCALE_NOBASE_2 = 34,
SCALE_NOBASE_4 = 36,
SCALE_NOBASE_8 = 40,
SCALE_RIP = 0xFF,
SCALE_IMM8 = 0xF0,
SCALE_IMM16 = 0xF1,
SCALE_IMM32 = 0xF2,
SCALE_IMM64 = 0xF3,
};
enum NormalOp {
nrmADD,
nrmADC,
nrmSUB,
nrmSBB,
nrmAND,
nrmOR ,
nrmXOR,
nrmMOV,
nrmTEST,
nrmCMP,
nrmXCHG,
};
class XEmitter;
// RIP addressing does not benefit from micro op fusion on Core arch
struct OpArg
{
OpArg() {} // dummy op arg, used for storage
OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
{
operandReg = 0;
scale = (u8)_scale;
offsetOrBaseReg = (u16)rmReg;
indexReg = (u16)scaledReg;
//if scale == 0 never mind offsetting
offset = _offset;
}
void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const;
void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=(X64Reg)0xFF, bool warn_64bit_offset = true) const;
void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
// This one is public - must be written to
u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available.
u16 operandReg;
void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
bool IsSimpleReg() const {return scale == SCALE_NONE;}
bool IsSimpleReg(X64Reg reg) const {
if (!IsSimpleReg())
return false;
return GetSimpleReg() == reg;
}
bool CanDoOpWith(const OpArg &other) const
{
if (IsSimpleReg()) return true;
if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
return true;
}
int GetImmBits() const
{
switch (scale)
{
case SCALE_IMM8: return 8;
case SCALE_IMM16: return 16;
case SCALE_IMM32: return 32;
case SCALE_IMM64: return 64;
default: return -1;
}
}
X64Reg GetSimpleReg() const
{
if (scale == SCALE_NONE)
return (X64Reg)offsetOrBaseReg;
else
return INVALID_REG;
}
private:
u8 scale;
u16 offsetOrBaseReg;
u16 indexReg;
};
inline OpArg M(void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);}
inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);}
inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
inline OpArg MDisp(X64Reg value, int offset) {
return OpArg((u32)offset, SCALE_ATREG, value);
}
inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset) {
return OpArg(offset, scale, base, scaled);
}
inline OpArg MScaled(X64Reg scaled, int scale, int offset) {
if (scale == SCALE_1)
return OpArg(offset, SCALE_ATREG, scaled);
else
return OpArg(offset, scale | 0x20, RAX, scaled);
}
inline OpArg MRegSum(X64Reg base, X64Reg offset) {
return MComplex(base, offset, 1, 0);
}
inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);}
inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
#ifdef _M_X64
inline OpArg ImmPtr(void* imm) {return Imm64((u64)imm);}
#else
inline OpArg ImmPtr(void* imm) {return Imm32((u32)imm);}
#endif
inline u32 PtrOffset(void* ptr, void* base) {
#ifdef _M_X64
s64 distance = (s64)ptr-(s64)base;
if (distance >= 0x80000000LL ||
distance < -0x80000000LL) {
_assert_msg_(DYNA_REC, 0, "pointer offset out of range");
return 0;
}
return (u32)distance;
#else
return (u32)ptr-(u32)base;
#endif
}
//usage: int a[]; ARRAY_OFFSET(a,10)
#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
struct FixupBranch
{
u8 *ptr;
int type; //0 = 8bit 1 = 32bit
};
enum SSECompare
{
EQ = 0,
LT,
LE,
UNORD,
NEQ,
NLT,
NLE,
ORD,
};
typedef const u8* JumpTarget;
class XEmitter
{
friend struct OpArg; // for Write8 etc
private:
u8 *code;
void Rex(int w, int r, int x, int b);
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
void WriteMulDivType(int bits, OpArg src, int ext);
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2);
void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext);
void WriteMXCSR(OpArg arg, int ext);
void WriteSSEOp(int size, u8 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
protected:
inline void Write8(u8 value) {*code++ = value;}
inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
public:
XEmitter() { code = NULL; }
XEmitter(u8 *code_ptr) { code = code_ptr; }
virtual ~XEmitter() {}
void WriteModRM(int mod, int rm, int reg);
void WriteSIB(int scale, int index, int base);
void SetCodePtr(u8 *ptr);
void ReserveCodeSpace(int bytes);
const u8 *AlignCode4();
const u8 *AlignCode16();
const u8 *AlignCodePage();
const u8 *GetCodePtr() const;
u8 *GetWritableCodePtr();
// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr.,
// INC and DEC are slow on Intel Core, but not on AMD. They create a
// false flag dependency because they only update a subset of the flags.
// XCHG is SLOW and should be avoided.
// Debug breakpoint
void INT3();
// Do nothing
void NOP(int count = 1); //nop padding - TODO: fast nop slides, for amd and intel (check their manuals)
// Save energy in wait-loops on P4 only. Probably not too useful.
void PAUSE();
// Flag control
void STC();
void CLC();
void CMC();
// These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
void LAHF(); // 3 cycle vector path
void SAHF(); // direct path fast
// Stack control
void PUSH(X64Reg reg);
void POP(X64Reg reg);
void PUSH(int bits, const OpArg &reg);
void POP(int bits, const OpArg &reg);
void PUSHF();
void POPF();
// Flow control
void RET();
void RET_FAST();
void UD2();
FixupBranch J(bool force5bytes = false);
void JMP(const u8 * addr, bool force5Bytes = false);
void JMP(OpArg arg);
void JMPptr(const OpArg &arg);
void JMPself(); //infinite loop!
#ifdef CALL
#undef CALL
#endif
void CALL(const void *fnptr);
void CALLptr(OpArg arg);
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
//void J_CC(CCFlags conditionCode, JumpTarget target);
void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false);
void SetJumpTarget(const FixupBranch &branch);
void SETcc(CCFlags flag, OpArg dest);
// Note: CMOV brings small if any benefit on current cpus.
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
// Fences
void LFENCE();
void MFENCE();
void SFENCE();
// Bit scan
void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
// Cache control
enum PrefetchLevel
{
PF_NTA, //Non-temporal (data used once and only once)
PF_T0, //All cache levels
PF_T1, //Levels 2+ (aliased to T0 on AMD)
PF_T2, //Levels 3+ (aliased to T0 on AMD)
};
void PREFETCH(PrefetchLevel level, OpArg arg);
void MOVNTI(int bits, OpArg dest, X64Reg src);
void MOVNTDQ(OpArg arg, X64Reg regOp);
void MOVNTPS(OpArg arg, X64Reg regOp);
void MOVNTPD(OpArg arg, X64Reg regOp);
// Multiplication / division
void MUL(int bits, OpArg src); //UNSIGNED
void IMUL(int bits, OpArg src); //SIGNED
void IMUL(int bits, X64Reg regOp, OpArg src);
void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
void DIV(int bits, OpArg src);
void IDIV(int bits, OpArg src);
// Shift
void ROL(int bits, OpArg dest, OpArg shift);
void ROR(int bits, OpArg dest, OpArg shift);
void RCL(int bits, OpArg dest, OpArg shift);
void RCR(int bits, OpArg dest, OpArg shift);
void SHL(int bits, OpArg dest, OpArg shift);
void SHR(int bits, OpArg dest, OpArg shift);
void SAR(int bits, OpArg dest, OpArg shift);
// Bit Test
void BT(int bits, OpArg dest, OpArg index);
void BTS(int bits, OpArg dest, OpArg index);
void BTR(int bits, OpArg dest, OpArg index);
void BTC(int bits, OpArg dest, OpArg index);
// Double-Precision Shift
void SHRD(int bits, OpArg dest, OpArg src, OpArg shift);
void SHLD(int bits, OpArg dest, OpArg src, OpArg shift);
// Extend EAX into EDX in various ways
void CWD(int bits = 16);
inline void CDQ() {CWD(32);}
inline void CQO() {CWD(64);}
void CBW(int bits = 8);
inline void CWDE() {CBW(16);}
inline void CDQE() {CBW(32);}
// Load effective address
void LEA(int bits, X64Reg dest, OpArg src);
// Integer arithmetic
void NEG (int bits, OpArg src);
void ADD (int bits, const OpArg &a1, const OpArg &a2);
void ADC (int bits, const OpArg &a1, const OpArg &a2);
void SUB (int bits, const OpArg &a1, const OpArg &a2);
void SBB (int bits, const OpArg &a1, const OpArg &a2);
void AND (int bits, const OpArg &a1, const OpArg &a2);
void CMP (int bits, const OpArg &a1, const OpArg &a2);
// Bit operations
void NOT (int bits, OpArg src);
void OR (int bits, const OpArg &a1, const OpArg &a2);
void XOR (int bits, const OpArg &a1, const OpArg &a2);
void MOV (int bits, const OpArg &a1, const OpArg &a2);
void TEST(int bits, const OpArg &a1, const OpArg &a2);
// Are these useful at all? Consider removing.
void XCHG(int bits, const OpArg &a1, const OpArg &a2);
void XCHG_AHAL();
// Byte swapping (32 and 64-bit only).
void BSWAP(int bits, X64Reg reg);
// Sign/zero extension
void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
void STMXCSR(OpArg memloc);
void LDMXCSR(OpArg memloc);
// Prefixes
void LOCK();
void REP();
void REPNE();
void FWAIT();
// SSE/SSE2: Floating point arithmetic
void ADDSS(X64Reg regOp, OpArg arg);
void ADDSD(X64Reg regOp, OpArg arg);
void SUBSS(X64Reg regOp, OpArg arg);
void SUBSD(X64Reg regOp, OpArg arg);
void MULSS(X64Reg regOp, OpArg arg);
void MULSD(X64Reg regOp, OpArg arg);
void DIVSS(X64Reg regOp, OpArg arg);
void DIVSD(X64Reg regOp, OpArg arg);
void MINSS(X64Reg regOp, OpArg arg);
void MINSD(X64Reg regOp, OpArg arg);
void MAXSS(X64Reg regOp, OpArg arg);
void MAXSD(X64Reg regOp, OpArg arg);
void SQRTSS(X64Reg regOp, OpArg arg);
void SQRTSD(X64Reg regOp, OpArg arg);
void RSQRTSS(X64Reg regOp, OpArg arg);
// SSE/SSE2: Floating point bitwise (yes)
void CMPSS(X64Reg regOp, OpArg arg, u8 compare);
void CMPSD(X64Reg regOp, OpArg arg, u8 compare);
void ANDSS(X64Reg regOp, OpArg arg);
void ANDSD(X64Reg regOp, OpArg arg);
void ANDNSS(X64Reg regOp, OpArg arg);
void ANDNSD(X64Reg regOp, OpArg arg);
void ORSS(X64Reg regOp, OpArg arg);
void ORSD(X64Reg regOp, OpArg arg);
void XORSS(X64Reg regOp, OpArg arg);
void XORSD(X64Reg regOp, OpArg arg);
// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
void ADDPS(X64Reg regOp, OpArg arg);
void ADDPD(X64Reg regOp, OpArg arg);
void SUBPS(X64Reg regOp, OpArg arg);
void SUBPD(X64Reg regOp, OpArg arg);
void CMPPS(X64Reg regOp, OpArg arg, u8 compare);
void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
void MULPS(X64Reg regOp, OpArg arg);
void MULPD(X64Reg regOp, OpArg arg);
void DIVPS(X64Reg regOp, OpArg arg);
void DIVPD(X64Reg regOp, OpArg arg);
void MINPS(X64Reg regOp, OpArg arg);
void MINPD(X64Reg regOp, OpArg arg);
void MAXPS(X64Reg regOp, OpArg arg);
void MAXPD(X64Reg regOp, OpArg arg);
void SQRTPS(X64Reg regOp, OpArg arg);
void SQRTPD(X64Reg regOp, OpArg arg);
void RSQRTPS(X64Reg regOp, OpArg arg);
// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
void ANDPS(X64Reg regOp, OpArg arg);
void ANDPD(X64Reg regOp, OpArg arg);
void ANDNPS(X64Reg regOp, OpArg arg);
void ANDNPD(X64Reg regOp, OpArg arg);
void ORPS(X64Reg regOp, OpArg arg);
void ORPD(X64Reg regOp, OpArg arg);
void XORPS(X64Reg regOp, OpArg arg);
void XORPD(X64Reg regOp, OpArg arg);
// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);
void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);
// SSE/SSE2: Useful alternative to shuffle in some cases.
void MOVDDUP(X64Reg regOp, OpArg arg);
// THESE TWO ARE NEW AND UNTESTED
void UNPCKLPS(X64Reg dest, OpArg src);
void UNPCKHPS(X64Reg dest, OpArg src);
// These are OK.
void UNPCKLPD(X64Reg dest, OpArg src);
void UNPCKHPD(X64Reg dest, OpArg src);
// SSE/SSE2: Compares.
void COMISS(X64Reg regOp, OpArg arg);
void COMISD(X64Reg regOp, OpArg arg);
void UCOMISS(X64Reg regOp, OpArg arg);
void UCOMISD(X64Reg regOp, OpArg arg);
// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
void MOVAPS(X64Reg regOp, OpArg arg);
void MOVAPD(X64Reg regOp, OpArg arg);
void MOVAPS(OpArg arg, X64Reg regOp);
void MOVAPD(OpArg arg, X64Reg regOp);
void MOVUPS(X64Reg regOp, OpArg arg);
void MOVUPD(X64Reg regOp, OpArg arg);
void MOVUPS(OpArg arg, X64Reg regOp);
void MOVUPD(OpArg arg, X64Reg regOp);
void MOVSS(X64Reg regOp, OpArg arg);
void MOVSD(X64Reg regOp, OpArg arg);
void MOVSS(OpArg arg, X64Reg regOp);
void MOVSD(OpArg arg, X64Reg regOp);
void MOVD_xmm(X64Reg dest, const OpArg &arg);
void MOVQ_xmm(X64Reg dest, OpArg arg);
void MOVD_xmm(const OpArg &arg, X64Reg src);
void MOVQ_xmm(OpArg arg, X64Reg src);
// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
void MOVMSKPS(X64Reg dest, OpArg arg);
void MOVMSKPD(X64Reg dest, OpArg arg);
// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
void MASKMOVDQU(X64Reg dest, X64Reg src);
void LDDQU(X64Reg dest, OpArg src);
// SSE/SSE2: Data type conversions.
void CVTPS2PD(X64Reg dest, OpArg src);
void CVTPD2PS(X64Reg dest, OpArg src);
void CVTSS2SD(X64Reg dest, OpArg src);
void CVTSD2SS(X64Reg dest, OpArg src);
void CVTSD2SI(X64Reg dest, OpArg src);
void CVTDQ2PD(X64Reg regOp, OpArg arg);
void CVTPD2DQ(X64Reg regOp, OpArg arg);
void CVTDQ2PS(X64Reg regOp, OpArg arg);
void CVTPS2DQ(X64Reg regOp, OpArg arg);
void CVTTSS2SI(X64Reg xregdest, OpArg arg); // Yeah, destination really is a GPR like EAX!
void CVTTPS2DQ(X64Reg regOp, OpArg arg);
// SSE2: Packed integer instructions
void PACKSSDW(X64Reg dest, OpArg arg);
void PACKSSWB(X64Reg dest, OpArg arg);
//void PACKUSDW(X64Reg dest, OpArg arg);
void PACKUSWB(X64Reg dest, OpArg arg);
void PUNPCKLBW(X64Reg dest, const OpArg &arg);
void PUNPCKLWD(X64Reg dest, const OpArg &arg);
void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
void PAND(X64Reg dest, OpArg arg);
void PANDN(X64Reg dest, OpArg arg);
void PXOR(X64Reg dest, OpArg arg);
void POR(X64Reg dest, OpArg arg);
void PADDB(X64Reg dest, OpArg arg);
void PADDW(X64Reg dest, OpArg arg);
void PADDD(X64Reg dest, OpArg arg);
void PADDQ(X64Reg dest, OpArg arg);
void PADDSB(X64Reg dest, OpArg arg);
void PADDSW(X64Reg dest, OpArg arg);
void PADDUSB(X64Reg dest, OpArg arg);
void PADDUSW(X64Reg dest, OpArg arg);
void PSUBB(X64Reg dest, OpArg arg);
void PSUBW(X64Reg dest, OpArg arg);
void PSUBD(X64Reg dest, OpArg arg);
void PSUBQ(X64Reg dest, OpArg arg);
void PSUBSB(X64Reg dest, OpArg arg);
void PSUBSW(X64Reg dest, OpArg arg);
void PSUBUSB(X64Reg dest, OpArg arg);
void PSUBUSW(X64Reg dest, OpArg arg);
void PAVGB(X64Reg dest, OpArg arg);
void PAVGW(X64Reg dest, OpArg arg);
void PCMPEQB(X64Reg dest, OpArg arg);
void PCMPEQW(X64Reg dest, OpArg arg);
void PCMPEQD(X64Reg dest, OpArg arg);
void PCMPGTB(X64Reg dest, OpArg arg);
void PCMPGTW(X64Reg dest, OpArg arg);
void PCMPGTD(X64Reg dest, OpArg arg);
void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
void PMADDWD(X64Reg dest, OpArg arg);
void PSADBW(X64Reg dest, OpArg arg);
void PMAXSW(X64Reg dest, OpArg arg);
void PMAXUB(X64Reg dest, OpArg arg);
void PMINSW(X64Reg dest, OpArg arg);
void PMINUB(X64Reg dest, OpArg arg);
void PMOVMSKB(X64Reg dest, OpArg arg);
void PSHUFB(X64Reg dest, OpArg arg);
void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
void PSRLW(X64Reg reg, int shift);
void PSRLD(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, int shift);
void PSLLW(X64Reg reg, int shift);
void PSLLD(X64Reg reg, int shift);
void PSLLQ(X64Reg reg, int shift);
void PSRAW(X64Reg reg, int shift);
void PSRAD(X64Reg reg, int shift);
void RTDSC();
// Utility functions
// The difference between this and CALL is that this aligns the stack
// where appropriate.
void ABI_CallFunction(void *func);
void ABI_CallFunctionC16(void *func, u16 param1);
void ABI_CallFunctionCC16(void *func, u32 param1, u16 param2);
// These only support u32 parameters, but that's enough for a lot of uses.
// These will destroy the 1 or 2 first "parameter regs".
void ABI_CallFunctionC(void *func, u32 param1);
void ABI_CallFunctionCC(void *func, u32 param1, u32 param2);
void ABI_CallFunctionCCC(void *func, u32 param1, u32 param2, u32 param3);
void ABI_CallFunctionCCP(void *func, u32 param1, u32 param2, void *param3);
void ABI_CallFunctionCCCP(void *func, u32 param1, u32 param2,u32 param3, void *param4);
void ABI_CallFunctionPPC(void *func, void *param1, void *param2,u32 param3);
void ABI_CallFunctionAC(void *func, const Gen::OpArg &arg1, u32 param2);
void ABI_CallFunctionA(void *func, const Gen::OpArg &arg1);
// Pass a register as a parameter.
void ABI_CallFunctionR(void *func, Gen::X64Reg reg1);
void ABI_CallFunctionRR(void *func, Gen::X64Reg reg1, Gen::X64Reg reg2);
// A function that doesn't have any control over what it will do to regs,
// such as the dispatcher, should be surrounded by these.
void ABI_PushAllCalleeSavedRegsAndAdjustStack();
void ABI_PopAllCalleeSavedRegsAndAdjustStack();
// A function that doesn't know anything about it's surroundings, should
// be surrounded by these to establish a safe environment, where it can roam free.
// An example is a backpatch injected function.
void ABI_PushAllCallerSavedRegsAndAdjustStack();
void ABI_PopAllCallerSavedRegsAndAdjustStack();
unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize);
void ABI_AlignStack(unsigned int frameSize);
void ABI_RestoreStack(unsigned int frameSize);
// Sets up a __cdecl function.
// Only x64 really needs the parameter count.
void ABI_EmitPrologue(int maxCallParams);
void ABI_EmitEpilogue(int maxCallParams);
#ifdef _M_IX86
inline int ABI_GetNumXMMRegs() { return 8; }
#else
inline int ABI_GetNumXMMRegs() { return 16; }
#endif
// Strange call wrappers.
void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2);
void CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3);
void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4);
void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5);
#if defined(_M_IX86)
#define CallCdeclFunction3_I(a,b,c,d) CallCdeclFunction3((void *)(a), (b), (c), (d))
#define CallCdeclFunction4_I(a,b,c,d,e) CallCdeclFunction4((void *)(a), (b), (c), (d), (e))
#define CallCdeclFunction5_I(a,b,c,d,e,f) CallCdeclFunction5((void *)(a), (b), (c), (d), (e), (f))
#define CallCdeclFunction6_I(a,b,c,d,e,f,g) CallCdeclFunction6((void *)(a), (b), (c), (d), (e), (f), (g))
#define DECLARE_IMPORT(x)
#else
// Comments from VertexLoader.cpp about these horrors:
// This is a horrible hack that is necessary in 64-bit mode because Opengl32.dll is based way, way above the 32-bit
// address space that is within reach of a CALL, and just doing &fn gives us these high uncallable addresses. So we
// want to grab the function pointers from the import table instead.
void ___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2);
void ___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3);
void ___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4);
void ___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5);
#define CallCdeclFunction3_I(a,b,c,d) ___CallCdeclImport3(&__imp_##a,b,c,d)
#define CallCdeclFunction4_I(a,b,c,d,e) ___CallCdeclImport4(&__imp_##a,b,c,d,e)
#define CallCdeclFunction5_I(a,b,c,d,e,f) ___CallCdeclImport5(&__imp_##a,b,c,d,e,f)
#define CallCdeclFunction6_I(a,b,c,d,e,f,g) ___CallCdeclImport6(&__imp_##a,b,c,d,e,f,g)
#define DECLARE_IMPORT(x) extern "C" void *__imp_##x
#endif
}; // class XEmitter
// Everything that needs to generate X86 code should inherit from this.
// You get memory management for free, plus, you can use all the MOV etc functions without
// having to prefix them with gen-> or something similar.
class XCodeBlock : public XEmitter
{
protected:
u8 *region;
size_t region_size;
public:
XCodeBlock() : region(NULL), region_size(0) {}
virtual ~XCodeBlock() { if (region) FreeCodeSpace(); }
// Call this before you generate any code.
void AllocCodeSpace(int size)
{
region_size = size;
region = (u8*)AllocateExecutableMemory(region_size);
SetCodePtr(region);
}
// Always clear code space with breakpoints, so that if someone accidentally executes
// uninitialized, it just breaks into the debugger.
void ClearCodeSpace()
{
// x86/64: 0xCC = breakpoint
memset(region, 0xCC, region_size);
ResetCodePtr();
}
// Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
void FreeCodeSpace()
{
FreeMemoryPages(region, region_size);
region = NULL;
region_size = 0;
}
2013-02-26 13:49:00 -06:00
bool IsInSpace(u8 *ptr)
{
return ptr >= region && ptr < region + region_size;
}
// Cannot currently be undone. Will write protect the entire code region.
// Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
void WriteProtect()
{
WriteProtectMemory(region, region_size, true);
}
void ResetCodePtr()
{
SetCodePtr(region);
}
size_t GetSpaceLeft() const
{
return region_size - (GetCodePtr() - region);
}
};
} // namespace
#endif // _DOLPHIN_INTEL_CODEGEN_