778 lines
20 KiB
C++
Raw Normal View History

// Copyright (C) 2003-2009 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
// TODO: Handle cache-is-full condition :p
#include <map>
#include "Common.h"
#include "VideoCommon.h"
#include "Hash.h"
#include "MemoryUtil.h"
#include "DataReader.h"
#include "Statistics.h"
#include "OpcodeDecoding.h" // For the GX_ constants.
#include "HW/Memmap.h"
#include "XFMemory.h"
#include "CPMemory.h"
#include "BPMemory.h"
#include "VertexLoaderManager.h"
#include "VertexManagerBase.h"
#include "x64Emitter.h"
#include "ABI.h"
#include "DLCache.h"
#include "VideoConfig.h"
#define DL_CODE_CACHE_SIZE (1024*1024*16)
#define DL_CODE_CLEAR_THRESHOLD (16 * 1024)
extern int frameCount;
static u32 CheckContextId;
using namespace Gen;
namespace DLCache
{
enum DisplayListPass {
DLPASS_ANALYZE,
DLPASS_COMPILE,
DLPASS_RUN,
};
#define DL_HASH_STEPS 512
struct ReferencedDataRegion
{
ReferencedDataRegion()
:hash(0),
start_address(NULL),
NextRegion(NULL),
size(0),
MustClean(0)
{}
u64 hash;
u8* start_address;
ReferencedDataRegion* NextRegion;
u32 size;
u32 MustClean;
int IntersectsMemoryRange(u8* range_address, u32 range_size)
{
if (start_address + size < range_address)
return -1;
if (start_address >= range_address + range_size)
return 1;
return 0;
}
};
struct CachedDisplayList
{
CachedDisplayList()
: Regions(NULL),
LastRegion(NULL),
uncachable(false),
num_xf_reg(0),
num_cp_reg(0),
num_bp_reg(0),
num_index_xf(0),
num_draw_call(0),
pass(DLPASS_ANALYZE),
BufferCount(0)
{
frame_count = frameCount;
}
u64 dl_hash;
// ... Something containing cached vertex buffers here ...
ReferencedDataRegion* Regions;
ReferencedDataRegion* LastRegion;
// Compile the commands themselves down to native code.
const u8* compiled_code;
u32 uncachable; // if set, this DL will always be interpreted. This gets set if hash ever changes.
// Analitic data
u32 num_xf_reg;
u32 num_cp_reg;
u32 num_bp_reg;
u32 num_index_xf;
u32 num_draw_call;
u32 pass;
u32 check;
int frame_count;
u32 BufferCount;
void InsertRegion(ReferencedDataRegion* NewRegion)
{
if(LastRegion)
{
LastRegion->NextRegion = NewRegion;
}
LastRegion = NewRegion;
if(!Regions)
{
Regions = LastRegion;
}
BufferCount++;
}
void InsertOverlapingRegion(u8* RegionStartAddress, u32 Size)
{
ReferencedDataRegion* NewRegion = FindOverlapingRegion(RegionStartAddress, Size);
if(NewRegion)
{
bool RegionChanged = false;
if(RegionStartAddress < NewRegion->start_address)
{
NewRegion->start_address = RegionStartAddress;
RegionChanged = true;
}
if(RegionStartAddress + Size > NewRegion->start_address + NewRegion->size)
{
NewRegion->size += (u32)((RegionStartAddress + Size) - (NewRegion->start_address + NewRegion->size));
RegionChanged = true;
}
if(RegionChanged)
NewRegion->hash = GetHash64(NewRegion->start_address, NewRegion->size, DL_HASH_STEPS);
}
else
{
NewRegion = new ReferencedDataRegion;
NewRegion->MustClean = false;
NewRegion->size = Size;
NewRegion->start_address = RegionStartAddress;
NewRegion->hash = GetHash64(RegionStartAddress, Size, DL_HASH_STEPS);
InsertRegion(NewRegion);
}
}
bool CheckRegions()
{
ReferencedDataRegion* Current = Regions;
while(Current)
{
if(Current->hash)
{
if(Current->hash != GetHash64(Current->start_address, Current->size, DL_HASH_STEPS))
return false;
}
Current = Current->NextRegion;
}
return true;
}
ReferencedDataRegion* FindOverlapingRegion(u8* RegionStart, u32 Regionsize)
{
ReferencedDataRegion* Current = Regions;
while(Current)
{
if(!Current->IntersectsMemoryRange(RegionStart, Regionsize))
return Current;
Current = Current->NextRegion;
}
return Current;
}
void ClearRegions()
{
ReferencedDataRegion* Current = Regions;
while(Current)
{
ReferencedDataRegion* temp = Current;
Current = Current->NextRegion;
if(temp->MustClean)
delete [] temp->start_address;
delete temp;
}
LastRegion = NULL;
Regions = NULL;
}
};
// We want to allow caching DLs that start at the same address but have different lengths,
// so the size has to be in the ID.
inline u64 CreateMapId(u32 address, u32 size)
{
return ((u64)address << 32) | size;
}
inline u64 CreateVMapId(u32 VATUSED)
{
u64 vmap_id = 0x9368e53c2f6af274ULL ^ g_VtxDesc.Hex;
for(int i = 0; i < 8 ; i++)
{
if(VATUSED & (1 << i))
{
vmap_id ^= (((u64)g_VtxAttr[i].g0.Hex) | (((u64)g_VtxAttr[i].g1.Hex) << 32)) ^ (((u64)g_VtxAttr[i].g2.Hex) << i);
}
}
for(int i = 0; i < 12; i++)
{
if(VATUSED & (1 << (i + 16)))
vmap_id ^= (((u64)arraybases[i]) ^ (((u64)arraystrides[i]) << 32));
}
return vmap_id;
}
typedef std::map<u64, CachedDisplayList> DLMap;
struct VDlist
{
DLMap dl_map;
u32 VATUsed;
u32 count;
};
typedef std::map<u64, VDlist> VDLMap;
static VDLMap dl_map;
static u8* dlcode_cache;
static Gen::XEmitter emitter;
// First pass - analyze
u32 AnalyzeAndRunDisplayList(u32 address, u32 size, CachedDisplayList *dl)
{
u8* old_pVideoData = g_pVideoData;
u8* startAddress = Memory::GetPointer(address);
u32 num_xf_reg = 0;
u32 num_cp_reg = 0;
u32 num_bp_reg = 0;
u32 num_index_xf = 0;
u32 num_draw_call = 0;
u32 result = 0;
// Avoid the crash if Memory::GetPointer failed ..
if (startAddress != 0)
{
g_pVideoData = startAddress;
// temporarily swap dl and non-dl (small "hack" for the stats)
Statistics::SwapDL();
u8 *end = g_pVideoData + size;
while (g_pVideoData < end)
{
// Yet another reimplementation of the DL reading...
int cmd_byte = DataReadU8();
switch (cmd_byte)
{
case GX_NOP:
break;
case GX_LOAD_CP_REG: //0x08
{
u8 sub_cmd = DataReadU8();
u32 value = DataReadU32();
LoadCPReg(sub_cmd, value);
INCSTAT(stats.thisFrame.numCPLoads);
num_cp_reg++;
}
break;
case GX_LOAD_XF_REG:
{
u32 Cmd2 = DataReadU32();
int transfer_size = ((Cmd2 >> 16) & 15) + 1;
u32 xf_address = Cmd2 & 0xFFFF;
GC_ALIGNED128(u32 data_buffer[16]);
DataReadU32xFuncs[transfer_size-1](data_buffer);
LoadXFReg(transfer_size, xf_address, data_buffer);
INCSTAT(stats.thisFrame.numXFLoads);
num_xf_reg++;
}
break;
case GX_LOAD_INDX_A: //used for position matrices
{
LoadIndexedXF(DataReadU32(), 0xC);
num_index_xf++;
}
break;
case GX_LOAD_INDX_B: //used for normal matrices
{
LoadIndexedXF(DataReadU32(), 0xD);
num_index_xf++;
}
break;
case GX_LOAD_INDX_C: //used for postmatrices
{
LoadIndexedXF(DataReadU32(), 0xE);
num_index_xf++;
}
break;
case GX_LOAD_INDX_D: //used for lights
{
LoadIndexedXF(DataReadU32(), 0xF);
num_index_xf++;
}
break;
case GX_CMD_CALL_DL:
{
u32 addr = DataReadU32();
u32 count = DataReadU32();
ExecuteDisplayList(addr, count);
}
break;
case GX_CMD_UNKNOWN_METRICS: // zelda 4 swords calls it and checks the metrics registers after that
DEBUG_LOG(VIDEO, "GX 0x44: %08x", cmd_byte);
break;
case GX_CMD_INVL_VC: // Invalidate Vertex Cache
DEBUG_LOG(VIDEO, "Invalidate (vertex cache?)");
break;
case GX_LOAD_BP_REG: //0x61
{
u32 bp_cmd = DataReadU32();
LoadBPReg(bp_cmd);
INCSTAT(stats.thisFrame.numBPLoads);
num_bp_reg++;
}
break;
// draw primitives
default:
if (cmd_byte & 0x80)
{
// load vertices (use computed vertex size from FifoCommandRunnable above)
u16 numVertices = DataReadU16();
if(numVertices > 0)
{
result |= 1 << (cmd_byte & GX_VAT_MASK);
VertexLoaderManager::RunVertices(
cmd_byte & GX_VAT_MASK, // Vertex loader index (0 - 7)
(cmd_byte & GX_PRIMITIVE_MASK) >> GX_PRIMITIVE_SHIFT,
numVertices);
num_draw_call++;
const u32 tc[12] = {
g_VtxDesc.Position, g_VtxDesc.Normal, g_VtxDesc.Color0, g_VtxDesc.Color1, g_VtxDesc.Tex0Coord, g_VtxDesc.Tex1Coord,
g_VtxDesc.Tex2Coord, g_VtxDesc.Tex3Coord, g_VtxDesc.Tex4Coord, g_VtxDesc.Tex5Coord, g_VtxDesc.Tex6Coord, (const u32)((g_VtxDesc.Hex >> 31) & 3)
};
for(int i = 0; i < 12; i++)
{
if(tc[i] > 1)
{
result |= 1 << (i + 16);
}
}
}
}
else
{
ERROR_LOG(VIDEO, "OpcodeDecoding::Decode: Illegal command %02x", cmd_byte);
break;
}
break;
}
}
INCSTAT(stats.numDListsCalled);
INCSTAT(stats.thisFrame.numDListsCalled);
// un-swap
Statistics::SwapDL();
}
dl->num_bp_reg = num_bp_reg;
dl->num_cp_reg = num_cp_reg;
dl->num_draw_call = num_draw_call;
dl->num_index_xf = num_index_xf;
dl->num_xf_reg = num_xf_reg;
// reset to the old pointer
g_pVideoData = old_pVideoData;
return result;
}
// The only sensible way to detect changes to vertex data is to convert several times
// and hash the output.
// Second pass - compile
// Since some commands can affect the size of other commands, we really have no choice
// but to compile as we go, interpreting the list. We can't compile and then execute, we must
// compile AND execute at the same time. The second time the display list gets called, we already
// have the compiled code so we don't have to interpret anymore, we just run it.
void CompileAndRunDisplayList(u32 address, u32 size, CachedDisplayList *dl)
{
u8* old_pVideoData = g_pVideoData;
u8* startAddress = Memory::GetPointer(address);
// Avoid the crash if Memory::GetPointer failed ..
if (startAddress != 0)
{
g_pVideoData = startAddress;
// temporarily swap dl and non-dl (small "hack" for the stats)
Statistics::SwapDL();
u8 *end = g_pVideoData + size;
emitter.AlignCode4();
dl->compiled_code = emitter.GetCodePtr();
emitter.ABI_EmitPrologue(4);
while (g_pVideoData < end)
{
// Yet another reimplementation of the DL reading...
int cmd_byte = DataReadU8();
switch (cmd_byte)
{
case GX_NOP:
// Execute
// Compile
break;
case GX_LOAD_CP_REG: //0x08
{
// Execute
u8 sub_cmd = DataReadU8();
u32 value = DataReadU32();
LoadCPReg(sub_cmd, value);
INCSTAT(stats.thisFrame.numCPLoads);
// Compile
emitter.ABI_CallFunctionCC((void *)&LoadCPReg, sub_cmd, value);
}
break;
case GX_LOAD_XF_REG:
{
// Execute
u32 Cmd2 = DataReadU32();
int transfer_size = ((Cmd2 >> 16) & 15) + 1;
u32 xf_address = Cmd2 & 0xFFFF;
ReferencedDataRegion* NewRegion = new ReferencedDataRegion;
NewRegion->MustClean = true;
NewRegion->size = transfer_size * 4;
NewRegion->start_address = (u8*) new u8[NewRegion->size+15+12]; // alignment and guaranteed space
NewRegion->hash = 0;
dl->InsertRegion(NewRegion);
u32 *data_buffer = (u32*)(u8*)(((size_t)NewRegion->start_address+0xf)&~0xf);
DataReadU32xFuncs[transfer_size-1](data_buffer);
LoadXFReg(transfer_size, xf_address, data_buffer);
INCSTAT(stats.thisFrame.numXFLoads);
// Compile
emitter.ABI_CallFunctionCCP((void *)&LoadXFReg, transfer_size, xf_address, data_buffer);
}
break;
case GX_LOAD_INDX_A: //used for position matrices
{
u32 value = DataReadU32();
// Execute
LoadIndexedXF(value, 0xC);
// Compile
emitter.ABI_CallFunctionCC((void *)&LoadIndexedXF, value, 0xC);
}
break;
case GX_LOAD_INDX_B: //used for normal matrices
{
u32 value = DataReadU32();
// Execute
LoadIndexedXF(value, 0xD);
// Compile
emitter.ABI_CallFunctionCC((void *)&LoadIndexedXF, value, 0xD);
}
break;
case GX_LOAD_INDX_C: //used for postmatrices
{
u32 value = DataReadU32();
// Execute
LoadIndexedXF(value, 0xE);
// Compile
emitter.ABI_CallFunctionCC((void *)&LoadIndexedXF, value, 0xE);
}
break;
case GX_LOAD_INDX_D: //used for lights
{
u32 value = DataReadU32();
// Execute
LoadIndexedXF(value, 0xF);
// Compile
emitter.ABI_CallFunctionCC((void *)&LoadIndexedXF, value, 0xF);
}
break;
case GX_CMD_CALL_DL:
{
u32 addr= DataReadU32();
u32 count = DataReadU32();
ExecuteDisplayList(addr, count);
emitter.ABI_CallFunctionCC((void *)&ExecuteDisplayList, addr, count);
}
break;
case GX_CMD_UNKNOWN_METRICS:
// zelda 4 swords calls it and checks the metrics registers after that
break;
case GX_CMD_INVL_VC:// Invalidate (vertex cache?)
DEBUG_LOG(VIDEO, "Invalidate (vertex cache?)");
break;
case GX_LOAD_BP_REG: //0x61
{
u32 bp_cmd = DataReadU32();
// Execute
LoadBPReg(bp_cmd);
INCSTAT(stats.thisFrame.numBPLoads);
// Compile
emitter.ABI_CallFunctionC((void *)&LoadBPReg, bp_cmd);
}
break;
// draw primitives
default:
if (cmd_byte & 0x80)
{
// load vertices (use computed vertex size from FifoCommandRunnable above)
u16 numVertices = DataReadU16();
if(numVertices > 0)
{
// Execute
u8* StartAddress = VertexManager::s_pBaseBufferPointer;
VertexManager::Flush();
VertexLoaderManager::RunVertices(
cmd_byte & GX_VAT_MASK, // Vertex loader index (0 - 7)
(cmd_byte & GX_PRIMITIVE_MASK) >> GX_PRIMITIVE_SHIFT,
numVertices);
u8* EndAddress = VertexManager::s_pCurBufferPointer;
u32 Vdatasize = (u32)(EndAddress - StartAddress);
if (Vdatasize > 0)
{
// Compile
ReferencedDataRegion* NewRegion = new ReferencedDataRegion;
NewRegion->MustClean = true;
NewRegion->size = Vdatasize;
NewRegion->start_address = (u8*)new u8[Vdatasize];
NewRegion->hash = 0;
dl->InsertRegion(NewRegion);
memcpy(NewRegion->start_address, StartAddress, Vdatasize);
emitter.ABI_CallFunctionCCCP((void *)&VertexLoaderManager::RunCompiledVertices, cmd_byte & GX_VAT_MASK, (cmd_byte & GX_PRIMITIVE_MASK) >> GX_PRIMITIVE_SHIFT, numVertices, NewRegion->start_address);
const u32 tc[12] = {
g_VtxDesc.Position, g_VtxDesc.Normal, g_VtxDesc.Color0, g_VtxDesc.Color1, g_VtxDesc.Tex0Coord, g_VtxDesc.Tex1Coord,
g_VtxDesc.Tex2Coord, g_VtxDesc.Tex3Coord, g_VtxDesc.Tex4Coord, g_VtxDesc.Tex5Coord, g_VtxDesc.Tex6Coord, (const u32)((g_VtxDesc.Hex >> 31) & 3)
};
for(int i = 0; i < 12; i++)
{
if(tc[i] > 1)
{
u8* saddr = cached_arraybases[i];
int arraySize = arraystrides[i] * ((tc[i] == 2)? numVertices : ((numVertices < 1024)? 2 * numVertices : numVertices));
dl->InsertOverlapingRegion(saddr, arraySize);
}
}
}
}
}
else
{
ERROR_LOG(VIDEO, "DLCache::CompileAndRun: Illegal command %02x", cmd_byte);
break;
}
break;
}
}
emitter.ABI_EmitEpilogue(4);
INCSTAT(stats.numDListsCalled);
INCSTAT(stats.thisFrame.numDListsCalled);
Statistics::SwapDL();
}
g_pVideoData = old_pVideoData;
}
void Init()
{
CheckContextId = 0;
dlcode_cache = (u8*)AllocateExecutableMemory(DL_CODE_CACHE_SIZE, false); // Don't need low memory.
emitter.SetCodePtr(dlcode_cache);
}
void Shutdown()
{
Clear();
FreeMemoryPages(dlcode_cache, DL_CODE_CACHE_SIZE);
dlcode_cache = NULL;
}
void Clear()
{
VDLMap::iterator iter = dl_map.begin();
while (iter != dl_map.end()) {
VDlist &ParentEntry = iter->second;
DLMap::iterator childiter = ParentEntry.dl_map.begin();
while (childiter != ParentEntry.dl_map.end()) {
CachedDisplayList &entry = childiter->second;
entry.ClearRegions();
childiter++;
}
ParentEntry.dl_map.clear();
iter++;
}
dl_map.clear();
// Reset the cache pointers.
emitter.SetCodePtr(dlcode_cache);
}
void ProgressiveCleanup()
{
VDLMap::iterator iter = dl_map.begin();
while (iter != dl_map.end()) {
VDlist &ParentEntry = iter->second;
DLMap::iterator childiter = ParentEntry.dl_map.begin();
while (childiter != ParentEntry.dl_map.end())
{
CachedDisplayList &entry = childiter->second;
int limit = 3600;
if (entry.frame_count < frameCount - limit) {
entry.ClearRegions();
ParentEntry.dl_map.erase(childiter++); // (this is gcc standard!)
}
else
++childiter;
}
if(ParentEntry.dl_map.empty())
{
dl_map.erase(iter++);
}
else
iter++;
}
}
static size_t GetSpaceLeft()
{
return DL_CODE_CACHE_SIZE - (emitter.GetCodePtr() - dlcode_cache);
}
} // namespace
// NOTE - outside the namespace on purpose.
bool HandleDisplayList(u32 address, u32 size)
{
//Fixed DlistCaching now is fully functional still some things to workout
if(!g_ActiveConfig.bDlistCachingEnable)
return false;
if(size == 0) return false;
// Is this thread safe?
if (DLCache::GetSpaceLeft() < DL_CODE_CLEAR_THRESHOLD) {
DLCache::Clear();
}
u64 dl_id = DLCache::CreateMapId(address, size);
u64 vhash = 0;
DLCache::VDLMap::iterator Parentiter = DLCache::dl_map.find(dl_id);
DLCache::DLMap::iterator iter;
bool childexist = false;
if (Parentiter != DLCache::dl_map.end())
{
vhash = DLCache::CreateVMapId(Parentiter->second.VATUsed);
iter = Parentiter->second.dl_map.find(vhash);
childexist = iter != Parentiter->second.dl_map.end();
}
if (Parentiter != DLCache::dl_map.end() && childexist)
{
DLCache::CachedDisplayList &dl = iter->second;
if (dl.uncachable)
{
return false;
}
switch (dl.pass)
{
case DLCache::DLPASS_COMPILE:
// First, check that the hash is the same as the last time.
if (dl.dl_hash != GetHash64(Memory::GetPointer(address), size, 0))
{
dl.uncachable = true;
return false;
}
DLCache::CompileAndRunDisplayList(address, size, &dl);
dl.pass = DLCache::DLPASS_RUN;
break;
case DLCache::DLPASS_RUN:
{
bool DlistChanged = false;
if (dl.check != CheckContextId)
{
dl.check = CheckContextId;
DlistChanged = !dl.CheckRegions() || dl.dl_hash != GetHash64(Memory::GetPointer(address), size, 0);
}
if (DlistChanged)
{
dl.uncachable = true;
dl.ClearRegions();
return false;
}
dl.frame_count= frameCount;
u8 *old_datareader = g_pVideoData;
((void (*)())(void*)(dl.compiled_code))();
Statistics::SwapDL();
ADDSTAT(stats.thisFrame.numCPLoadsInDL, dl.num_cp_reg);
ADDSTAT(stats.thisFrame.numXFLoadsInDL, dl.num_xf_reg);
ADDSTAT(stats.thisFrame.numBPLoadsInDL, dl.num_bp_reg);
ADDSTAT(stats.thisFrame.numCPLoads, dl.num_cp_reg);
ADDSTAT(stats.thisFrame.numXFLoads, dl.num_xf_reg);
ADDSTAT(stats.thisFrame.numBPLoads, dl.num_bp_reg);
INCSTAT(stats.numDListsCalled);
INCSTAT(stats.thisFrame.numDListsCalled);
Statistics::SwapDL();
g_pVideoData = old_datareader;
break;
}
}
return true;
}
DLCache::CachedDisplayList dl;
u32 dlvatused = DLCache::AnalyzeAndRunDisplayList(address, size, &dl);
dl.dl_hash = GetHash64(Memory::GetPointer(address), size,0);
dl.pass = DLCache::DLPASS_COMPILE;
dl.check = CheckContextId;
vhash = DLCache::CreateVMapId(dlvatused);
if(Parentiter != DLCache::dl_map.end())
{
DLCache::VDlist &vdl = Parentiter->second;
vdl.dl_map[vhash] = dl;
vdl.VATUsed = dlvatused;
vdl.count++;
}
else
{
DLCache::VDlist vdl;
vdl.dl_map[vhash] = dl;
vdl.VATUsed = dlvatused;
vdl.count = 1;
DLCache::dl_map[dl_id] = vdl;
}
return true;
}
void IncrementCheckContextId()
{
CheckContextId++;
}