dolphin/Source/Core/VideoCommon/PostProcessing.cpp

775 lines
22 KiB
C++
Raw Normal View History

// Copyright 2014 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/PostProcessing.h"
#include <sstream>
#include <string>
2019-07-08 13:35:53 +02:00
#include <string_view>
#include <fmt/format.h>
#include "Common/Assert.h"
#include "Common/CommonPaths.h"
#include "Common/CommonTypes.h"
#include "Common/FileSearch.h"
#include "Common/FileUtil.h"
#include "Common/IniFile.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#include "VideoCommon/AbstractFramebuffer.h"
#include "VideoCommon/AbstractPipeline.h"
#include "VideoCommon/AbstractShader.h"
#include "VideoCommon/AbstractTexture.h"
#include "VideoCommon/FramebufferManager.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/ShaderCache.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
namespace VideoCommon
{
static const char s_default_shader[] = "void main() { SetOutput(Sample()); }\n";
PostProcessingConfiguration::PostProcessingConfiguration() = default;
PostProcessingConfiguration::~PostProcessingConfiguration() = default;
void PostProcessingConfiguration::LoadShader(const std::string& shader)
{
// Load the shader from the configuration if there isn't one sent to us.
m_current_shader = shader;
if (shader.empty())
{
LoadDefaultShader();
return;
}
std::string sub_dir = "";
if (g_Config.stereo_mode == StereoMode::Anaglyph)
{
sub_dir = ANAGLYPH_DIR DIR_SEP;
}
else if (g_Config.stereo_mode == StereoMode::Passive)
{
sub_dir = PASSIVE_DIR DIR_SEP;
}
// loading shader code
std::string code;
std::string path = File::GetUserPath(D_SHADERS_IDX) + sub_dir + shader + ".glsl";
if (!File::Exists(path))
{
// Fallback to shared user dir
path = File::GetSysDirectory() + SHADERS_DIR DIR_SEP + sub_dir + shader + ".glsl";
}
if (!File::ReadFileToString(path, code))
{
ERROR_LOG_FMT(VIDEO, "Post-processing shader not found: {}", path);
LoadDefaultShader();
return;
}
LoadOptions(code);
LoadOptionsConfiguration();
m_current_shader_code = code;
}
void PostProcessingConfiguration::LoadDefaultShader()
{
m_options.clear();
m_any_options_dirty = false;
m_current_shader_code = s_default_shader;
}
void PostProcessingConfiguration::LoadOptions(const std::string& code)
{
const std::string config_start_delimiter = "[configuration]";
const std::string config_end_delimiter = "[/configuration]";
size_t configuration_start = code.find(config_start_delimiter);
size_t configuration_end = code.find(config_end_delimiter);
m_options.clear();
m_any_options_dirty = true;
if (configuration_start == std::string::npos || configuration_end == std::string::npos)
{
// Issue loading configuration or there isn't one.
return;
}
std::string configuration_string =
code.substr(configuration_start + config_start_delimiter.size(),
configuration_end - configuration_start - config_start_delimiter.size());
std::istringstream in(configuration_string);
struct GLSLStringOption
{
std::string m_type;
std::vector<std::pair<std::string, std::string>> m_options;
};
std::vector<GLSLStringOption> option_strings;
GLSLStringOption* current_strings = nullptr;
while (!in.eof())
{
2019-07-08 13:35:53 +02:00
std::string line_str;
if (std::getline(in, line_str))
{
2019-07-08 13:35:53 +02:00
std::string_view line = line_str;
#ifndef _WIN32
// Check for CRLF eol and convert it to LF
if (!line.empty() && line.at(line.size() - 1) == '\r')
2019-07-08 13:35:53 +02:00
line.remove_suffix(1);
#endif
2019-02-12 23:47:17 +01:00
if (!line.empty())
{
if (line[0] == '[')
{
size_t endpos = line.find("]");
if (endpos != std::string::npos)
{
// New section!
2019-07-08 13:35:53 +02:00
std::string_view sub = line.substr(1, endpos - 1);
option_strings.push_back({std::string(sub)});
current_strings = &option_strings.back();
}
}
else
{
if (current_strings)
{
std::string key, value;
IniFile::ParseLine(line, &key, &value);
2019-02-12 23:47:17 +01:00
if (!(key.empty() && value.empty()))
current_strings->m_options.emplace_back(key, value);
}
}
}
}
}
for (const auto& it : option_strings)
{
ConfigurationOption option;
option.m_dirty = true;
if (it.m_type == "OptionBool")
option.m_type = ConfigurationOption::OptionType::OPTION_BOOL;
else if (it.m_type == "OptionRangeFloat")
option.m_type = ConfigurationOption::OptionType::OPTION_FLOAT;
else if (it.m_type == "OptionRangeInteger")
option.m_type = ConfigurationOption::OptionType::OPTION_INTEGER;
for (const auto& string_option : it.m_options)
{
if (string_option.first == "GUIName")
{
option.m_gui_name = string_option.second;
}
else if (string_option.first == "OptionName")
{
option.m_option_name = string_option.second;
}
else if (string_option.first == "DependentOption")
{
option.m_dependent_option = string_option.second;
}
else if (string_option.first == "MinValue" || string_option.first == "MaxValue" ||
string_option.first == "DefaultValue" || string_option.first == "StepAmount")
{
std::vector<s32>* output_integer = nullptr;
std::vector<float>* output_float = nullptr;
if (string_option.first == "MinValue")
{
output_integer = &option.m_integer_min_values;
output_float = &option.m_float_min_values;
}
else if (string_option.first == "MaxValue")
{
output_integer = &option.m_integer_max_values;
output_float = &option.m_float_max_values;
}
else if (string_option.first == "DefaultValue")
{
output_integer = &option.m_integer_values;
output_float = &option.m_float_values;
}
else if (string_option.first == "StepAmount")
{
output_integer = &option.m_integer_step_values;
output_float = &option.m_float_step_values;
}
if (option.m_type == ConfigurationOption::OptionType::OPTION_BOOL)
{
TryParse(string_option.second, &option.m_bool_value);
}
else if (option.m_type == ConfigurationOption::OptionType::OPTION_INTEGER)
{
TryParseVector(string_option.second, output_integer);
if (output_integer->size() > 4)
output_integer->erase(output_integer->begin() + 4, output_integer->end());
}
else if (option.m_type == ConfigurationOption::OptionType::OPTION_FLOAT)
{
TryParseVector(string_option.second, output_float);
if (output_float->size() > 4)
output_float->erase(output_float->begin() + 4, output_float->end());
}
}
}
m_options[option.m_option_name] = option;
}
}
void PostProcessingConfiguration::LoadOptionsConfiguration()
{
IniFile ini;
ini.Load(File::GetUserPath(F_DOLPHINCONFIG_IDX));
std::string section = m_current_shader + "-options";
for (auto& it : m_options)
{
switch (it.second.m_type)
{
case ConfigurationOption::OptionType::OPTION_BOOL:
ini.GetOrCreateSection(section)->Get(it.second.m_option_name, &it.second.m_bool_value,
it.second.m_bool_value);
break;
case ConfigurationOption::OptionType::OPTION_INTEGER:
{
std::string value;
ini.GetOrCreateSection(section)->Get(it.second.m_option_name, &value);
2019-02-12 23:47:17 +01:00
if (!value.empty())
TryParseVector(value, &it.second.m_integer_values);
}
break;
case ConfigurationOption::OptionType::OPTION_FLOAT:
{
std::string value;
ini.GetOrCreateSection(section)->Get(it.second.m_option_name, &value);
2019-02-12 23:47:17 +01:00
if (!value.empty())
TryParseVector(value, &it.second.m_float_values);
}
break;
}
}
}
void PostProcessingConfiguration::SaveOptionsConfiguration()
{
IniFile ini;
ini.Load(File::GetUserPath(F_DOLPHINCONFIG_IDX));
std::string section = m_current_shader + "-options";
for (auto& it : m_options)
{
switch (it.second.m_type)
{
case ConfigurationOption::OptionType::OPTION_BOOL:
{
ini.GetOrCreateSection(section)->Set(it.second.m_option_name, it.second.m_bool_value);
}
break;
case ConfigurationOption::OptionType::OPTION_INTEGER:
{
2019-03-02 19:42:25 +01:00
std::string value;
for (size_t i = 0; i < it.second.m_integer_values.size(); ++i)
{
value += fmt::format("{}{}", it.second.m_integer_values[i],
i == (it.second.m_integer_values.size() - 1) ? "" : ", ");
}
ini.GetOrCreateSection(section)->Set(it.second.m_option_name, value);
}
break;
case ConfigurationOption::OptionType::OPTION_FLOAT:
{
std::ostringstream value;
value.imbue(std::locale("C"));
for (size_t i = 0; i < it.second.m_float_values.size(); ++i)
{
value << it.second.m_float_values[i];
if (i != (it.second.m_float_values.size() - 1))
value << ", ";
}
ini.GetOrCreateSection(section)->Set(it.second.m_option_name, value.str());
}
break;
}
}
ini.Save(File::GetUserPath(F_DOLPHINCONFIG_IDX));
}
void PostProcessingConfiguration::SetOptionf(const std::string& option, int index, float value)
{
auto it = m_options.find(option);
it->second.m_float_values[index] = value;
it->second.m_dirty = true;
m_any_options_dirty = true;
}
void PostProcessingConfiguration::SetOptioni(const std::string& option, int index, s32 value)
{
auto it = m_options.find(option);
it->second.m_integer_values[index] = value;
it->second.m_dirty = true;
m_any_options_dirty = true;
}
void PostProcessingConfiguration::SetOptionb(const std::string& option, bool value)
{
auto it = m_options.find(option);
it->second.m_bool_value = value;
it->second.m_dirty = true;
m_any_options_dirty = true;
}
PostProcessing::PostProcessing()
{
m_timer.Start();
}
PostProcessing::~PostProcessing()
{
m_timer.Stop();
}
static std::vector<std::string> GetShaders(const std::string& sub_dir = "")
{
std::vector<std::string> paths =
Common::DoFileSearch({File::GetUserPath(D_SHADERS_IDX) + sub_dir,
File::GetSysDirectory() + SHADERS_DIR DIR_SEP + sub_dir},
{".glsl"});
std::vector<std::string> result;
for (std::string path : paths)
{
std::string name;
SplitPath(path, nullptr, &name, nullptr);
result.push_back(name);
}
return result;
}
std::vector<std::string> PostProcessing::GetShaderList()
{
return GetShaders();
}
std::vector<std::string> PostProcessing::GetAnaglyphShaderList()
{
return GetShaders(ANAGLYPH_DIR DIR_SEP);
}
std::vector<std::string> PostProcessing::GetPassiveShaderList()
{
return GetShaders(PASSIVE_DIR DIR_SEP);
}
bool PostProcessing::Initialize(AbstractTextureFormat format)
{
m_framebuffer_format = format;
// CompilePixelShader must be run first if configuration options are used.
// Otherwise the UBO has a different member list between vertex and pixel
// shaders, which is a link error.
if (!CompilePixelShader() || !CompileVertexShader() || !CompilePipeline())
return false;
return true;
}
void PostProcessing::RecompileShader()
{
m_pipeline.reset();
m_pixel_shader.reset();
if (!CompilePixelShader())
return;
if (!CompileVertexShader())
return;
CompilePipeline();
}
void PostProcessing::RecompilePipeline()
{
m_pipeline.reset();
CompilePipeline();
}
void PostProcessing::BlitFromTexture(const MathUtil::Rectangle<int>& dst,
const MathUtil::Rectangle<int>& src,
const AbstractTexture* src_tex, int src_layer)
{
if (g_renderer->GetCurrentFramebuffer()->GetColorFormat() != m_framebuffer_format)
{
m_framebuffer_format = g_renderer->GetCurrentFramebuffer()->GetColorFormat();
RecompilePipeline();
}
if (!m_pipeline)
return;
FillUniformBuffer(src, src_tex, src_layer);
g_vertex_manager->UploadUtilityUniforms(m_uniform_staging_buffer.data(),
static_cast<u32>(m_uniform_staging_buffer.size()));
g_renderer->SetViewportAndScissor(
g_renderer->ConvertFramebufferRectangle(dst, g_renderer->GetCurrentFramebuffer()));
g_renderer->SetPipeline(m_pipeline.get());
g_renderer->SetTexture(0, src_tex);
g_renderer->SetSamplerState(0, RenderState::GetLinearSamplerState());
g_renderer->Draw(0, 3);
}
std::string PostProcessing::GetUniformBufferHeader() const
{
std::ostringstream ss;
u32 unused_counter = 1;
if (g_ActiveConfig.backend_info.api_type == APIType::D3D)
ss << "cbuffer PSBlock : register(b0) {\n";
else
ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n";
// Builtin uniforms
ss << " float4 resolution;\n";
ss << " float4 window_resolution;\n";
ss << " float4 src_rect;\n";
ss << " int src_layer;\n";
ss << " uint time;\n";
for (u32 i = 0; i < 2; i++)
ss << " uint ubo_align_" << unused_counter++ << "_;\n";
ss << "\n";
// Custom options/uniforms
for (const auto& it : m_config.GetOptions())
{
if (it.second.m_type ==
PostProcessingConfiguration::ConfigurationOption::OptionType::OPTION_BOOL)
{
ss << fmt::format(" int {};\n", it.first);
for (u32 i = 0; i < 3; i++)
ss << " int ubo_align_" << unused_counter++ << "_;\n";
}
else if (it.second.m_type ==
PostProcessingConfiguration::ConfigurationOption::OptionType::OPTION_INTEGER)
{
u32 count = static_cast<u32>(it.second.m_integer_values.size());
if (count == 1)
ss << fmt::format(" int {};\n", it.first);
else
ss << fmt::format(" int{} {};\n", count, it.first);
for (u32 i = count; i < 4; i++)
ss << " int ubo_align_" << unused_counter++ << "_;\n";
}
else if (it.second.m_type ==
PostProcessingConfiguration::ConfigurationOption::OptionType::OPTION_FLOAT)
{
u32 count = static_cast<u32>(it.second.m_float_values.size());
if (count == 1)
ss << fmt::format(" float {};\n", it.first);
else
ss << fmt::format(" float{} {};\n", count, it.first);
for (u32 i = count; i < 4; i++)
ss << " float ubo_align_" << unused_counter++ << "_;\n";
}
}
ss << "};\n\n";
return ss.str();
}
std::string PostProcessing::GetHeader() const
{
std::ostringstream ss;
ss << GetUniformBufferHeader();
if (g_ActiveConfig.backend_info.api_type == APIType::D3D)
{
ss << "Texture2DArray samp0 : register(t0);\n";
ss << "SamplerState samp0_ss : register(s0);\n";
}
else
{
ss << "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n";
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
ss << "VARYING_LOCATION(0) in VertexData {\n";
ss << " float3 v_tex0;\n";
ss << "};\n";
}
else
{
ss << "VARYING_LOCATION(0) in float3 v_tex0;\n";
}
ss << "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n";
}
// Rename main, since we need to set up globals
if (g_ActiveConfig.backend_info.api_type == APIType::D3D)
{
ss << R"(
#define main real_main
static float3 v_tex0;
static float4 ocol0;
// Wrappers for sampling functions.
#define texture(sampler, coords) sampler.Sample(sampler##_ss, coords)
#define textureOffset(sampler, coords, offset) sampler.Sample(sampler##_ss, coords, offset)
)";
}
ss << R"(
float4 Sample() { return texture(samp0, v_tex0); }
float4 SampleLocation(float2 location) { return texture(samp0, float3(location, float(v_tex0.z))); }
float4 SampleLayer(int layer) { return texture(samp0, float3(v_tex0.xy, float(layer))); }
#define SampleOffset(offset) textureOffset(samp0, v_tex0, offset)
float2 GetWindowResolution()
{
return window_resolution.xy;
}
float2 GetInvWindowResolution()
{
return window_resolution.zw;
}
float2 GetResolution()
{
return resolution.xy;
}
float2 GetInvResolution()
{
return resolution.zw;
}
float2 GetCoordinates()
{
return v_tex0.xy;
}
float GetLayer()
{
return v_tex0.z;
}
uint GetTime()
{
return time;
}
void SetOutput(float4 color)
{
ocol0 = color;
}
#define GetOption(x) (x)
#define OptionEnabled(x) ((x) != 0)
)";
return ss.str();
}
std::string PostProcessing::GetFooter() const
{
if (g_ActiveConfig.backend_info.api_type == APIType::D3D)
{
return R"(
#undef main
void main(in float3 v_tex0_ : TEXCOORD0, out float4 ocol0_ : SV_Target)
{
v_tex0 = v_tex0_;
real_main();
ocol0_ = ocol0;
})";
}
else
{
return {};
}
}
bool PostProcessing::CompileVertexShader()
{
std::ostringstream ss;
ss << GetUniformBufferHeader();
if (g_ActiveConfig.backend_info.api_type == APIType::D3D)
{
ss << "void main(in uint id : SV_VertexID, out float3 v_tex0 : TEXCOORD0,\n";
ss << " out float4 opos : SV_Position) {\n";
}
else
{
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
ss << "VARYING_LOCATION(0) out VertexData {\n";
ss << " float3 v_tex0;\n";
ss << "};\n";
}
else
{
ss << "VARYING_LOCATION(0) out float3 v_tex0;\n";
}
ss << "#define id gl_VertexID\n";
ss << "#define opos gl_Position\n";
ss << "void main() {\n";
}
ss << " v_tex0 = float3(float((id << 1) & 2), float(id & 2), 0.0f);\n";
ss << " opos = float4(v_tex0.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);\n";
ss << " v_tex0 = float3(src_rect.xy + (src_rect.zw * v_tex0.xy), float(src_layer));\n";
if (g_ActiveConfig.backend_info.api_type == APIType::Vulkan)
ss << " opos.y = -opos.y;\n";
ss << "}\n";
m_vertex_shader = g_renderer->CreateShaderFromSource(ShaderStage::Vertex, ss.str());
if (!m_vertex_shader)
{
PanicAlertFmt("Failed to compile post-processing vertex shader");
return false;
}
return true;
}
struct BuiltinUniforms
{
float resolution[4];
float window_resolution[4];
float src_rect[4];
s32 src_layer;
u32 time;
u32 padding[2];
};
size_t PostProcessing::CalculateUniformsSize() const
{
// Allocate a vec4 for each uniform to simplify allocation.
return sizeof(BuiltinUniforms) + m_config.GetOptions().size() * sizeof(float) * 4;
}
void PostProcessing::FillUniformBuffer(const MathUtil::Rectangle<int>& src,
const AbstractTexture* src_tex, int src_layer)
{
const auto& window_rect = g_renderer->GetTargetRectangle();
const float rcp_src_width = 1.0f / src_tex->GetWidth();
const float rcp_src_height = 1.0f / src_tex->GetHeight();
BuiltinUniforms builtin_uniforms = {
{static_cast<float>(src_tex->GetWidth()), static_cast<float>(src_tex->GetHeight()),
rcp_src_width, rcp_src_height},
{static_cast<float>(window_rect.GetWidth()), static_cast<float>(window_rect.GetHeight()),
1.0f / static_cast<float>(window_rect.GetWidth()),
1.0f / static_cast<float>(window_rect.GetHeight())},
{static_cast<float>(src.left) * rcp_src_width, static_cast<float>(src.top) * rcp_src_height,
static_cast<float>(src.GetWidth()) * rcp_src_width,
static_cast<float>(src.GetHeight()) * rcp_src_height},
static_cast<s32>(src_layer),
static_cast<u32>(m_timer.GetTimeElapsed()),
};
u8* buf = m_uniform_staging_buffer.data();
std::memcpy(buf, &builtin_uniforms, sizeof(builtin_uniforms));
buf += sizeof(builtin_uniforms);
for (const auto& it : m_config.GetOptions())
{
union
{
u32 as_bool[4];
s32 as_int[4];
float as_float[4];
} value = {};
switch (it.second.m_type)
{
case PostProcessingConfiguration::ConfigurationOption::OptionType::OPTION_BOOL:
value.as_bool[0] = it.second.m_bool_value ? 1 : 0;
break;
case PostProcessingConfiguration::ConfigurationOption::OptionType::OPTION_INTEGER:
ASSERT(it.second.m_integer_values.size() < 4);
std::copy_n(it.second.m_integer_values.begin(), it.second.m_integer_values.size(),
value.as_int);
break;
case PostProcessingConfiguration::ConfigurationOption::OptionType::OPTION_FLOAT:
ASSERT(it.second.m_float_values.size() < 4);
std::copy_n(it.second.m_float_values.begin(), it.second.m_float_values.size(),
value.as_float);
break;
}
std::memcpy(buf, &value, sizeof(value));
buf += sizeof(value);
}
}
bool PostProcessing::CompilePixelShader()
{
m_pipeline.reset();
m_pixel_shader.reset();
// Generate GLSL and compile the new shader.
m_config.LoadShader(g_ActiveConfig.sPostProcessingShader);
m_pixel_shader = g_renderer->CreateShaderFromSource(
ShaderStage::Pixel, GetHeader() + m_config.GetShaderCode() + GetFooter());
if (!m_pixel_shader)
{
PanicAlertFmt("Failed to compile post-processing shader {}", m_config.GetShader());
// Use default shader.
m_config.LoadDefaultShader();
m_pixel_shader = g_renderer->CreateShaderFromSource(
ShaderStage::Pixel, GetHeader() + m_config.GetShaderCode() + GetFooter());
if (!m_pixel_shader)
return false;
}
m_uniform_staging_buffer.resize(CalculateUniformsSize());
return true;
}
bool PostProcessing::CompilePipeline()
{
AbstractPipelineConfig config = {};
config.vertex_shader = m_vertex_shader.get();
config.geometry_shader =
g_renderer->UseGeometryShaderForUI() ? g_shader_cache->GetTexcoordGeometryShader() : nullptr;
config.pixel_shader = m_pixel_shader.get();
config.rasterization_state = RenderState::GetNoCullRasterizationState(PrimitiveType::Triangles);
config.depth_state = RenderState::GetNoDepthTestingDepthState();
config.blending_state = RenderState::GetNoBlendingBlendState();
config.framebuffer_state = RenderState::GetColorFramebufferState(m_framebuffer_format);
config.usage = AbstractPipelineUsage::Utility;
m_pipeline = g_renderer->CreatePipeline(config);
if (!m_pipeline)
return false;
return true;
}
} // namespace VideoCommon