dolphin/Source/Core/VideoCommon/VertexLoaderBase.cpp

256 lines
10 KiB
C++
Raw Normal View History

// Copyright 2014 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/VertexLoaderBase.h"
#include <array>
#include <bit>
#include <cstring>
#include <memory>
#include <string>
#include <vector>
#include <fmt/format.h>
#include "Common/Assert.h"
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexLoader_Color.h"
#include "VideoCommon/VertexLoader_Normal.h"
#include "VideoCommon/VertexLoader_Position.h"
#include "VideoCommon/VertexLoader_TextCoord.h"
2015-01-15 01:46:23 +01:00
#ifdef _M_X86_64
#include "VideoCommon/VertexLoaderX64.h"
#elif defined(_M_ARM_64)
#include "VideoCommon/VertexLoaderARM64.h"
2015-01-15 01:46:23 +01:00
#endif
// a hacky implementation to compare two vertex loaders
class VertexLoaderTester : public VertexLoaderBase
{
public:
VertexLoaderTester(std::unique_ptr<VertexLoaderBase> a_, std::unique_ptr<VertexLoaderBase> b_,
const TVtxDesc& vtx_desc, const VAT& vtx_attr)
: VertexLoaderBase(vtx_desc, vtx_attr), a(std::move(a_)), b(std::move(b_))
{
ASSERT(a && b);
if (a->m_vertex_size == b->m_vertex_size && a->m_native_components == b->m_native_components &&
a->m_native_vtx_decl.stride == b->m_native_vtx_decl.stride)
{
// These are generated from the VAT and vertex desc, so they should match.
// m_native_vtx_decl.stride isn't set yet, though.
ASSERT(m_vertex_size == a->m_vertex_size && m_native_components == a->m_native_components);
memcpy(&m_native_vtx_decl, &a->m_native_vtx_decl, sizeof(PortableVertexDeclaration));
}
else
{
PanicAlertFmt("Can't compare vertex loaders that expect different vertex formats!\n"
"a: m_vertex_size {}, m_native_components {:#010x}, stride {}\n"
"b: m_vertex_size {}, m_native_components {:#010x}, stride {}",
a->m_vertex_size, a->m_native_components, a->m_native_vtx_decl.stride,
b->m_vertex_size, b->m_native_components, b->m_native_vtx_decl.stride);
}
}
int RunVertices(const u8* src, u8* dst, int count) override
{
buffer_a.resize(count * a->m_native_vtx_decl.stride + 4);
buffer_b.resize(count * b->m_native_vtx_decl.stride + 4);
const std::array<u32, 3> old_position_matrix_index_cache =
VertexLoaderManager::position_matrix_index_cache;
const std::array<std::array<float, 4>, 3> old_position_cache =
VertexLoaderManager::position_cache;
const std::array<float, 4> old_tangent_cache = VertexLoaderManager::tangent_cache;
const std::array<float, 4> old_binormal_cache = VertexLoaderManager::binormal_cache;
const int count_a = a->RunVertices(src, buffer_a.data(), count);
const std::array<u32, 3> a_position_matrix_index_cache =
VertexLoaderManager::position_matrix_index_cache;
const std::array<std::array<float, 4>, 3> a_position_cache =
VertexLoaderManager::position_cache;
const std::array<float, 4> a_tangent_cache = VertexLoaderManager::tangent_cache;
const std::array<float, 4> a_binormal_cache = VertexLoaderManager::binormal_cache;
// Reset state before running b
VertexLoaderManager::position_matrix_index_cache = old_position_matrix_index_cache;
VertexLoaderManager::position_cache = old_position_cache;
VertexLoaderManager::tangent_cache = old_tangent_cache;
VertexLoaderManager::binormal_cache = old_binormal_cache;
const int count_b = b->RunVertices(src, buffer_b.data(), count);
const std::array<u32, 3> b_position_matrix_index_cache =
VertexLoaderManager::position_matrix_index_cache;
const std::array<std::array<float, 4>, 3> b_position_cache =
VertexLoaderManager::position_cache;
const std::array<float, 4> b_tangent_cache = VertexLoaderManager::tangent_cache;
const std::array<float, 4> b_binormal_cache = VertexLoaderManager::binormal_cache;
ASSERT_MSG(VIDEO, count_a == count_b,
"The two vertex loaders have loaded a different amount of vertices (a: {}, b: {}).",
count_a, count_b);
ASSERT_MSG(VIDEO,
memcmp(buffer_a.data(), buffer_b.data(),
std::min(count_a, count_b) * m_native_vtx_decl.stride) == 0,
"The two vertex loaders have loaded different data. Configuration:"
"\nVertex desc:\n{}\n\nVertex attr:\n{}",
m_VtxDesc, m_VtxAttr);
ASSERT_MSG(VIDEO, a_position_matrix_index_cache == b_position_matrix_index_cache,
"Expected matching position matrix caches after loading (a: {}; b: {})",
fmt::join(a_position_matrix_index_cache, ", "),
fmt::join(b_position_matrix_index_cache, ", "));
// Some games (e.g. Donkey Kong Country Returns) have a few draws that contain NaN.
// Since NaN != NaN, we need to compare the bits instead.
const auto bit_equal = [](float a, float b) {
return Common::BitCast<u32>(a) == Common::BitCast<u32>(b);
};
// The last element is allowed to be garbage for SIMD overwrites.
// For XY, the last 2 are garbage.
const bool positions_match = [&] {
const size_t max_component = m_VtxAttr.g0.PosElements == CoordComponentCount::XYZ ? 3 : 2;
for (size_t vertex = 0; vertex < 3; vertex++)
{
if (!std::equal(a_position_cache[vertex].begin(),
a_position_cache[vertex].begin() + max_component,
b_position_cache[vertex].begin(), bit_equal))
{
return false;
}
}
return true;
}();
ASSERT_MSG(VIDEO, positions_match,
"Expected matching position caches after loading (a: {} / {} / {}; b: {} / {} / {})",
fmt::join(a_position_cache[0], ", "), fmt::join(a_position_cache[1], ", "),
fmt::join(a_position_cache[2], ", "), fmt::join(b_position_cache[0], ", "),
fmt::join(b_position_cache[1], ", "), fmt::join(b_position_cache[2], ", "));
// The last element is allowed to be garbage for SIMD overwrites
ASSERT_MSG(VIDEO,
std::equal(a_tangent_cache.begin(), a_tangent_cache.begin() + 3,
b_tangent_cache.begin(), b_tangent_cache.begin() + 3, bit_equal),
"Expected matching tangent caches after loading (a: {}; b: {})",
fmt::join(a_tangent_cache, ", "), fmt::join(b_tangent_cache, ", "));
ASSERT_MSG(VIDEO,
std::equal(a_binormal_cache.begin(), a_binormal_cache.begin() + 3,
b_binormal_cache.begin(), b_binormal_cache.begin() + 3, bit_equal),
"Expected matching binormal caches after loading (a: {}; b: {})",
fmt::join(a_binormal_cache, ", "), fmt::join(b_binormal_cache, ", "));
memcpy(dst, buffer_a.data(), count_a * m_native_vtx_decl.stride);
m_numLoadedVertices += count;
return count_a;
}
2018-04-12 14:18:04 +02:00
private:
std::unique_ptr<VertexLoaderBase> a;
std::unique_ptr<VertexLoaderBase> b;
std::vector<u8> buffer_a;
std::vector<u8> buffer_b;
};
u32 VertexLoaderBase::GetVertexSize(const TVtxDesc& vtx_desc, const VAT& vtx_attr)
{
u32 size = 0;
// Each enabled TexMatIdx adds one byte, as does PosMatIdx
size += std::popcount(vtx_desc.low.Hex & 0x1FF);
2021-03-11 15:43:00 -08:00
const u32 pos_size = VertexLoader_Position::GetSize(vtx_desc.low.Position, vtx_attr.g0.PosFormat,
vtx_attr.g0.PosElements);
size += pos_size;
2021-03-11 15:43:00 -08:00
const u32 norm_size =
VertexLoader_Normal::GetSize(vtx_desc.low.Normal, vtx_attr.g0.NormalFormat,
vtx_attr.g0.NormalElements, vtx_attr.g0.NormalIndex3);
size += norm_size;
for (u32 i = 0; i < vtx_desc.low.Color.Size(); i++)
{
2021-03-11 15:43:00 -08:00
const u32 color_size =
VertexLoader_Color::GetSize(vtx_desc.low.Color[i], vtx_attr.GetColorFormat(i));
size += color_size;
}
for (u32 i = 0; i < vtx_desc.high.TexCoord.Size(); i++)
{
2021-03-11 15:43:00 -08:00
const u32 tc_size = VertexLoader_TextCoord::GetSize(
vtx_desc.high.TexCoord[i], vtx_attr.GetTexFormat(i), vtx_attr.GetTexElements(i));
size += tc_size;
}
2021-03-11 15:43:00 -08:00
return size;
}
u32 VertexLoaderBase::GetVertexComponents(const TVtxDesc& vtx_desc, const VAT& vtx_attr)
{
u32 components = 0;
if (vtx_desc.low.PosMatIdx)
components |= VB_HAS_POSMTXIDX;
for (u32 i = 0; i < vtx_desc.low.TexMatIdx.Size(); i++)
{
if (vtx_desc.low.TexMatIdx[i])
components |= VB_HAS_TEXMTXIDX0 << i;
}
// Vertices always have positions; thus there is no VB_HAS_POS as it would always be set
if (vtx_desc.low.Normal != VertexComponentFormat::NotPresent)
{
components |= VB_HAS_NORMAL;
if (vtx_attr.g0.NormalElements == NormalComponentCount::NTB)
components |= VB_HAS_TANGENT | VB_HAS_BINORMAL;
}
for (u32 i = 0; i < vtx_desc.low.Color.Size(); i++)
{
if (vtx_desc.low.Color[i] != VertexComponentFormat::NotPresent)
components |= VB_HAS_COL0 << i;
}
for (u32 i = 0; i < vtx_desc.high.TexCoord.Size(); i++)
{
if (vtx_desc.high.TexCoord[i] != VertexComponentFormat::NotPresent)
components |= VB_HAS_UV0 << i;
}
return components;
}
std::unique_ptr<VertexLoaderBase> VertexLoaderBase::CreateVertexLoader(const TVtxDesc& vtx_desc,
const VAT& vtx_attr)
{
std::unique_ptr<VertexLoaderBase> loader = nullptr;
// #define COMPARE_VERTEXLOADERS
2015-01-15 01:46:23 +01:00
#if defined(_M_X86_64)
loader = std::make_unique<VertexLoaderX64>(vtx_desc, vtx_attr);
#elif defined(_M_ARM_64)
loader = std::make_unique<VertexLoaderARM64>(vtx_desc, vtx_attr);
#endif
// Use the software loader as a fallback
// (not currently applicable, as both VertexLoaderX64 and VertexLoaderARM64
// are always usable, but if a loader that only works on some CPUs is created
// then this fallback would be used)
if (!loader)
loader = std::make_unique<VertexLoader>(vtx_desc, vtx_attr);
#if defined(COMPARE_VERTEXLOADERS)
return std::make_unique<VertexLoaderTester>(
std::make_unique<VertexLoader>(vtx_desc, vtx_attr), // the software one
std::move(loader), // the new one to compare
vtx_desc, vtx_attr);
#else
return loader;
#endif
}