dolphin/Source/Core/DSPCore/Src/DSPEmitter.cpp

412 lines
9.5 KiB
C++
Raw Normal View History

// Copyright (C) 2010 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include <cstring>
#include "DSPEmitter.h"
#include "DSPMemoryMap.h"
#include "DSPCore.h"
#include "DSPInterpreter.h"
#include "DSPAnalyzer.h"
#include "x64Emitter.h"
#include "ABI.h"
#define MAX_BLOCK_SIZE 250
#define DSP_IDLE_SKIP_CYCLES 1000
using namespace Gen;
const u8 *stubEntryPoint;
DSPEmitter::DSPEmitter() : storeIndex(-1), storeIndex2(-1)
{
m_compiledCode = NULL;
AllocCodeSpace(COMPILED_CODE_SIZE);
blocks = new CompiledCode[MAX_BLOCKS];
blockSize = new u16[0x10000];
compileSR = 0;
compileSR |= SR_INT_ENABLE;
compileSR |= SR_EXT_INT_ENABLE;
CompileDispatcher();
stubEntryPoint = CompileStub();
//clear all of the block references
for(int i = 0x0000; i < MAX_BLOCKS; i++)
{
blocks[i] = (CompiledCode)stubEntryPoint;
blockSize[i] = 0;
}
}
DSPEmitter::~DSPEmitter()
{
delete[] blocks;
delete[] blockSize;
FreeCodeSpace();
}
void DSPEmitter::ClearIRAM() {
// ClearCodeSpace();
for(int i = 0x0000; i < 0x1000; i++)
{
blocks[i] = (CompiledCode)stubEntryPoint;
blockSize[i] = 0;
}
}
// Must go out of block if exception is detected
void DSPEmitter::checkExceptions(u32 retval) {
// Check for interrupts and exceptions
#ifdef _M_IX86 // All32
TEST(8, M(&g_dsp.exceptions), Imm8(0xff));
#else
MOV(64, R(RAX), ImmPtr(&g_dsp.exceptions));
TEST(8, MDisp(RAX,0), Imm8(0xff));
#endif
FixupBranch skipCheck = J_CC(CC_Z);
ABI_CallFunction((void *)&DSPCore_CheckExceptions);
// ABI_RestoreStack(0);
ABI_PopAllCalleeSavedRegsAndAdjustStack();
MOV(32,R(EAX),Imm32(retval));
RET();
SetJumpTarget(skipCheck);
}
void DSPEmitter::EmitInstruction(UDSPInstruction inst)
{
const DSPOPCTemplate *tinst = GetOpTemplate(inst);
bool ext_is_jit = false;
// Call extended
if (tinst->extended) {
if ((inst >> 12) == 0x3) {
if (! extOpTable[inst & 0x7F]->jitFunc) {
// Fall back to interpreter
ABI_CallFunctionC16((void*)extOpTable[inst & 0x7F]->intFunc, inst);
ext_is_jit = false;
} else {
(this->*extOpTable[inst & 0x7F]->jitFunc)(inst);
ext_is_jit = true;
}
} else {
if (!extOpTable[inst & 0xFF]->jitFunc) {
// Fall back to interpreter
ABI_CallFunctionC16((void*)extOpTable[inst & 0xFF]->intFunc, inst);
ext_is_jit = false;
} else {
(this->*extOpTable[inst & 0xFF]->jitFunc)(inst);
ext_is_jit = true;
}
}
}
// Main instruction
if (!opTable[inst]->jitFunc) {
// Fall back to interpreter
ABI_CallFunctionC16((void*)opTable[inst]->intFunc, inst);
}
else
{
(this->*opTable[inst]->jitFunc)(inst);
}
// Backlog
if (tinst->extended) {
if (!ext_is_jit) {
//need to call the online cleanup function because
//the writeBackLog gets populated at runtime
ABI_CallFunction((void*)::applyWriteBackLog);
} else {
popExtValueToReg();
}
}
}
void DSPEmitter::unknown_instruction(UDSPInstruction inst)
{
PanicAlert("unknown_instruction %04x - Fix me ;)", inst);
}
void DSPEmitter::Default(UDSPInstruction _inst)
{
EmitInstruction(_inst);
}
void DSPEmitter::Compile(int start_addr)
{
const u8 *entryPoint = AlignCode16();
ABI_PushAllCalleeSavedRegsAndAdjustStack();
// ABI_AlignStack(0);
/*
// check if there is an external interrupt
if (! dsp_SR_is_flag_set(SR_EXT_INT_ENABLE))
return;
if (! (g_dsp.cr & CR_EXTERNAL_INT))
return;
g_dsp.cr &= ~CR_EXTERNAL_INT;
// Check for other exceptions
if (dsp_SR_is_flag_set(SR_INT_ENABLE))
return;
if (g_dsp.exceptions == 0)
return;
*/
ABI_CallFunction((void *)&DSPCore_CheckExternalInterrupt);
int addr = start_addr;
blockSize[start_addr] = 0;
while (addr < start_addr + MAX_BLOCK_SIZE)
{
checkExceptions(blockSize[start_addr]);
UDSPInstruction inst = dsp_imem_read(addr);
const DSPOPCTemplate *opcode = GetOpTemplate(inst);
// Increment PC - we shouldn't need to do this for every instruction. only for branches and end of block.
// Fallbacks to interpreter need this for fetching immediate values
#ifdef _M_IX86 // All32
ADD(16, M(&(g_dsp.pc)), Imm16(1));
#else
MOV(64, R(RAX), ImmPtr(&(g_dsp.pc)));
ADD(16, MDisp(RAX,0), Imm16(1));
#endif
EmitInstruction(inst);
blockSize[start_addr]++;
addr += opcode->size;
// Handle loop condition, only if current instruction was flagged as a loop destination
// by the analyzer.
if (DSPAnalyzer::code_flags[addr-1] & DSPAnalyzer::CODE_LOOP_END)
{
#ifdef _M_IX86 // All32
MOVZX(32, 16, EAX, M(&(g_dsp.r[DSP_REG_ST2])));
#else
MOV(64, R(R11), ImmPtr(&g_dsp.r));
MOVZX(32, 16, EAX, MDisp(R11,DSP_REG_ST2*2));
#endif
CMP(32, R(EAX), Imm32(0));
FixupBranch rLoopAddressExit = J_CC(CC_LE);
#ifdef _M_IX86 // All32
MOVZX(32, 16, EAX, M(&(g_dsp.r[DSP_REG_ST3])));
#else
MOVZX(32, 16, EAX, MDisp(R11,DSP_REG_ST3*2));
#endif
CMP(32, R(EAX), Imm32(0));
FixupBranch rLoopCounterExit = J_CC(CC_LE);
// These functions branch and therefore only need to be called in the
// end of each block and in this order
ABI_CallFunction((void *)&DSPInterpreter::HandleLoop);
// ABI_RestoreStack(0);
ABI_PopAllCalleeSavedRegsAndAdjustStack();
if (DSPAnalyzer::code_flags[start_addr] & DSPAnalyzer::CODE_IDLE_SKIP)
{
MOV(32,R(EAX),Imm32(DSP_IDLE_SKIP_CYCLES));
}
else
{
MOV(32,R(EAX),Imm32(blockSize[start_addr]));
}
RET();
SetJumpTarget(rLoopAddressExit);
SetJumpTarget(rLoopCounterExit);
}
if (opcode->branch)
{
if (opcode->uncond_branch)
{
break;
}
else
{
//look at g_dsp.pc if we actually branched
#ifdef _M_IX86 // All32
MOV(16, R(AX), M(&g_dsp.pc));
#else
MOV(64, R(RAX), ImmPtr(&(g_dsp.pc)));
MOV(16, R(AX), MDisp(RAX,0));
#endif
CMP(16, R(AX), Imm16(addr));
FixupBranch rNoBranch = J_CC(CC_Z);
// ABI_RestoreStack(0);
ABI_PopAllCalleeSavedRegsAndAdjustStack();
if (DSPAnalyzer::code_flags[start_addr] & DSPAnalyzer::CODE_IDLE_SKIP)
{
MOV(32,R(EAX),Imm32(DSP_IDLE_SKIP_CYCLES));
}
else
{
MOV(32,R(EAX),Imm32(blockSize[start_addr]));
}
RET();
SetJumpTarget(rNoBranch);
}
}
// End the block if we're before an idle skip address
if (DSPAnalyzer::code_flags[addr] & DSPAnalyzer::CODE_IDLE_SKIP)
{
break;
}
}
blocks[start_addr] = (CompiledCode)entryPoint;
if (blockSize[start_addr] == 0)
{
// just a safeguard, should never happen anymore.
// if it does we might get stuck over in RunForCycles.
ERROR_LOG(DSPLLE, "Block at 0x%04x has zero size", start_addr);
blockSize[start_addr] = 1;
}
// ABI_RestoreStack(0);
ABI_PopAllCalleeSavedRegsAndAdjustStack();
if (DSPAnalyzer::code_flags[start_addr] & DSPAnalyzer::CODE_IDLE_SKIP)
{
MOV(32,R(EAX),Imm32(DSP_IDLE_SKIP_CYCLES));
}
else
{
MOV(32,R(EAX),Imm32(blockSize[start_addr]));
}
RET();
}
const u8 *DSPEmitter::CompileStub()
{
const u8 *entryPoint = AlignCode16();
ABI_PushAllCalleeSavedRegsAndAdjustStack();
// ABI_AlignStack(0);
ABI_CallFunction((void *)&CompileCurrent);
// ABI_RestoreStack(0);
ABI_PopAllCalleeSavedRegsAndAdjustStack();
//MOVZX(32, 16, ECX, M(&g_dsp.pc));
XOR(32, R(EAX), R(EAX)); // Return 0 cycles executed
RET();
return entryPoint;
}
void DSPEmitter::CompileDispatcher()
{
enterDispatcher = AlignCode16();
ABI_PushAllCalleeSavedRegsAndAdjustStack();
// Cache pointers into registers
#ifdef _M_IX86
MOV(32, R(ESI), M(&cyclesLeft));
MOV(32, R(EBX), ImmPtr(blocks));
#else
// Using R12 here since it is callee save register on both
// linux and windows 64.
MOV(64, R(R12), ImmPtr(&cyclesLeft));
MOV(32, R(R12), MDisp(R12,0));
MOV(64, R(RBX), ImmPtr(blocks));
#endif
const u8 *dispatcherLoop = GetCodePtr();
// Check for DSP halt
#ifdef _M_IX86
TEST(8, M(&g_dsp.cr), Imm8(CR_HALT));
#else
MOV(64, R(R11), ImmPtr(&g_dsp.cr));
TEST(8, MDisp(R11,0), Imm8(CR_HALT));
#endif
FixupBranch halt = J_CC(CC_NE);
#ifdef _M_IX86
MOVZX(32, 16, ECX, M(&g_dsp.pc));
#else
MOV(64, R(RCX), ImmPtr(&g_dsp.pc));
MOVZX(64, 16, RCX, MDisp(RCX,0));
#endif
// Execute block. Cycles executed returned in EAX.
#ifdef _M_IX86
CALLptr(MComplex(EBX, ECX, SCALE_4, 0));
#else
CALLptr(MComplex(RBX, RCX, SCALE_8, 0));
#endif
// Decrement cyclesLeft
#ifdef _M_IX86
SUB(32, R(ESI), R(EAX));
#else
SUB(32, R(R12), R(EAX));
#endif
J_CC(CC_A, dispatcherLoop);
// DSP gave up the remaining cycles.
SetJumpTarget(halt);
//MOV(32, M(&cyclesLeft), Imm32(0));
ABI_PopAllCalleeSavedRegsAndAdjustStack();
RET();
}
// Don't use the % operator in the inner loop. It's slow.
int STACKALIGN DSPEmitter::RunForCycles(int cycles)
{
const int idle_cycles = DSP_IDLE_SKIP_CYCLES;
while (!(g_dsp.cr & CR_HALT))
{
// Compile the block if needed
u16 block_addr = g_dsp.pc;
int block_size = blockSize[block_addr];
if (!block_size)
{
CompileCurrent();
block_size = blockSize[block_addr];
}
// Execute the block if we have enough cycles
if (cycles > block_size)
{
cycles -= blocks[block_addr]();
}
else
{
break;
}
}
// DSP gave up the remaining cycles.
if (g_dsp.cr & CR_HALT || cycles < 0)
return 0;
return cycles;
}