mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-25 15:31:17 +01:00
678 lines
18 KiB
C
678 lines
18 KiB
C
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
/// \file lzma_encoder.c
|
||
|
/// \brief LZMA encoder
|
||
|
///
|
||
|
// Authors: Igor Pavlov
|
||
|
// Lasse Collin
|
||
|
//
|
||
|
// This file has been put into the public domain.
|
||
|
// You can do whatever you want with this file.
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
#include "lzma2_encoder.h"
|
||
|
#include "lzma_encoder_private.h"
|
||
|
#include "fastpos.h"
|
||
|
|
||
|
|
||
|
/////////////
|
||
|
// Literal //
|
||
|
/////////////
|
||
|
|
||
|
static inline void
|
||
|
literal_matched(lzma_range_encoder *rc, probability *subcoder,
|
||
|
uint32_t match_byte, uint32_t symbol)
|
||
|
{
|
||
|
uint32_t offset = 0x100;
|
||
|
symbol += UINT32_C(1) << 8;
|
||
|
|
||
|
do {
|
||
|
match_byte <<= 1;
|
||
|
const uint32_t match_bit = match_byte & offset;
|
||
|
const uint32_t subcoder_index
|
||
|
= offset + match_bit + (symbol >> 8);
|
||
|
const uint32_t bit = (symbol >> 7) & 1;
|
||
|
rc_bit(rc, &subcoder[subcoder_index], bit);
|
||
|
|
||
|
symbol <<= 1;
|
||
|
offset &= ~(match_byte ^ symbol);
|
||
|
|
||
|
} while (symbol < (UINT32_C(1) << 16));
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void
|
||
|
literal(lzma_lzma1_encoder *coder, lzma_mf *mf, uint32_t position)
|
||
|
{
|
||
|
// Locate the literal byte to be encoded and the subcoder.
|
||
|
const uint8_t cur_byte = mf->buffer[
|
||
|
mf->read_pos - mf->read_ahead];
|
||
|
probability *subcoder = literal_subcoder(coder->literal,
|
||
|
coder->literal_context_bits, coder->literal_pos_mask,
|
||
|
position, mf->buffer[mf->read_pos - mf->read_ahead - 1]);
|
||
|
|
||
|
if (is_literal_state(coder->state)) {
|
||
|
// Previous LZMA-symbol was a literal. Encode a normal
|
||
|
// literal without a match byte.
|
||
|
rc_bittree(&coder->rc, subcoder, 8, cur_byte);
|
||
|
} else {
|
||
|
// Previous LZMA-symbol was a match. Use the last byte of
|
||
|
// the match as a "match byte". That is, compare the bits
|
||
|
// of the current literal and the match byte.
|
||
|
const uint8_t match_byte = mf->buffer[
|
||
|
mf->read_pos - coder->reps[0] - 1
|
||
|
- mf->read_ahead];
|
||
|
literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
|
||
|
}
|
||
|
|
||
|
update_literal(coder->state);
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////////////
|
||
|
// Match length //
|
||
|
//////////////////
|
||
|
|
||
|
static void
|
||
|
length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state)
|
||
|
{
|
||
|
const uint32_t table_size = lc->table_size;
|
||
|
lc->counters[pos_state] = table_size;
|
||
|
|
||
|
const uint32_t a0 = rc_bit_0_price(lc->choice);
|
||
|
const uint32_t a1 = rc_bit_1_price(lc->choice);
|
||
|
const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2);
|
||
|
const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2);
|
||
|
uint32_t *const prices = lc->prices[pos_state];
|
||
|
|
||
|
uint32_t i;
|
||
|
for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i)
|
||
|
prices[i] = a0 + rc_bittree_price(lc->low[pos_state],
|
||
|
LEN_LOW_BITS, i);
|
||
|
|
||
|
for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
|
||
|
prices[i] = b0 + rc_bittree_price(lc->mid[pos_state],
|
||
|
LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
|
||
|
|
||
|
for (; i < table_size; ++i)
|
||
|
prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS,
|
||
|
i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void
|
||
|
length(lzma_range_encoder *rc, lzma_length_encoder *lc,
|
||
|
const uint32_t pos_state, uint32_t len, const bool fast_mode)
|
||
|
{
|
||
|
assert(len <= MATCH_LEN_MAX);
|
||
|
len -= MATCH_LEN_MIN;
|
||
|
|
||
|
if (len < LEN_LOW_SYMBOLS) {
|
||
|
rc_bit(rc, &lc->choice, 0);
|
||
|
rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
|
||
|
} else {
|
||
|
rc_bit(rc, &lc->choice, 1);
|
||
|
len -= LEN_LOW_SYMBOLS;
|
||
|
|
||
|
if (len < LEN_MID_SYMBOLS) {
|
||
|
rc_bit(rc, &lc->choice2, 0);
|
||
|
rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
|
||
|
} else {
|
||
|
rc_bit(rc, &lc->choice2, 1);
|
||
|
len -= LEN_MID_SYMBOLS;
|
||
|
rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Only getoptimum uses the prices so don't update the table when
|
||
|
// in fast mode.
|
||
|
if (!fast_mode)
|
||
|
if (--lc->counters[pos_state] == 0)
|
||
|
length_update_prices(lc, pos_state);
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////
|
||
|
// Match //
|
||
|
///////////
|
||
|
|
||
|
static inline void
|
||
|
match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
|
||
|
const uint32_t distance, const uint32_t len)
|
||
|
{
|
||
|
update_match(coder->state);
|
||
|
|
||
|
length(&coder->rc, &coder->match_len_encoder, pos_state, len,
|
||
|
coder->fast_mode);
|
||
|
|
||
|
const uint32_t dist_slot = get_dist_slot(distance);
|
||
|
const uint32_t dist_state = get_dist_state(len);
|
||
|
rc_bittree(&coder->rc, coder->dist_slot[dist_state],
|
||
|
DIST_SLOT_BITS, dist_slot);
|
||
|
|
||
|
if (dist_slot >= DIST_MODEL_START) {
|
||
|
const uint32_t footer_bits = (dist_slot >> 1) - 1;
|
||
|
const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
|
||
|
const uint32_t dist_reduced = distance - base;
|
||
|
|
||
|
if (dist_slot < DIST_MODEL_END) {
|
||
|
// Careful here: base - dist_slot - 1 can be -1, but
|
||
|
// rc_bittree_reverse starts at probs[1], not probs[0].
|
||
|
rc_bittree_reverse(&coder->rc,
|
||
|
coder->dist_special + base - dist_slot - 1,
|
||
|
footer_bits, dist_reduced);
|
||
|
} else {
|
||
|
rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS,
|
||
|
footer_bits - ALIGN_BITS);
|
||
|
rc_bittree_reverse(
|
||
|
&coder->rc, coder->dist_align,
|
||
|
ALIGN_BITS, dist_reduced & ALIGN_MASK);
|
||
|
++coder->align_price_count;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
coder->reps[3] = coder->reps[2];
|
||
|
coder->reps[2] = coder->reps[1];
|
||
|
coder->reps[1] = coder->reps[0];
|
||
|
coder->reps[0] = distance;
|
||
|
++coder->match_price_count;
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////
|
||
|
// Repeated match //
|
||
|
////////////////////
|
||
|
|
||
|
static inline void
|
||
|
rep_match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
|
||
|
const uint32_t rep, const uint32_t len)
|
||
|
{
|
||
|
if (rep == 0) {
|
||
|
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
|
||
|
rc_bit(&coder->rc,
|
||
|
&coder->is_rep0_long[coder->state][pos_state],
|
||
|
len != 1);
|
||
|
} else {
|
||
|
const uint32_t distance = coder->reps[rep];
|
||
|
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
|
||
|
|
||
|
if (rep == 1) {
|
||
|
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
|
||
|
} else {
|
||
|
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
|
||
|
rc_bit(&coder->rc, &coder->is_rep2[coder->state],
|
||
|
rep - 2);
|
||
|
|
||
|
if (rep == 3)
|
||
|
coder->reps[3] = coder->reps[2];
|
||
|
|
||
|
coder->reps[2] = coder->reps[1];
|
||
|
}
|
||
|
|
||
|
coder->reps[1] = coder->reps[0];
|
||
|
coder->reps[0] = distance;
|
||
|
}
|
||
|
|
||
|
if (len == 1) {
|
||
|
update_short_rep(coder->state);
|
||
|
} else {
|
||
|
length(&coder->rc, &coder->rep_len_encoder, pos_state, len,
|
||
|
coder->fast_mode);
|
||
|
update_long_rep(coder->state);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////
|
||
|
// Main //
|
||
|
//////////
|
||
|
|
||
|
static void
|
||
|
encode_symbol(lzma_lzma1_encoder *coder, lzma_mf *mf,
|
||
|
uint32_t back, uint32_t len, uint32_t position)
|
||
|
{
|
||
|
const uint32_t pos_state = position & coder->pos_mask;
|
||
|
|
||
|
if (back == UINT32_MAX) {
|
||
|
// Literal i.e. eight-bit byte
|
||
|
assert(len == 1);
|
||
|
rc_bit(&coder->rc,
|
||
|
&coder->is_match[coder->state][pos_state], 0);
|
||
|
literal(coder, mf, position);
|
||
|
} else {
|
||
|
// Some type of match
|
||
|
rc_bit(&coder->rc,
|
||
|
&coder->is_match[coder->state][pos_state], 1);
|
||
|
|
||
|
if (back < REPS) {
|
||
|
// It's a repeated match i.e. the same distance
|
||
|
// has been used earlier.
|
||
|
rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
|
||
|
rep_match(coder, pos_state, back, len);
|
||
|
} else {
|
||
|
// Normal match
|
||
|
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
|
||
|
match(coder, pos_state, back - REPS, len);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
assert(mf->read_ahead >= len);
|
||
|
mf->read_ahead -= len;
|
||
|
}
|
||
|
|
||
|
|
||
|
static bool
|
||
|
encode_init(lzma_lzma1_encoder *coder, lzma_mf *mf)
|
||
|
{
|
||
|
assert(mf_position(mf) == 0);
|
||
|
|
||
|
if (mf->read_pos == mf->read_limit) {
|
||
|
if (mf->action == LZMA_RUN)
|
||
|
return false; // We cannot do anything.
|
||
|
|
||
|
// We are finishing (we cannot get here when flushing).
|
||
|
assert(mf->write_pos == mf->read_pos);
|
||
|
assert(mf->action == LZMA_FINISH);
|
||
|
} else {
|
||
|
// Do the actual initialization. The first LZMA symbol must
|
||
|
// always be a literal.
|
||
|
mf_skip(mf, 1);
|
||
|
mf->read_ahead = 0;
|
||
|
rc_bit(&coder->rc, &coder->is_match[0][0], 0);
|
||
|
rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]);
|
||
|
}
|
||
|
|
||
|
// Initialization is done (except if empty file).
|
||
|
coder->is_initialized = true;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
encode_eopm(lzma_lzma1_encoder *coder, uint32_t position)
|
||
|
{
|
||
|
const uint32_t pos_state = position & coder->pos_mask;
|
||
|
rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
|
||
|
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
|
||
|
match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN);
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Number of bytes that a single encoding loop in lzma_lzma_encode() can
|
||
|
/// consume from the dictionary. This limit comes from lzma_lzma_optimum()
|
||
|
/// and may need to be updated if that function is significantly modified.
|
||
|
#define LOOP_INPUT_MAX (OPTS + 1)
|
||
|
|
||
|
|
||
|
extern lzma_ret
|
||
|
lzma_lzma_encode(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
|
||
|
uint8_t *restrict out, size_t *restrict out_pos,
|
||
|
size_t out_size, uint32_t limit)
|
||
|
{
|
||
|
// Initialize the stream if no data has been encoded yet.
|
||
|
if (!coder->is_initialized && !encode_init(coder, mf))
|
||
|
return LZMA_OK;
|
||
|
|
||
|
// Get the lowest bits of the uncompressed offset from the LZ layer.
|
||
|
uint32_t position = mf_position(mf);
|
||
|
|
||
|
while (true) {
|
||
|
// Encode pending bits, if any. Calling this before encoding
|
||
|
// the next symbol is needed only with plain LZMA, since
|
||
|
// LZMA2 always provides big enough buffer to flush
|
||
|
// everything out from the range encoder. For the same reason,
|
||
|
// rc_encode() never returns true when this function is used
|
||
|
// as part of LZMA2 encoder.
|
||
|
if (rc_encode(&coder->rc, out, out_pos, out_size)) {
|
||
|
assert(limit == UINT32_MAX);
|
||
|
return LZMA_OK;
|
||
|
}
|
||
|
|
||
|
// With LZMA2 we need to take care that compressed size of
|
||
|
// a chunk doesn't get too big.
|
||
|
// FIXME? Check if this could be improved.
|
||
|
if (limit != UINT32_MAX
|
||
|
&& (mf->read_pos - mf->read_ahead >= limit
|
||
|
|| *out_pos + rc_pending(&coder->rc)
|
||
|
>= LZMA2_CHUNK_MAX
|
||
|
- LOOP_INPUT_MAX))
|
||
|
break;
|
||
|
|
||
|
// Check that there is some input to process.
|
||
|
if (mf->read_pos >= mf->read_limit) {
|
||
|
if (mf->action == LZMA_RUN)
|
||
|
return LZMA_OK;
|
||
|
|
||
|
if (mf->read_ahead == 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// Get optimal match (repeat position and length).
|
||
|
// Value ranges for pos:
|
||
|
// - [0, REPS): repeated match
|
||
|
// - [REPS, UINT32_MAX):
|
||
|
// match at (pos - REPS)
|
||
|
// - UINT32_MAX: not a match but a literal
|
||
|
// Value ranges for len:
|
||
|
// - [MATCH_LEN_MIN, MATCH_LEN_MAX]
|
||
|
uint32_t len;
|
||
|
uint32_t back;
|
||
|
|
||
|
if (coder->fast_mode)
|
||
|
lzma_lzma_optimum_fast(coder, mf, &back, &len);
|
||
|
else
|
||
|
lzma_lzma_optimum_normal(
|
||
|
coder, mf, &back, &len, position);
|
||
|
|
||
|
encode_symbol(coder, mf, back, len, position);
|
||
|
|
||
|
position += len;
|
||
|
}
|
||
|
|
||
|
if (!coder->is_flushed) {
|
||
|
coder->is_flushed = true;
|
||
|
|
||
|
// We don't support encoding plain LZMA streams without EOPM,
|
||
|
// and LZMA2 doesn't use EOPM at LZMA level.
|
||
|
if (limit == UINT32_MAX)
|
||
|
encode_eopm(coder, position);
|
||
|
|
||
|
// Flush the remaining bytes from the range encoder.
|
||
|
rc_flush(&coder->rc);
|
||
|
|
||
|
// Copy the remaining bytes to the output buffer. If there
|
||
|
// isn't enough output space, we will copy out the remaining
|
||
|
// bytes on the next call to this function by using
|
||
|
// the rc_encode() call in the encoding loop above.
|
||
|
if (rc_encode(&coder->rc, out, out_pos, out_size)) {
|
||
|
assert(limit == UINT32_MAX);
|
||
|
return LZMA_OK;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Make it ready for the next LZMA2 chunk.
|
||
|
coder->is_flushed = false;
|
||
|
|
||
|
return LZMA_STREAM_END;
|
||
|
}
|
||
|
|
||
|
|
||
|
static lzma_ret
|
||
|
lzma_encode(void *coder, lzma_mf *restrict mf,
|
||
|
uint8_t *restrict out, size_t *restrict out_pos,
|
||
|
size_t out_size)
|
||
|
{
|
||
|
// Plain LZMA has no support for sync-flushing.
|
||
|
if (unlikely(mf->action == LZMA_SYNC_FLUSH))
|
||
|
return LZMA_OPTIONS_ERROR;
|
||
|
|
||
|
return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX);
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////
|
||
|
// Initialization //
|
||
|
////////////////////
|
||
|
|
||
|
static bool
|
||
|
is_options_valid(const lzma_options_lzma *options)
|
||
|
{
|
||
|
// Validate some of the options. LZ encoder validates nice_len too
|
||
|
// but we need a valid value here earlier.
|
||
|
return is_lclppb_valid(options)
|
||
|
&& options->nice_len >= MATCH_LEN_MIN
|
||
|
&& options->nice_len <= MATCH_LEN_MAX
|
||
|
&& (options->mode == LZMA_MODE_FAST
|
||
|
|| options->mode == LZMA_MODE_NORMAL);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options)
|
||
|
{
|
||
|
// LZ encoder initialization does the validation for these so we
|
||
|
// don't need to validate here.
|
||
|
lz_options->before_size = OPTS;
|
||
|
lz_options->dict_size = options->dict_size;
|
||
|
lz_options->after_size = LOOP_INPUT_MAX;
|
||
|
lz_options->match_len_max = MATCH_LEN_MAX;
|
||
|
lz_options->nice_len = options->nice_len;
|
||
|
lz_options->match_finder = options->mf;
|
||
|
lz_options->depth = options->depth;
|
||
|
lz_options->preset_dict = options->preset_dict;
|
||
|
lz_options->preset_dict_size = options->preset_dict_size;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
length_encoder_reset(lzma_length_encoder *lencoder,
|
||
|
const uint32_t num_pos_states, const bool fast_mode)
|
||
|
{
|
||
|
bit_reset(lencoder->choice);
|
||
|
bit_reset(lencoder->choice2);
|
||
|
|
||
|
for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
|
||
|
bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS);
|
||
|
bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS);
|
||
|
}
|
||
|
|
||
|
bittree_reset(lencoder->high, LEN_HIGH_BITS);
|
||
|
|
||
|
if (!fast_mode)
|
||
|
for (uint32_t pos_state = 0; pos_state < num_pos_states;
|
||
|
++pos_state)
|
||
|
length_update_prices(lencoder, pos_state);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
extern lzma_ret
|
||
|
lzma_lzma_encoder_reset(lzma_lzma1_encoder *coder,
|
||
|
const lzma_options_lzma *options)
|
||
|
{
|
||
|
if (!is_options_valid(options))
|
||
|
return LZMA_OPTIONS_ERROR;
|
||
|
|
||
|
coder->pos_mask = (1U << options->pb) - 1;
|
||
|
coder->literal_context_bits = options->lc;
|
||
|
coder->literal_pos_mask = (1U << options->lp) - 1;
|
||
|
|
||
|
// Range coder
|
||
|
rc_reset(&coder->rc);
|
||
|
|
||
|
// State
|
||
|
coder->state = STATE_LIT_LIT;
|
||
|
for (size_t i = 0; i < REPS; ++i)
|
||
|
coder->reps[i] = 0;
|
||
|
|
||
|
literal_init(coder->literal, options->lc, options->lp);
|
||
|
|
||
|
// Bit encoders
|
||
|
for (size_t i = 0; i < STATES; ++i) {
|
||
|
for (size_t j = 0; j <= coder->pos_mask; ++j) {
|
||
|
bit_reset(coder->is_match[i][j]);
|
||
|
bit_reset(coder->is_rep0_long[i][j]);
|
||
|
}
|
||
|
|
||
|
bit_reset(coder->is_rep[i]);
|
||
|
bit_reset(coder->is_rep0[i]);
|
||
|
bit_reset(coder->is_rep1[i]);
|
||
|
bit_reset(coder->is_rep2[i]);
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
|
||
|
bit_reset(coder->dist_special[i]);
|
||
|
|
||
|
// Bit tree encoders
|
||
|
for (size_t i = 0; i < DIST_STATES; ++i)
|
||
|
bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
|
||
|
|
||
|
bittree_reset(coder->dist_align, ALIGN_BITS);
|
||
|
|
||
|
// Length encoders
|
||
|
length_encoder_reset(&coder->match_len_encoder,
|
||
|
1U << options->pb, coder->fast_mode);
|
||
|
|
||
|
length_encoder_reset(&coder->rep_len_encoder,
|
||
|
1U << options->pb, coder->fast_mode);
|
||
|
|
||
|
// Price counts are incremented every time appropriate probabilities
|
||
|
// are changed. price counts are set to zero when the price tables
|
||
|
// are updated, which is done when the appropriate price counts have
|
||
|
// big enough value, and lzma_mf.read_ahead == 0 which happens at
|
||
|
// least every OPTS (a few thousand) possible price count increments.
|
||
|
//
|
||
|
// By resetting price counts to UINT32_MAX / 2, we make sure that the
|
||
|
// price tables will be initialized before they will be used (since
|
||
|
// the value is definitely big enough), and that it is OK to increment
|
||
|
// price counts without risk of integer overflow (since UINT32_MAX / 2
|
||
|
// is small enough). The current code doesn't increment price counts
|
||
|
// before initializing price tables, but it maybe done in future if
|
||
|
// we add support for saving the state between LZMA2 chunks.
|
||
|
coder->match_price_count = UINT32_MAX / 2;
|
||
|
coder->align_price_count = UINT32_MAX / 2;
|
||
|
|
||
|
coder->opts_end_index = 0;
|
||
|
coder->opts_current_index = 0;
|
||
|
|
||
|
return LZMA_OK;
|
||
|
}
|
||
|
|
||
|
|
||
|
extern lzma_ret
|
||
|
lzma_lzma_encoder_create(void **coder_ptr,
|
||
|
const lzma_allocator *allocator,
|
||
|
const lzma_options_lzma *options, lzma_lz_options *lz_options)
|
||
|
{
|
||
|
// Allocate lzma_lzma1_encoder if it wasn't already allocated.
|
||
|
if (*coder_ptr == NULL) {
|
||
|
*coder_ptr = lzma_alloc(sizeof(lzma_lzma1_encoder), allocator);
|
||
|
if (*coder_ptr == NULL)
|
||
|
return LZMA_MEM_ERROR;
|
||
|
}
|
||
|
|
||
|
lzma_lzma1_encoder *coder = *coder_ptr;
|
||
|
|
||
|
// Set compression mode. We haven't validates the options yet,
|
||
|
// but it's OK here, since nothing bad happens with invalid
|
||
|
// options in the code below, and they will get rejected by
|
||
|
// lzma_lzma_encoder_reset() call at the end of this function.
|
||
|
switch (options->mode) {
|
||
|
case LZMA_MODE_FAST:
|
||
|
coder->fast_mode = true;
|
||
|
break;
|
||
|
|
||
|
case LZMA_MODE_NORMAL: {
|
||
|
coder->fast_mode = false;
|
||
|
|
||
|
// Set dist_table_size.
|
||
|
// Round the dictionary size up to next 2^n.
|
||
|
uint32_t log_size = 0;
|
||
|
while ((UINT32_C(1) << log_size) < options->dict_size)
|
||
|
++log_size;
|
||
|
|
||
|
coder->dist_table_size = log_size * 2;
|
||
|
|
||
|
// Length encoders' price table size
|
||
|
coder->match_len_encoder.table_size
|
||
|
= options->nice_len + 1 - MATCH_LEN_MIN;
|
||
|
coder->rep_len_encoder.table_size
|
||
|
= options->nice_len + 1 - MATCH_LEN_MIN;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
return LZMA_OPTIONS_ERROR;
|
||
|
}
|
||
|
|
||
|
// We don't need to write the first byte as literal if there is
|
||
|
// a non-empty preset dictionary. encode_init() wouldn't even work
|
||
|
// if there is a non-empty preset dictionary, because encode_init()
|
||
|
// assumes that position is zero and previous byte is also zero.
|
||
|
coder->is_initialized = options->preset_dict != NULL
|
||
|
&& options->preset_dict_size > 0;
|
||
|
coder->is_flushed = false;
|
||
|
|
||
|
set_lz_options(lz_options, options);
|
||
|
|
||
|
return lzma_lzma_encoder_reset(coder, options);
|
||
|
}
|
||
|
|
||
|
|
||
|
static lzma_ret
|
||
|
lzma_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
|
||
|
const void *options, lzma_lz_options *lz_options)
|
||
|
{
|
||
|
lz->code = &lzma_encode;
|
||
|
return lzma_lzma_encoder_create(
|
||
|
&lz->coder, allocator, options, lz_options);
|
||
|
}
|
||
|
|
||
|
|
||
|
extern lzma_ret
|
||
|
lzma_lzma_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
|
||
|
const lzma_filter_info *filters)
|
||
|
{
|
||
|
return lzma_lz_encoder_init(
|
||
|
next, allocator, filters, &lzma_encoder_init);
|
||
|
}
|
||
|
|
||
|
|
||
|
extern uint64_t
|
||
|
lzma_lzma_encoder_memusage(const void *options)
|
||
|
{
|
||
|
if (!is_options_valid(options))
|
||
|
return UINT64_MAX;
|
||
|
|
||
|
lzma_lz_options lz_options;
|
||
|
set_lz_options(&lz_options, options);
|
||
|
|
||
|
const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options);
|
||
|
if (lz_memusage == UINT64_MAX)
|
||
|
return UINT64_MAX;
|
||
|
|
||
|
return (uint64_t)(sizeof(lzma_lzma1_encoder)) + lz_memusage;
|
||
|
}
|
||
|
|
||
|
|
||
|
extern bool
|
||
|
lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte)
|
||
|
{
|
||
|
if (!is_lclppb_valid(options))
|
||
|
return true;
|
||
|
|
||
|
*byte = (options->pb * 5 + options->lp) * 9 + options->lc;
|
||
|
assert(*byte <= (4 * 5 + 4) * 9 + 8);
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef HAVE_ENCODER_LZMA1
|
||
|
extern lzma_ret
|
||
|
lzma_lzma_props_encode(const void *options, uint8_t *out)
|
||
|
{
|
||
|
const lzma_options_lzma *const opt = options;
|
||
|
|
||
|
if (lzma_lzma_lclppb_encode(opt, out))
|
||
|
return LZMA_PROG_ERROR;
|
||
|
|
||
|
unaligned_write32le(out + 1, opt->dict_size);
|
||
|
|
||
|
return LZMA_OK;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
extern LZMA_API(lzma_bool)
|
||
|
lzma_mode_is_supported(lzma_mode mode)
|
||
|
{
|
||
|
return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL;
|
||
|
}
|