Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2595 lines
105 KiB
C
Raw Normal View History

2020-02-04 14:50:46 -05:00
// Formatting library for C++ - implementation
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_
2022-01-12 16:10:07 -08:00
#include <algorithm>
#include <cctype>
2022-01-12 16:10:07 -08:00
#include <cerrno> // errno
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstring> // std::memmove
2020-02-04 14:50:46 -05:00
#include <cwchar>
#include <exception>
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
# include <locale>
#endif
#ifdef _WIN32
# include <io.h> // _isatty
#endif
#include "format.h"
FMT_BEGIN_NAMESPACE
namespace detail {
2020-02-04 14:50:46 -05:00
FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
// Use unchecked std::fprintf to avoid triggering another assertion when
// writing to stderr fails
std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
// Chosen instead of std::abort to satisfy Clang in CUDA mode during device
// code pass.
std::terminate();
2020-02-04 14:50:46 -05:00
}
2022-01-12 16:10:07 -08:00
FMT_FUNC void throw_format_error(const char* message) {
FMT_THROW(format_error(message));
}
FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
string_view message) noexcept {
// Report error code making sure that the output fits into
// inline_buffer_size to avoid dynamic memory allocation and potential
// bad_alloc.
out.try_resize(0);
static const char SEP[] = ": ";
static const char ERROR_STR[] = "error ";
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
2020-02-04 14:50:46 -05:00
auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
if (detail::is_negative(error_code)) {
abs_value = 0 - abs_value;
++error_code_size;
}
error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
auto it = buffer_appender<char>(out);
if (message.size() <= inline_buffer_size - error_code_size)
2022-01-12 16:10:07 -08:00
format_to(it, FMT_STRING("{}{}"), message, SEP);
format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code);
FMT_ASSERT(out.size() <= inline_buffer_size, "");
}
2020-02-04 14:50:46 -05:00
FMT_FUNC void report_error(format_func func, int error_code,
const char* message) noexcept {
memory_buffer full_message;
func(full_message, error_code, message);
2020-02-04 14:50:46 -05:00
// Don't use fwrite_fully because the latter may throw.
2022-01-12 16:10:07 -08:00
if (std::fwrite(full_message.data(), full_message.size(), 1, stderr) > 0)
std::fputc('\n', stderr);
}
// A wrapper around fwrite that throws on error.
inline void fwrite_fully(const void* ptr, size_t size, size_t count,
FILE* stream) {
size_t written = std::fwrite(ptr, size, count, stream);
if (written < count) FMT_THROW(system_error(errno, "cannot write to file"));
}
2022-01-12 16:10:07 -08:00
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
template <typename Locale>
2020-02-04 14:50:46 -05:00
locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
static_assert(std::is_same<Locale, std::locale>::value, "");
}
2020-02-04 14:50:46 -05:00
template <typename Locale> Locale locale_ref::get() const {
static_assert(std::is_same<Locale, std::locale>::value, "");
return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
}
2022-01-12 16:10:07 -08:00
template <typename Char>
FMT_FUNC auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char> {
auto& facet = std::use_facet<std::numpunct<Char>>(loc.get<std::locale>());
auto grouping = facet.grouping();
auto thousands_sep = grouping.empty() ? Char() : facet.thousands_sep();
return {std::move(grouping), thousands_sep};
}
2020-02-04 14:50:46 -05:00
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
.decimal_point();
}
#else
template <typename Char>
2022-01-12 16:10:07 -08:00
FMT_FUNC auto thousands_sep_impl(locale_ref) -> thousands_sep_result<Char> {
return {"\03", FMT_STATIC_THOUSANDS_SEPARATOR};
}
2022-01-12 16:10:07 -08:00
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref) {
2020-02-04 14:50:46 -05:00
return '.';
}
#endif
2022-01-12 16:10:07 -08:00
} // namespace detail
2022-01-12 16:10:07 -08:00
#if !FMT_MSC_VER
FMT_API FMT_FUNC format_error::~format_error() noexcept = default;
2022-01-12 16:10:07 -08:00
#endif
2020-02-04 14:50:46 -05:00
2022-01-12 16:10:07 -08:00
FMT_FUNC std::system_error vsystem_error(int error_code, string_view format_str,
format_args args) {
auto ec = std::error_code(error_code, std::generic_category());
return std::system_error(ec, vformat(format_str, args));
}
namespace detail {
2022-01-12 16:10:07 -08:00
template <typename T = void> struct basic_impl_data {
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
static constexpr uint64_t pow10_significands[87] = {
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
};
2022-01-12 16:10:07 -08:00
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wnarrowing"
#endif
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
static constexpr int16_t pow10_exponents[87] = {
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
# pragma GCC diagnostic pop
#endif
2022-01-12 16:10:07 -08:00
static constexpr uint64_t power_of_10_64[20] = {
1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL),
10000000000000000000ULL};
};
2022-01-12 16:10:07 -08:00
// This is a struct rather than an alias to avoid shadowing warnings in gcc.
struct impl_data : basic_impl_data<> {};
2022-01-12 16:10:07 -08:00
#if __cplusplus < 201703L
template <typename T>
2022-01-12 16:10:07 -08:00
constexpr uint64_t basic_impl_data<T>::pow10_significands[];
template <typename T> constexpr int16_t basic_impl_data<T>::pow10_exponents[];
template <typename T> constexpr uint64_t basic_impl_data<T>::power_of_10_64[];
#endif
2020-02-04 14:50:46 -05:00
template <typename T> struct bits {
static FMT_CONSTEXPR_DECL const int value =
static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
};
// A floating-point number f * pow(2, e) where F is an unsigned type.
template <typename F> struct basic_fp {
F f;
int e;
static constexpr const int num_significand_bits = bits<F>::value;
constexpr basic_fp() : f(0), e(0) {}
constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
// Constructs fp from an IEEE754 floating-point number.
template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }
2022-01-12 16:10:07 -08:00
// Assigns n to this and return true iff predecessor is closer than successor.
template <typename Float> FMT_CONSTEXPR auto assign(Float n) -> bool {
static_assert((std::numeric_limits<Float>::is_iec559 &&
std::numeric_limits<Float>::digits <= 113) ||
is_float128<Float>::value,
"unsupported FP");
// Assume Float is in the format [sign][exponent][significand].
using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint;
const auto num_float_significand_bits =
2022-01-12 16:10:07 -08:00
detail::num_significand_bits<Float>();
const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
const auto significand_mask = implicit_bit - 1;
auto u = bit_cast<carrier_uint>(n);
f = static_cast<F>(u & significand_mask);
auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >>
num_float_significand_bits);
2022-01-12 16:10:07 -08:00
// The predecessor is closer if n is a normalized power of 2 (f == 0) other
// than the smallest normalized number (biased_e > 1).
auto is_predecessor_closer = f == 0 && biased_e > 1;
if (biased_e == 0)
biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
else if (has_implicit_bit<Float>())
f += static_cast<F>(implicit_bit);
e = biased_e - exponent_bias<Float>() - num_float_significand_bits;
if (!has_implicit_bit<Float>()) ++e;
2020-02-04 14:50:46 -05:00
return is_predecessor_closer;
}
};
using fp = basic_fp<unsigned long long>;
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
template <int SHIFT = 0, typename F>
FMT_CONSTEXPR basic_fp<F> normalize(basic_fp<F> value) {
// Handle subnormals.
const auto implicit_bit = F(1) << num_significand_bits<double>();
2022-01-12 16:10:07 -08:00
const auto shifted_implicit_bit = implicit_bit << SHIFT;
while ((value.f & shifted_implicit_bit) == 0) {
value.f <<= 1;
--value.e;
2020-02-04 14:50:46 -05:00
}
// Subtract 1 to account for hidden bit.
const auto offset =
2022-01-12 16:10:07 -08:00
fp::num_significand_bits - num_significand_bits<double>() - SHIFT - 1;
value.f <<= offset;
value.e -= offset;
return value;
}
template <typename F> inline bool operator==(basic_fp<F> x, basic_fp<F> y) {
return x.f == y.f && x.e == y.e;
}
2020-02-04 14:50:46 -05:00
// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
2020-02-04 14:50:46 -05:00
#if FMT_USE_INT128
auto product = static_cast<__uint128_t>(lhs) * rhs;
auto f = static_cast<uint64_t>(product >> 64);
return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
#else
// Multiply 32-bit parts of significands.
uint64_t mask = (1ULL << 32) - 1;
2020-02-04 14:50:46 -05:00
uint64_t a = lhs >> 32, b = lhs & mask;
uint64_t c = rhs >> 32, d = rhs & mask;
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
// Compute mid 64-bit of result and round.
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
2020-02-04 14:50:46 -05:00
return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
#endif
}
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR inline fp operator*(fp x, fp y) {
return {multiply(x.f, y.f), x.e + y.e + 64};
}
2020-02-04 14:50:46 -05:00
// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR inline fp get_cached_power(int min_exponent,
int& pow10_exponent) {
const int shift = 32;
// log10(2) = 0x0.4d104d427de7fbcc...
const int64_t significand = 0x4d104d427de7fbcc;
2020-02-04 14:50:46 -05:00
int index = static_cast<int>(
2022-01-12 16:10:07 -08:00
((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) +
((int64_t(1) << shift) - 1)) // ceil
>> 32 // arithmetic shift
2020-02-04 14:50:46 -05:00
);
// Decimal exponent of the first (smallest) cached power of 10.
const int first_dec_exp = -348;
// Difference between 2 consecutive decimal exponents in cached powers of 10.
const int dec_exp_step = 8;
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
pow10_exponent = first_dec_exp + index * dec_exp_step;
2022-01-12 16:10:07 -08:00
return {impl_data::pow10_significands[index],
impl_data::pow10_exponents[index]};
}
2020-02-04 14:50:46 -05:00
class bigint {
private:
// A bigint is stored as an array of bigits (big digits), with bigit at index
// 0 being the least significant one.
using bigit = uint32_t;
using double_bigit = uint64_t;
enum { bigits_capacity = 32 };
basic_memory_buffer<bigit, bigits_capacity> bigits_;
int exp_;
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 bigit operator[](int index) const {
return bigits_[to_unsigned(index)];
}
FMT_CONSTEXPR20 bigit& operator[](int index) {
return bigits_[to_unsigned(index)];
}
2020-02-04 14:50:46 -05:00
static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value;
friend struct formatter<bigint>;
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) {
auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
(*this)[index] = static_cast<bigit>(result);
2020-02-04 14:50:46 -05:00
borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
}
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 void remove_leading_zeros() {
2020-02-04 14:50:46 -05:00
int num_bigits = static_cast<int>(bigits_.size()) - 1;
while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
bigits_.resize(to_unsigned(num_bigits + 1));
2020-02-04 14:50:46 -05:00
}
// Computes *this -= other assuming aligned bigints and *this >= other.
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) {
2020-02-04 14:50:46 -05:00
FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
FMT_ASSERT(compare(*this, other) >= 0, "");
bigit borrow = 0;
int i = other.exp_ - exp_;
for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
2020-02-04 14:50:46 -05:00
subtract_bigits(i, other.bigits_[j], borrow);
while (borrow > 0) subtract_bigits(i, 0, borrow);
remove_leading_zeros();
}
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 void multiply(uint32_t value) {
2020-02-04 14:50:46 -05:00
const double_bigit wide_value = value;
bigit carry = 0;
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
double_bigit result = bigits_[i] * wide_value + carry;
bigits_[i] = static_cast<bigit>(result);
carry = static_cast<bigit>(result >> bigit_bits);
}
2020-02-04 14:50:46 -05:00
if (carry != 0) bigits_.push_back(carry);
}
2020-02-04 14:50:46 -05:00
template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
std::is_same<UInt, uint128_t>::value)>
FMT_CONSTEXPR20 void multiply(UInt value) {
using half_uint =
conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>;
const int shift = num_bits<half_uint>() - bigit_bits;
const UInt lower = static_cast<half_uint>(value);
const UInt upper = value >> num_bits<half_uint>();
UInt carry = 0;
2020-02-04 14:50:46 -05:00
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
UInt result = lower * bigits_[i] + static_cast<bigit>(carry);
carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) +
(carry >> bigit_bits);
2020-02-04 14:50:46 -05:00
bigits_[i] = static_cast<bigit>(result);
}
while (carry != 0) {
bigits_.push_back(static_cast<bigit>(carry));
2020-02-04 14:50:46 -05:00
carry >>= bigit_bits;
}
}
template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
std::is_same<UInt, uint128_t>::value)>
FMT_CONSTEXPR20 void assign(UInt n) {
size_t num_bigits = 0;
do {
bigits_[num_bigits++] = static_cast<bigit>(n);
n >>= bigit_bits;
} while (n != 0);
bigits_.resize(num_bigits);
exp_ = 0;
}
2020-02-04 14:50:46 -05:00
public:
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 bigint() : exp_(0) {}
2020-02-04 14:50:46 -05:00
explicit bigint(uint64_t n) { assign(n); }
bigint(const bigint&) = delete;
void operator=(const bigint&) = delete;
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 void assign(const bigint& other) {
auto size = other.bigits_.size();
bigits_.resize(size);
2020-02-04 14:50:46 -05:00
auto data = other.bigits_.data();
std::copy(data, data + size, make_checked(bigits_.data(), size));
2020-02-04 14:50:46 -05:00
exp_ = other.exp_;
}
template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) {
FMT_ASSERT(n > 0, "");
assign(uint64_or_128_t<Int>(n));
2020-02-04 14:50:46 -05:00
}
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 int num_bigits() const {
return static_cast<int>(bigits_.size()) + exp_;
}
2020-02-04 14:50:46 -05:00
2022-01-12 16:10:07 -08:00
FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) {
FMT_ASSERT(shift >= 0, "");
2020-02-04 14:50:46 -05:00
exp_ += shift / bigit_bits;
shift %= bigit_bits;
if (shift == 0) return *this;
bigit carry = 0;
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
bigit c = bigits_[i] >> (bigit_bits - shift);
bigits_[i] = (bigits_[i] << shift) + carry;
carry = c;
}
if (carry != 0) bigits_.push_back(carry);
return *this;
}
2022-01-12 16:10:07 -08:00
template <typename Int> FMT_CONSTEXPR20 bigint& operator*=(Int value) {
2020-02-04 14:50:46 -05:00
FMT_ASSERT(value > 0, "");
multiply(uint32_or_64_or_128_t<Int>(value));
return *this;
}
2022-01-12 16:10:07 -08:00
friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) {
2020-02-04 14:50:46 -05:00
int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
if (num_lhs_bigits != num_rhs_bigits)
return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
int i = static_cast<int>(lhs.bigits_.size()) - 1;
int j = static_cast<int>(rhs.bigits_.size()) - 1;
int end = i - j;
if (end < 0) end = 0;
for (; i >= end; --i, --j) {
bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
2020-02-04 14:50:46 -05:00
if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
}
if (i != j) return i > j ? 1 : -1;
return 0;
}
2020-02-04 14:50:46 -05:00
// Returns compare(lhs1 + lhs2, rhs).
2022-01-12 16:10:07 -08:00
friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2,
const bigint& rhs) {
2020-02-04 14:50:46 -05:00
int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits());
int num_rhs_bigits = rhs.num_bigits();
if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
if (max_lhs_bigits > num_rhs_bigits) return 1;
auto get_bigit = [](const bigint& n, int i) -> bigit {
return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
2020-02-04 14:50:46 -05:00
};
double_bigit borrow = 0;
int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_);
for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
double_bigit sum =
static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
bigit rhs_bigit = get_bigit(rhs, i);
if (sum > rhs_bigit + borrow) return 1;
borrow = rhs_bigit + borrow - sum;
if (borrow > 1) return -1;
borrow <<= bigit_bits;
}
return borrow != 0 ? -1 : 0;
}
2020-02-04 14:50:46 -05:00
// Assigns pow(10, exp) to this bigint.
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 void assign_pow10(int exp) {
FMT_ASSERT(exp >= 0, "");
if (exp == 0) return *this = 1;
2020-02-04 14:50:46 -05:00
// Find the top bit.
int bitmask = 1;
while (exp >= bitmask) bitmask <<= 1;
bitmask >>= 1;
// pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
// repeated squaring and multiplication.
*this = 5;
2020-02-04 14:50:46 -05:00
bitmask >>= 1;
while (bitmask != 0) {
square();
if ((exp & bitmask) != 0) *this *= 5;
bitmask >>= 1;
}
*this <<= exp; // Multiply by pow(2, exp) by shifting.
}
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 void square() {
2020-02-04 14:50:46 -05:00
int num_bigits = static_cast<int>(bigits_.size());
int num_result_bigits = 2 * num_bigits;
2022-01-12 16:10:07 -08:00
basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
bigits_.resize(to_unsigned(num_result_bigits));
auto sum = uint128_t();
2020-02-04 14:50:46 -05:00
for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
// Compute bigit at position bigit_index of the result by adding
// cross-product terms n[i] * n[j] such that i + j == bigit_index.
for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
// Most terms are multiplied twice which can be optimized in the future.
sum += static_cast<double_bigit>(n[i]) * n[j];
}
(*this)[bigit_index] = static_cast<bigit>(sum);
2020-02-04 14:50:46 -05:00
sum >>= bits<bigit>::value; // Compute the carry.
}
// Do the same for the top half.
for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
++bigit_index) {
for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
sum += static_cast<double_bigit>(n[i++]) * n[j--];
(*this)[bigit_index] = static_cast<bigit>(sum);
2020-02-04 14:50:46 -05:00
sum >>= bits<bigit>::value;
}
remove_leading_zeros();
exp_ *= 2;
}
// If this bigint has a bigger exponent than other, adds trailing zero to make
// exponents equal. This simplifies some operations such as subtraction.
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 void align(const bigint& other) {
int exp_difference = exp_ - other.exp_;
if (exp_difference <= 0) return;
int num_bigits = static_cast<int>(bigits_.size());
bigits_.resize(to_unsigned(num_bigits + exp_difference));
for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
bigits_[j] = bigits_[i];
std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
exp_ -= exp_difference;
}
2020-02-04 14:50:46 -05:00
// Divides this bignum by divisor, assigning the remainder to this and
// returning the quotient.
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) {
2020-02-04 14:50:46 -05:00
FMT_ASSERT(this != &divisor, "");
if (compare(*this, divisor) < 0) return 0;
FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
align(divisor);
2020-02-04 14:50:46 -05:00
int quotient = 0;
do {
subtract_aligned(divisor);
++quotient;
} while (compare(*this, divisor) >= 0);
return quotient;
}
};
enum class round_direction { unknown, up, down };
2020-02-04 14:50:46 -05:00
// Given the divisor (normally a power of 10), the remainder = v % divisor for
// some number v and the error, returns whether v should be rounded up, down, or
// whether the rounding direction can't be determined due to error.
// error should be less than divisor / 2.
2022-01-12 16:10:07 -08:00
FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor,
uint64_t remainder,
uint64_t error) {
2020-02-04 14:50:46 -05:00
FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
// Round down if (remainder + error) * 2 <= divisor.
if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
return round_direction::down;
2020-02-04 14:50:46 -05:00
// Round up if (remainder - error) * 2 >= divisor.
if (remainder >= error &&
remainder - error >= divisor - (remainder - error)) {
return round_direction::up;
}
return round_direction::unknown;
}
2020-02-04 14:50:46 -05:00
namespace digits {
enum result {
more, // Generate more digits.
done, // Done generating digits.
error // Digit generation cancelled due to an error.
};
2020-02-04 14:50:46 -05:00
}
2022-01-12 16:10:07 -08:00
struct gen_digits_handler {
char* buf;
int size;
int precision;
int exp10;
bool fixed;
FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor,
uint64_t remainder, uint64_t error,
bool integral) {
FMT_ASSERT(remainder < divisor, "");
buf[size++] = digit;
if (!integral && error >= remainder) return digits::error;
if (size < precision) return digits::more;
if (!integral) {
// Check if error * 2 < divisor with overflow prevention.
// The check is not needed for the integral part because error = 1
// and divisor > (1 << 32) there.
if (error >= divisor || error >= divisor - error) return digits::error;
} else {
FMT_ASSERT(error == 1 && divisor > 2, "");
}
auto dir = get_round_direction(divisor, remainder, error);
if (dir != round_direction::up)
return dir == round_direction::down ? digits::done : digits::error;
++buf[size - 1];
for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
buf[i] = '0';
++buf[i - 1];
}
if (buf[0] > '9') {
buf[0] = '1';
if (fixed)
buf[size++] = '0';
else
++exp10;
}
return digits::done;
}
};
inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
// Adjust fixed precision by exponent because it is relative to decimal
// point.
if (exp10 > 0 && precision > max_value<int>() - exp10)
FMT_THROW(format_error("number is too big"));
precision += exp10;
}
2020-02-04 14:50:46 -05:00
// Generates output using the Grisu digit-gen algorithm.
// error: the size of the region (lower, upper) outside of which numbers
// definitely do not round to value (Delta in Grisu3).
2022-01-12 16:10:07 -08:00
FMT_INLINE FMT_CONSTEXPR20 digits::result grisu_gen_digits(
fp value, uint64_t error, int& exp, gen_digits_handler& handler) {
2020-02-04 14:50:46 -05:00
const fp one(1ULL << -value.e, value.e);
// The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
// zero because it contains a product of two 64-bit numbers with MSB set (due
// to normalization) - 1, shifted right by at most 60 bits.
auto integral = static_cast<uint32_t>(value.f >> -one.e);
FMT_ASSERT(integral != 0, "");
FMT_ASSERT(integral == value.f >> -one.e, "");
// The fractional part of scaled value (p2 in Grisu) c = value % one.
uint64_t fractional = value.f & (one.f - 1);
exp = count_digits(integral); // kappa in Grisu.
2022-01-12 16:10:07 -08:00
// Non-fixed formats require at least one digit and no precision adjustment.
if (handler.fixed) {
adjust_precision(handler.precision, exp + handler.exp10);
2022-01-12 16:10:07 -08:00
// Check if precision is satisfied just by leading zeros, e.g.
// format("{:.2f}", 0.001) gives "0.00" without generating any digits.
if (handler.precision <= 0) {
if (handler.precision < 0) return digits::done;
// Divide by 10 to prevent overflow.
uint64_t divisor = impl_data::power_of_10_64[exp - 1] << -one.e;
auto dir = get_round_direction(divisor, value.f / 10, error * 10);
if (dir == round_direction::unknown) return digits::error;
handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0';
return digits::done;
}
}
2020-02-04 14:50:46 -05:00
// Generate digits for the integral part. This can produce up to 10 digits.
do {
uint32_t digit = 0;
auto divmod_integral = [&](uint32_t divisor) {
digit = integral / divisor;
integral %= divisor;
};
// This optimization by Milo Yip reduces the number of integer divisions by
// one per iteration.
switch (exp) {
case 10:
divmod_integral(1000000000);
break;
case 9:
divmod_integral(100000000);
break;
case 8:
divmod_integral(10000000);
break;
case 7:
divmod_integral(1000000);
break;
case 6:
divmod_integral(100000);
break;
case 5:
divmod_integral(10000);
break;
case 4:
divmod_integral(1000);
break;
case 3:
divmod_integral(100);
break;
case 2:
divmod_integral(10);
break;
case 1:
digit = integral;
integral = 0;
break;
default:
FMT_ASSERT(false, "invalid number of digits");
}
2020-02-04 14:50:46 -05:00
--exp;
auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
2022-01-12 16:10:07 -08:00
auto result = handler.on_digit(static_cast<char>('0' + digit),
impl_data::power_of_10_64[exp] << -one.e,
remainder, error, true);
2020-02-04 14:50:46 -05:00
if (result != digits::more) return result;
} while (exp > 0);
// Generate digits for the fractional part.
for (;;) {
fractional *= 10;
error *= 10;
char digit = static_cast<char>('0' + (fractional >> -one.e));
2020-02-04 14:50:46 -05:00
fractional &= one.f - 1;
--exp;
2022-01-12 16:10:07 -08:00
auto result = handler.on_digit(digit, one.f, fractional, error, false);
2020-02-04 14:50:46 -05:00
if (result != digits::more) return result;
}
}
inline FMT_CONSTEXPR20 uint128_fallback& uint128_fallback::operator+=(
uint64_t n) noexcept {
if (is_constant_evaluated()) {
lo_ += n;
hi_ += (lo_ < n ? 1 : 0);
2022-01-12 16:10:07 -08:00
return *this;
2020-02-04 14:50:46 -05:00
}
#if FMT_HAS_BUILTIN(__builtin_addcll)
unsigned long long carry;
lo_ = __builtin_addcll(lo_, n, 0, &carry);
hi_ += carry;
#elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64)
unsigned long long result;
auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result);
lo_ = result;
hi_ += carry;
#elif defined(_MSC_VER) && defined(_M_X64)
auto carry = _addcarry_u64(0, lo_, n, &lo_);
_addcarry_u64(carry, hi_, 0, &hi_);
2022-01-12 16:10:07 -08:00
#else
lo_ += n;
hi_ += (lo_ < n ? 1 : 0);
2022-01-12 16:10:07 -08:00
#endif
return *this;
}
// Compilers should be able to optimize this into the ror instruction.
FMT_CONSTEXPR inline uint32_t rotr(uint32_t n, uint32_t r) noexcept {
r &= 31;
return (n >> r) | (n << (32 - r));
}
FMT_CONSTEXPR inline uint64_t rotr(uint64_t n, uint32_t r) noexcept {
r &= 63;
return (n >> r) | (n << (64 - r));
}
// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
inline uint128_fallback umul128(uint64_t x, uint64_t y) noexcept {
#if FMT_USE_INT128
auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
#elif defined(_MSC_VER) && defined(_M_X64)
auto result = uint128_fallback();
result.lo_ = _umul128(x, y, &result.hi_);
return result;
#else
const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
uint64_t a = x >> 32;
uint64_t b = x & mask;
uint64_t c = y >> 32;
uint64_t d = y & mask;
uint64_t ac = a * c;
uint64_t bc = b * c;
uint64_t ad = a * d;
uint64_t bd = b * d;
uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
(intermediate << 32) + (bd & mask)};
#endif
}
// Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox.
namespace dragonbox {
// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
inline uint64_t umul128_upper64(uint64_t x, uint64_t y) noexcept {
#if FMT_USE_INT128
auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
return static_cast<uint64_t>(p >> 64);
#elif defined(_MSC_VER) && defined(_M_X64)
return __umulh(x, y);
#else
return umul128(x, y).high();
#endif
}
// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
// 128-bit unsigned integer.
inline uint128_fallback umul192_upper128(uint64_t x,
uint128_fallback y) noexcept {
uint128_fallback r = umul128(x, y.high());
r += umul128_upper64(x, y.low());
return r;
}
// Computes upper 64 bits of multiplication of a 32-bit unsigned integer and a
// 64-bit unsigned integer.
inline uint64_t umul96_upper64(uint32_t x, uint64_t y) noexcept {
return umul128_upper64(static_cast<uint64_t>(x) << 32, y);
}
// Computes lower 128 bits of multiplication of a 64-bit unsigned integer and a
// 128-bit unsigned integer.
inline uint128_fallback umul192_lower128(uint64_t x,
uint128_fallback y) noexcept {
uint64_t high = x * y.high();
uint128_fallback high_low = umul128(x, y.low());
return {high + high_low.high(), high_low.low()};
}
// Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
// 64-bit unsigned integer.
inline uint64_t umul96_lower64(uint32_t x, uint64_t y) noexcept {
return x * y;
}
// Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
// https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
inline int floor_log10_pow2(int e) noexcept {
FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent");
static_assert((-1 >> 1) == -1, "right shift is not arithmetic");
return (e * 315653) >> 20;
}
// Various fast log computations.
inline int floor_log2_pow10(int e) noexcept {
FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
return (e * 1741647) >> 19;
}
inline int floor_log10_pow2_minus_log10_4_over_3(int e) noexcept {
FMT_ASSERT(e <= 2936 && e >= -2985, "too large exponent");
return (e * 631305 - 261663) >> 21;
}
static constexpr struct {
uint32_t divisor;
int shift_amount;
} div_small_pow10_infos[] = {{10, 16}, {100, 16}};
// Replaces n by floor(n / pow(10, N)) returning true if and only if n is
// divisible by pow(10, N).
// Precondition: n <= pow(10, N + 1).
template <int N>
bool check_divisibility_and_divide_by_pow10(uint32_t& n) noexcept {
// The numbers below are chosen such that:
// 1. floor(n/d) = floor(nm / 2^k) where d=10 or d=100,
// 2. nm mod 2^k < m if and only if n is divisible by d,
// where m is magic_number, k is shift_amount
// and d is divisor.
//
// Item 1 is a common technique of replacing division by a constant with
// multiplication, see e.g. "Division by Invariant Integers Using
// Multiplication" by Granlund and Montgomery (1994). magic_number (m) is set
// to ceil(2^k/d) for large enough k.
// The idea for item 2 originates from Schubfach.
constexpr auto info = div_small_pow10_infos[N - 1];
FMT_ASSERT(n <= info.divisor * 10, "n is too large");
constexpr uint32_t magic_number =
(1u << info.shift_amount) / info.divisor + 1;
n *= magic_number;
const uint32_t comparison_mask = (1u << info.shift_amount) - 1;
bool result = (n & comparison_mask) < magic_number;
n >>= info.shift_amount;
return result;
}
// Computes floor(n / pow(10, N)) for small n and N.
// Precondition: n <= pow(10, N + 1).
template <int N> uint32_t small_division_by_pow10(uint32_t n) noexcept {
constexpr auto info = div_small_pow10_infos[N - 1];
FMT_ASSERT(n <= info.divisor * 10, "n is too large");
constexpr uint32_t magic_number =
(1u << info.shift_amount) / info.divisor + 1;
return (n * magic_number) >> info.shift_amount;
}
// Computes floor(n / 10^(kappa + 1)) (float)
inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) noexcept {
// 1374389535 = ceil(2^37/100)
return static_cast<uint32_t>((static_cast<uint64_t>(n) * 1374389535) >> 37);
}
// Computes floor(n / 10^(kappa + 1)) (double)
inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) noexcept {
// 2361183241434822607 = ceil(2^(64+7)/1000)
return umul128_upper64(n, 2361183241434822607ull) >> 7;
}
// Various subroutines using pow10 cache
template <class T> struct cache_accessor;
template <> struct cache_accessor<float> {
using carrier_uint = float_info<float>::carrier_uint;
using cache_entry_type = uint64_t;
static uint64_t get_cached_power(int k) noexcept {
FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k,
"k is out of range");
2022-01-12 16:10:07 -08:00
static constexpr const uint64_t pow10_significands[] = {
0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f,
0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb,
0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28,
0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb,
0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a,
0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810,
0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff,
0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd,
0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424,
0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b,
0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000,
0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000,
0xc350000000000000, 0xf424000000000000, 0x9896800000000000,
0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000,
0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000,
0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000,
0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000,
0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000,
0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0,
0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940985,
0xa18f07d736b90be6, 0xc9f2c9cd04674edf, 0xfc6f7c4045812297,
0x9dc5ada82b70b59e, 0xc5371912364ce306, 0xf684df56c3e01bc7,
0x9a130b963a6c115d, 0xc097ce7bc90715b4, 0xf0bdc21abb48db21,
0x96769950b50d88f5, 0xbc143fa4e250eb32, 0xeb194f8e1ae525fe,
0x92efd1b8d0cf37bf, 0xb7abc627050305ae, 0xe596b7b0c643c71a,
0x8f7e32ce7bea5c70, 0xb35dbf821ae4f38c, 0xe0352f62a19e306f};
2022-01-12 16:10:07 -08:00
return pow10_significands[k - float_info<float>::min_k];
}
struct compute_mul_result {
carrier_uint result;
bool is_integer;
};
struct compute_mul_parity_result {
bool parity;
bool is_integer;
};
static compute_mul_result compute_mul(
carrier_uint u, const cache_entry_type& cache) noexcept {
auto r = umul96_upper64(u, cache);
return {static_cast<carrier_uint>(r >> 32),
static_cast<carrier_uint>(r) == 0};
}
static uint32_t compute_delta(const cache_entry_type& cache,
int beta) noexcept {
return static_cast<uint32_t>(cache >> (64 - 1 - beta));
}
static compute_mul_parity_result compute_mul_parity(
carrier_uint two_f, const cache_entry_type& cache, int beta) noexcept {
FMT_ASSERT(beta >= 1, "");
FMT_ASSERT(beta < 64, "");
auto r = umul96_lower64(two_f, cache);
return {((r >> (64 - beta)) & 1) != 0,
static_cast<uint32_t>(r >> (32 - beta)) == 0};
}
static carrier_uint compute_left_endpoint_for_shorter_interval_case(
const cache_entry_type& cache, int beta) noexcept {
return static_cast<carrier_uint>(
(cache - (cache >> (num_significand_bits<float>() + 2))) >>
(64 - num_significand_bits<float>() - 1 - beta));
}
static carrier_uint compute_right_endpoint_for_shorter_interval_case(
const cache_entry_type& cache, int beta) noexcept {
return static_cast<carrier_uint>(
(cache + (cache >> (num_significand_bits<float>() + 1))) >>
(64 - num_significand_bits<float>() - 1 - beta));
}
static carrier_uint compute_round_up_for_shorter_interval_case(
const cache_entry_type& cache, int beta) noexcept {
return (static_cast<carrier_uint>(
cache >> (64 - num_significand_bits<float>() - 2 - beta)) +
1) /
2;
}
};
template <> struct cache_accessor<double> {
using carrier_uint = float_info<double>::carrier_uint;
using cache_entry_type = uint128_fallback;
static uint128_fallback get_cached_power(int k) noexcept {
FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k,
"k is out of range");
static constexpr const uint128_fallback pow10_significands[] = {
#if FMT_USE_FULL_CACHE_DRAGONBOX
2022-01-12 16:10:07 -08:00
{0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
{0x9faacf3df73609b1, 0x77b191618c54e9ad},
{0xc795830d75038c1d, 0xd59df5b9ef6a2418},
{0xf97ae3d0d2446f25, 0x4b0573286b44ad1e},
{0x9becce62836ac577, 0x4ee367f9430aec33},
{0xc2e801fb244576d5, 0x229c41f793cda740},
{0xf3a20279ed56d48a, 0x6b43527578c11110},
{0x9845418c345644d6, 0x830a13896b78aaaa},
{0xbe5691ef416bd60c, 0x23cc986bc656d554},
{0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9},
{0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa},
{0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54},
{0xe858ad248f5c22c9, 0xd1b3400f8f9cff69},
{0x91376c36d99995be, 0x23100809b9c21fa2},
{0xb58547448ffffb2d, 0xabd40a0c2832a78b},
{0xe2e69915b3fff9f9, 0x16c90c8f323f516d},
{0x8dd01fad907ffc3b, 0xae3da7d97f6792e4},
{0xb1442798f49ffb4a, 0x99cd11cfdf41779d},
{0xdd95317f31c7fa1d, 0x40405643d711d584},
{0x8a7d3eef7f1cfc52, 0x482835ea666b2573},
{0xad1c8eab5ee43b66, 0xda3243650005eed0},
{0xd863b256369d4a40, 0x90bed43e40076a83},
{0x873e4f75e2224e68, 0x5a7744a6e804a292},
{0xa90de3535aaae202, 0x711515d0a205cb37},
{0xd3515c2831559a83, 0x0d5a5b44ca873e04},
{0x8412d9991ed58091, 0xe858790afe9486c3},
{0xa5178fff668ae0b6, 0x626e974dbe39a873},
{0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
{0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a},
{0xa139029f6a239f72, 0x1c1fffc1ebc44e81},
{0xc987434744ac874e, 0xa327ffb266b56221},
{0xfbe9141915d7a922, 0x4bf1ff9f0062baa9},
{0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa},
{0xc4ce17b399107c22, 0xcb550fb4384d21d4},
{0xf6019da07f549b2b, 0x7e2a53a146606a49},
{0x99c102844f94e0fb, 0x2eda7444cbfc426e},
{0xc0314325637a1939, 0xfa911155fefb5309},
{0xf03d93eebc589f88, 0x793555ab7eba27cb},
{0x96267c7535b763b5, 0x4bc1558b2f3458df},
{0xbbb01b9283253ca2, 0x9eb1aaedfb016f17},
{0xea9c227723ee8bcb, 0x465e15a979c1cadd},
{0x92a1958a7675175f, 0x0bfacd89ec191eca},
{0xb749faed14125d36, 0xcef980ec671f667c},
{0xe51c79a85916f484, 0x82b7e12780e7401b},
{0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811},
{0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16},
{0xdfbdcece67006ac9, 0x67a791e093e1d49b},
{0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1},
{0xaecc49914078536d, 0x58fae9f773886e19},
{0xda7f5bf590966848, 0xaf39a475506a899f},
{0x888f99797a5e012d, 0x6d8406c952429604},
{0xaab37fd7d8f58178, 0xc8e5087ba6d33b84},
{0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65},
{0x855c3be0a17fcd26, 0x5cf2eea09a550680},
{0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
{0xd0601d8efc57b08b, 0xf13b94daf124da27},
{0x823c12795db6ce57, 0x76c53d08d6b70859},
{0xa2cb1717b52481ed, 0x54768c4b0c64ca6f},
{0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a},
{0xfe5d54150b090b02, 0xd3f93b35435d7c4d},
{0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0},
{0xc6b8e9b0709f109a, 0x359ab6419ca1091c},
{0xf867241c8cc6d4c0, 0xc30163d203c94b63},
{0x9b407691d7fc44f8, 0x79e0de63425dcf1e},
{0xc21094364dfb5636, 0x985915fc12f542e5},
{0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e},
{0x979cf3ca6cec5b5a, 0xa705992ceecf9c43},
{0xbd8430bd08277231, 0x50c6ff782a838354},
{0xece53cec4a314ebd, 0xa4f8bf5635246429},
{0x940f4613ae5ed136, 0x871b7795e136be9a},
{0xb913179899f68584, 0x28e2557b59846e40},
{0xe757dd7ec07426e5, 0x331aeada2fe589d0},
{0x9096ea6f3848984f, 0x3ff0d2c85def7622},
{0xb4bca50b065abe63, 0x0fed077a756b53aa},
{0xe1ebce4dc7f16dfb, 0xd3e8495912c62895},
{0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d},
{0xb080392cc4349dec, 0xbd8d794d96aacfb4},
{0xdca04777f541c567, 0xecf0d7a0fc5583a1},
{0x89e42caaf9491b60, 0xf41686c49db57245},
{0xac5d37d5b79b6239, 0x311c2875c522ced6},
{0xd77485cb25823ac7, 0x7d633293366b828c},
{0x86a8d39ef77164bc, 0xae5dff9c02033198},
{0xa8530886b54dbdeb, 0xd9f57f830283fdfd},
{0xd267caa862a12d66, 0xd072df63c324fd7c},
{0x8380dea93da4bc60, 0x4247cb9e59f71e6e},
{0xa46116538d0deb78, 0x52d9be85f074e609},
{0xcd795be870516656, 0x67902e276c921f8c},
{0x806bd9714632dff6, 0x00ba1cd8a3db53b7},
{0xa086cfcd97bf97f3, 0x80e8a40eccd228a5},
{0xc8a883c0fdaf7df0, 0x6122cd128006b2ce},
{0xfad2a4b13d1b5d6c, 0x796b805720085f82},
{0x9cc3a6eec6311a63, 0xcbe3303674053bb1},
{0xc3f490aa77bd60fc, 0xbedbfc4411068a9d},
{0xf4f1b4d515acb93b, 0xee92fb5515482d45},
{0x991711052d8bf3c5, 0x751bdd152d4d1c4b},
{0xbf5cd54678eef0b6, 0xd262d45a78a0635e},
{0xef340a98172aace4, 0x86fb897116c87c35},
{0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1},
{0xbae0a846d2195712, 0x8974836059cca10a},
{0xe998d258869facd7, 0x2bd1a438703fc94c},
{0x91ff83775423cc06, 0x7b6306a34627ddd0},
{0xb67f6455292cbf08, 0x1a3bc84c17b1d543},
{0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94},
{0x8e938662882af53e, 0x547eb47b7282ee9d},
{0xb23867fb2a35b28d, 0xe99e619a4f23aa44},
{0xdec681f9f4c31f31, 0x6405fa00e2ec94d5},
{0x8b3c113c38f9f37e, 0xde83bc408dd3dd05},
{0xae0b158b4738705e, 0x9624ab50b148d446},
{0xd98ddaee19068c76, 0x3badd624dd9b0958},
{0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7},
{0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d},
{0xd47487cc8470652b, 0x7647c32000696720},
{0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074},
{0xa5fb0a17c777cf09, 0xf468107100525891},
{0xcf79cc9db955c2cc, 0x7182148d4066eeb5},
{0x81ac1fe293d599bf, 0xc6f14cd848405531},
{0xa21727db38cb002f, 0xb8ada00e5a506a7d},
{0xca9cf1d206fdc03b, 0xa6d90811f0e4851d},
{0xfd442e4688bd304a, 0x908f4a166d1da664},
{0x9e4a9cec15763e2e, 0x9a598e4e043287ff},
{0xc5dd44271ad3cdba, 0x40eff1e1853f29fe},
{0xf7549530e188c128, 0xd12bee59e68ef47d},
{0x9a94dd3e8cf578b9, 0x82bb74f8301958cf},
{0xc13a148e3032d6e7, 0xe36a52363c1faf02},
{0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2},
{0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba},
{0xbcb2b812db11a5de, 0x7415d448f6b6f0e8},
{0xebdf661791d60f56, 0x111b495b3464ad22},
{0x936b9fcebb25c995, 0xcab10dd900beec35},
{0xb84687c269ef3bfb, 0x3d5d514f40eea743},
{0xe65829b3046b0afa, 0x0cb4a5a3112a5113},
{0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac},
{0xb3f4e093db73a093, 0x59ed216765690f57},
{0xe0f218b8d25088b8, 0x306869c13ec3532d},
{0x8c974f7383725573, 0x1e414218c73a13fc},
{0xafbd2350644eeacf, 0xe5d1929ef90898fb},
{0xdbac6c247d62a583, 0xdf45f746b74abf3a},
{0x894bc396ce5da772, 0x6b8bba8c328eb784},
{0xab9eb47c81f5114f, 0x066ea92f3f326565},
{0xd686619ba27255a2, 0xc80a537b0efefebe},
{0x8613fd0145877585, 0xbd06742ce95f5f37},
{0xa798fc4196e952e7, 0x2c48113823b73705},
{0xd17f3b51fca3a7a0, 0xf75a15862ca504c6},
{0x82ef85133de648c4, 0x9a984d73dbe722fc},
{0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb},
{0xcc963fee10b7d1b3, 0x318df905079926a9},
{0xffbbcfe994e5c61f, 0xfdf17746497f7053},
{0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634},
{0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1},
{0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1},
{0x9c1661a651213e2d, 0x06bea10ca65c084f},
{0xc31bfa0fe5698db8, 0x486e494fcff30a63},
{0xf3e2f893dec3f126, 0x5a89dba3c3efccfb},
{0x986ddb5c6b3a76b7, 0xf89629465a75e01d},
{0xbe89523386091465, 0xf6bbb397f1135824},
{0xee2ba6c0678b597f, 0x746aa07ded582e2d},
{0x94db483840b717ef, 0xa8c2a44eb4571cdd},
{0xba121a4650e4ddeb, 0x92f34d62616ce414},
{0xe896a0d7e51e1566, 0x77b020baf9c81d18},
{0x915e2486ef32cd60, 0x0ace1474dc1d122f},
{0xb5b5ada8aaff80b8, 0x0d819992132456bb},
{0xe3231912d5bf60e6, 0x10e1fff697ed6c6a},
{0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
{0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3},
{0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf},
{0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c},
{0xad4ab7112eb3929d, 0x86c16c98d2c953c7},
{0xd89d64d57a607744, 0xe871c7bf077ba8b8},
{0x87625f056c7c4a8b, 0x11471cd764ad4973},
{0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0},
{0xd389b47879823479, 0x4aff1d108d4ec2c4},
{0x843610cb4bf160cb, 0xcedf722a585139bb},
{0xa54394fe1eedb8fe, 0xc2974eb4ee658829},
{0xce947a3da6a9273e, 0x733d226229feea33},
{0x811ccc668829b887, 0x0806357d5a3f5260},
{0xa163ff802a3426a8, 0xca07c2dcb0cf26f8},
{0xc9bcff6034c13052, 0xfc89b393dd02f0b6},
{0xfc2c3f3841f17c67, 0xbbac2078d443ace3},
{0x9d9ba7832936edc0, 0xd54b944b84aa4c0e},
{0xc5029163f384a931, 0x0a9e795e65d4df12},
{0xf64335bcf065d37d, 0x4d4617b5ff4a16d6},
{0x99ea0196163fa42e, 0x504bced1bf8e4e46},
{0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7},
{0xf07da27a82c37088, 0x5d767327bb4e5a4d},
{0x964e858c91ba2655, 0x3a6a07f8d510f870},
{0xbbe226efb628afea, 0x890489f70a55368c},
{0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f},
{0x92c8ae6b464fc96f, 0x3b0b8bc90012929e},
{0xb77ada0617e3bbcb, 0x09ce6ebb40173745},
{0xe55990879ddcaabd, 0xcc420a6a101d0516},
{0x8f57fa54c2a9eab6, 0x9fa946824a12232e},
{0xb32df8e9f3546564, 0x47939822dc96abfa},
{0xdff9772470297ebd, 0x59787e2b93bc56f8},
{0x8bfbea76c619ef36, 0x57eb4edb3c55b65b},
{0xaefae51477a06b03, 0xede622920b6b23f2},
{0xdab99e59958885c4, 0xe95fab368e45ecee},
{0x88b402f7fd75539b, 0x11dbcb0218ebb415},
{0xaae103b5fcd2a881, 0xd652bdc29f26a11a},
{0xd59944a37c0752a2, 0x4be76d3346f04960},
{0x857fcae62d8493a5, 0x6f70a4400c562ddc},
{0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953},
{0xd097ad07a71f26b2, 0x7e2000a41346a7a8},
{0x825ecc24c873782f, 0x8ed400668c0c28c9},
{0xa2f67f2dfa90563b, 0x728900802f0f32fb},
{0xcbb41ef979346bca, 0x4f2b40a03ad2ffba},
{0xfea126b7d78186bc, 0xe2f610c84987bfa9},
{0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca},
{0xc6ede63fa05d3143, 0x91503d1c79720dbc},
{0xf8a95fcf88747d94, 0x75a44c6397ce912b},
{0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb},
{0xc24452da229b021b, 0xfbe85badce996169},
{0xf2d56790ab41c2a2, 0xfae27299423fb9c4},
{0x97c560ba6b0919a5, 0xdccd879fc967d41b},
{0xbdb6b8e905cb600f, 0x5400e987bbc1c921},
{0xed246723473e3813, 0x290123e9aab23b69},
{0x9436c0760c86e30b, 0xf9a0b6720aaf6522},
{0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
{0xe7958cb87392c2c2, 0xb60b1d1230b20e05},
{0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3},
{0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4},
{0xe2280b6c20dd5232, 0x25c6da63c38de1b1},
{0x8d590723948a535f, 0x579c487e5a38ad0f},
{0xb0af48ec79ace837, 0x2d835a9df0c6d852},
{0xdcdb1b2798182244, 0xf8e431456cf88e66},
{0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900},
{0xac8b2d36eed2dac5, 0xe272467e3d222f40},
{0xd7adf884aa879177, 0x5b0ed81dcc6abb10},
{0x86ccbb52ea94baea, 0x98e947129fc2b4ea},
{0xa87fea27a539e9a5, 0x3f2398d747b36225},
{0xd29fe4b18e88640e, 0x8eec7f0d19a03aae},
{0x83a3eeeef9153e89, 0x1953cf68300424ad},
{0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8},
{0xcdb02555653131b6, 0x3792f412cb06794e},
{0x808e17555f3ebf11, 0xe2bbd88bbee40bd1},
{0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5},
{0xc8de047564d20a8b, 0xf245825a5a445276},
{0xfb158592be068d2e, 0xeed6e2f0f0d56713},
{0x9ced737bb6c4183d, 0x55464dd69685606c},
{0xc428d05aa4751e4c, 0xaa97e14c3c26b887},
{0xf53304714d9265df, 0xd53dd99f4b3066a9},
{0x993fe2c6d07b7fab, 0xe546a8038efe402a},
{0xbf8fdb78849a5f96, 0xde98520472bdd034},
{0xef73d256a5c0f77c, 0x963e66858f6d4441},
{0x95a8637627989aad, 0xdde7001379a44aa9},
{0xbb127c53b17ec159, 0x5560c018580d5d53},
{0xe9d71b689dde71af, 0xaab8f01e6e10b4a7},
{0x9226712162ab070d, 0xcab3961304ca70e9},
{0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23},
{0xe45c10c42a2b3b05, 0x8cb89a7db77c506b},
{0x8eb98a7a9a5b04e3, 0x77f3608e92adb243},
{0xb267ed1940f1c61c, 0x55f038b237591ed4},
{0xdf01e85f912e37a3, 0x6b6c46dec52f6689},
{0x8b61313bbabce2c6, 0x2323ac4b3b3da016},
{0xae397d8aa96c1b77, 0xabec975e0a0d081b},
{0xd9c7dced53c72255, 0x96e7bd358c904a22},
{0x881cea14545c7575, 0x7e50d64177da2e55},
{0xaa242499697392d2, 0xdde50bd1d5d0b9ea},
{0xd4ad2dbfc3d07787, 0x955e4ec64b44e865},
{0x84ec3c97da624ab4, 0xbd5af13bef0b113f},
{0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f},
{0xcfb11ead453994ba, 0x67de18eda5814af3},
{0x81ceb32c4b43fcf4, 0x80eacf948770ced8},
{0xa2425ff75e14fc31, 0xa1258379a94d028e},
{0xcad2f7f5359a3b3e, 0x096ee45813a04331},
{0xfd87b5f28300ca0d, 0x8bca9d6e188853fd},
{0x9e74d1b791e07e48, 0x775ea264cf55347e},
{0xc612062576589dda, 0x95364afe032a819e},
{0xf79687aed3eec551, 0x3a83ddbd83f52205},
{0x9abe14cd44753b52, 0xc4926a9672793543},
{0xc16d9a0095928a27, 0x75b7053c0f178294},
{0xf1c90080baf72cb1, 0x5324c68b12dd6339},
{0x971da05074da7bee, 0xd3f6fc16ebca5e04},
{0xbce5086492111aea, 0x88f4bb1ca6bcf585},
{0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6},
{0x9392ee8e921d5d07, 0x3aff322e62439fd0},
{0xb877aa3236a4b449, 0x09befeb9fad487c3},
{0xe69594bec44de15b, 0x4c2ebe687989a9b4},
{0x901d7cf73ab0acd9, 0x0f9d37014bf60a11},
{0xb424dc35095cd80f, 0x538484c19ef38c95},
{0xe12e13424bb40e13, 0x2865a5f206b06fba},
{0x8cbccc096f5088cb, 0xf93f87b7442e45d4},
{0xafebff0bcb24aafe, 0xf78f69a51539d749},
{0xdbe6fecebdedd5be, 0xb573440e5a884d1c},
{0x89705f4136b4a597, 0x31680a88f8953031},
{0xabcc77118461cefc, 0xfdc20d2b36ba7c3e},
{0xd6bf94d5e57a42bc, 0x3d32907604691b4d},
{0x8637bd05af6c69b5, 0xa63f9a49c2c1b110},
{0xa7c5ac471b478423, 0x0fcf80dc33721d54},
{0xd1b71758e219652b, 0xd3c36113404ea4a9},
{0x83126e978d4fdf3b, 0x645a1cac083126ea},
{0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4},
{0xcccccccccccccccc, 0xcccccccccccccccd},
{0x8000000000000000, 0x0000000000000000},
{0xa000000000000000, 0x0000000000000000},
{0xc800000000000000, 0x0000000000000000},
{0xfa00000000000000, 0x0000000000000000},
{0x9c40000000000000, 0x0000000000000000},
{0xc350000000000000, 0x0000000000000000},
{0xf424000000000000, 0x0000000000000000},
{0x9896800000000000, 0x0000000000000000},
{0xbebc200000000000, 0x0000000000000000},
{0xee6b280000000000, 0x0000000000000000},
{0x9502f90000000000, 0x0000000000000000},
{0xba43b74000000000, 0x0000000000000000},
{0xe8d4a51000000000, 0x0000000000000000},
{0x9184e72a00000000, 0x0000000000000000},
{0xb5e620f480000000, 0x0000000000000000},
{0xe35fa931a0000000, 0x0000000000000000},
{0x8e1bc9bf04000000, 0x0000000000000000},
{0xb1a2bc2ec5000000, 0x0000000000000000},
{0xde0b6b3a76400000, 0x0000000000000000},
{0x8ac7230489e80000, 0x0000000000000000},
{0xad78ebc5ac620000, 0x0000000000000000},
{0xd8d726b7177a8000, 0x0000000000000000},
{0x878678326eac9000, 0x0000000000000000},
{0xa968163f0a57b400, 0x0000000000000000},
{0xd3c21bcecceda100, 0x0000000000000000},
{0x84595161401484a0, 0x0000000000000000},
{0xa56fa5b99019a5c8, 0x0000000000000000},
{0xcecb8f27f4200f3a, 0x0000000000000000},
{0x813f3978f8940984, 0x4000000000000000},
{0xa18f07d736b90be5, 0x5000000000000000},
{0xc9f2c9cd04674ede, 0xa400000000000000},
{0xfc6f7c4045812296, 0x4d00000000000000},
{0x9dc5ada82b70b59d, 0xf020000000000000},
{0xc5371912364ce305, 0x6c28000000000000},
{0xf684df56c3e01bc6, 0xc732000000000000},
{0x9a130b963a6c115c, 0x3c7f400000000000},
{0xc097ce7bc90715b3, 0x4b9f100000000000},
{0xf0bdc21abb48db20, 0x1e86d40000000000},
{0x96769950b50d88f4, 0x1314448000000000},
{0xbc143fa4e250eb31, 0x17d955a000000000},
{0xeb194f8e1ae525fd, 0x5dcfab0800000000},
{0x92efd1b8d0cf37be, 0x5aa1cae500000000},
{0xb7abc627050305ad, 0xf14a3d9e40000000},
{0xe596b7b0c643c719, 0x6d9ccd05d0000000},
{0x8f7e32ce7bea5c6f, 0xe4820023a2000000},
{0xb35dbf821ae4f38b, 0xdda2802c8a800000},
{0xe0352f62a19e306e, 0xd50b2037ad200000},
{0x8c213d9da502de45, 0x4526f422cc340000},
{0xaf298d050e4395d6, 0x9670b12b7f410000},
{0xdaf3f04651d47b4c, 0x3c0cdd765f114000},
{0x88d8762bf324cd0f, 0xa5880a69fb6ac800},
{0xab0e93b6efee0053, 0x8eea0d047a457a00},
{0xd5d238a4abe98068, 0x72a4904598d6d880},
{0x85a36366eb71f041, 0x47a6da2b7f864750},
{0xa70c3c40a64e6c51, 0x999090b65f67d924},
{0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d},
{0x82818f1281ed449f, 0xbff8f10e7a8921a5},
{0xa321f2d7226895c7, 0xaff72d52192b6a0e},
{0xcbea6f8ceb02bb39, 0x9bf4f8a69f764491},
{0xfee50b7025c36a08, 0x02f236d04753d5b5},
{0x9f4f2726179a2245, 0x01d762422c946591},
{0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef6},
{0xf8ebad2b84e0d58b, 0xd2e0898765a7deb3},
{0x9b934c3b330c8577, 0x63cc55f49f88eb30},
{0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fc},
{0xf316271c7fc3908a, 0x8bef464e3945ef7b},
{0x97edd871cfda3a56, 0x97758bf0e3cbb5ad},
{0xbde94e8e43d0c8ec, 0x3d52eeed1cbea318},
{0xed63a231d4c4fb27, 0x4ca7aaa863ee4bde},
{0x945e455f24fb1cf8, 0x8fe8caa93e74ef6b},
{0xb975d6b6ee39e436, 0xb3e2fd538e122b45},
{0xe7d34c64a9c85d44, 0x60dbbca87196b617},
{0x90e40fbeea1d3a4a, 0xbc8955e946fe31ce},
{0xb51d13aea4a488dd, 0x6babab6398bdbe42},
{0xe264589a4dcdab14, 0xc696963c7eed2dd2},
{0x8d7eb76070a08aec, 0xfc1e1de5cf543ca3},
{0xb0de65388cc8ada8, 0x3b25a55f43294bcc},
{0xdd15fe86affad912, 0x49ef0eb713f39ebf},
{0x8a2dbf142dfcc7ab, 0x6e3569326c784338},
{0xacb92ed9397bf996, 0x49c2c37f07965405},
{0xd7e77a8f87daf7fb, 0xdc33745ec97be907},
{0x86f0ac99b4e8dafd, 0x69a028bb3ded71a4},
{0xa8acd7c0222311bc, 0xc40832ea0d68ce0d},
{0xd2d80db02aabd62b, 0xf50a3fa490c30191},
{0x83c7088e1aab65db, 0x792667c6da79e0fb},
{0xa4b8cab1a1563f52, 0x577001b891185939},
{0xcde6fd5e09abcf26, 0xed4c0226b55e6f87},
{0x80b05e5ac60b6178, 0x544f8158315b05b5},
{0xa0dc75f1778e39d6, 0x696361ae3db1c722},
{0xc913936dd571c84c, 0x03bc3a19cd1e38ea},
{0xfb5878494ace3a5f, 0x04ab48a04065c724},
{0x9d174b2dcec0e47b, 0x62eb0d64283f9c77},
{0xc45d1df942711d9a, 0x3ba5d0bd324f8395},
{0xf5746577930d6500, 0xca8f44ec7ee3647a},
{0x9968bf6abbe85f20, 0x7e998b13cf4e1ecc},
{0xbfc2ef456ae276e8, 0x9e3fedd8c321a67f},
{0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101f},
{0x95d04aee3b80ece5, 0xbba1f1d158724a13},
{0xbb445da9ca61281f, 0x2a8a6e45ae8edc98},
{0xea1575143cf97226, 0xf52d09d71a3293be},
{0x924d692ca61be758, 0x593c2626705f9c57},
{0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836d},
{0xe498f455c38b997a, 0x0b6dfb9c0f956448},
{0x8edf98b59a373fec, 0x4724bd4189bd5ead},
{0xb2977ee300c50fe7, 0x58edec91ec2cb658},
{0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ee},
{0x8b865b215899f46c, 0xbd79e0d20082ee75},
{0xae67f1e9aec07187, 0xecd8590680a3aa12},
{0xda01ee641a708de9, 0xe80e6f4820cc9496},
{0x884134fe908658b2, 0x3109058d147fdcde},
{0xaa51823e34a7eede, 0xbd4b46f0599fd416},
{0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91b},
{0x850fadc09923329e, 0x03e2cf6bc604ddb1},
{0xa6539930bf6bff45, 0x84db8346b786151d},
{0xcfe87f7cef46ff16, 0xe612641865679a64},
{0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07f},
{0xa26da3999aef7749, 0xe3be5e330f38f09e},
{0xcb090c8001ab551c, 0x5cadf5bfd3072cc6},
{0xfdcb4fa002162a63, 0x73d9732fc7c8f7f7},
{0x9e9f11c4014dda7e, 0x2867e7fddcdd9afb},
{0xc646d63501a1511d, 0xb281e1fd541501b9},
{0xf7d88bc24209a565, 0x1f225a7ca91a4227},
{0x9ae757596946075f, 0x3375788de9b06959},
{0xc1a12d2fc3978937, 0x0052d6b1641c83af},
{0xf209787bb47d6b84, 0xc0678c5dbd23a49b},
{0x9745eb4d50ce6332, 0xf840b7ba963646e1},
{0xbd176620a501fbff, 0xb650e5a93bc3d899},
{0xec5d3fa8ce427aff, 0xa3e51f138ab4cebf},
{0x93ba47c980e98cdf, 0xc66f336c36b10138},
{0xb8a8d9bbe123f017, 0xb80b0047445d4185},
{0xe6d3102ad96cec1d, 0xa60dc059157491e6},
{0x9043ea1ac7e41392, 0x87c89837ad68db30},
{0xb454e4a179dd1877, 0x29babe4598c311fc},
{0xe16a1dc9d8545e94, 0xf4296dd6fef3d67b},
{0x8ce2529e2734bb1d, 0x1899e4a65f58660d},
{0xb01ae745b101e9e4, 0x5ec05dcff72e7f90},
{0xdc21a1171d42645d, 0x76707543f4fa1f74},
{0x899504ae72497eba, 0x6a06494a791c53a9},
{0xabfa45da0edbde69, 0x0487db9d17636893},
{0xd6f8d7509292d603, 0x45a9d2845d3c42b7},
{0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3},
{0xa7f26836f282b732, 0x8e6cac7768d7141f},
{0xd1ef0244af2364ff, 0x3207d795430cd927},
{0x8335616aed761f1f, 0x7f44e6bd49e807b9},
{0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a7},
{0xcd036837130890a1, 0x36dba887c37a8c10},
{0x802221226be55a64, 0xc2494954da2c978a},
{0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6d},
{0xc83553c5c8965d3d, 0x6f92829494e5acc8},
{0xfa42a8b73abbf48c, 0xcb772339ba1f17fa},
{0x9c69a97284b578d7, 0xff2a760414536efc},
{0xc38413cf25e2d70d, 0xfef5138519684abb},
{0xf46518c2ef5b8cd1, 0x7eb258665fc25d6a},
{0x98bf2f79d5993802, 0xef2f773ffbd97a62},
{0xbeeefb584aff8603, 0xaafb550ffacfd8fb},
{0xeeaaba2e5dbf6784, 0x95ba2a53f983cf39},
{0x952ab45cfa97a0b2, 0xdd945a747bf26184},
{0xba756174393d88df, 0x94f971119aeef9e5},
{0xe912b9d1478ceb17, 0x7a37cd5601aab85e},
{0x91abb422ccb812ee, 0xac62e055c10ab33b},
{0xb616a12b7fe617aa, 0x577b986b314d600a},
{0xe39c49765fdf9d94, 0xed5a7e85fda0b80c},
{0x8e41ade9fbebc27d, 0x14588f13be847308},
{0xb1d219647ae6b31c, 0x596eb2d8ae258fc9},
{0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bc},
{0x8aec23d680043bee, 0x25de7bb9480d5855},
{0xada72ccc20054ae9, 0xaf561aa79a10ae6b},
{0xd910f7ff28069da4, 0x1b2ba1518094da05},
{0x87aa9aff79042286, 0x90fb44d2f05d0843},
{0xa99541bf57452b28, 0x353a1607ac744a54},
{0xd3fa922f2d1675f2, 0x42889b8997915ce9},
{0x847c9b5d7c2e09b7, 0x69956135febada12},
{0xa59bc234db398c25, 0x43fab9837e699096},
{0xcf02b2c21207ef2e, 0x94f967e45e03f4bc},
{0x8161afb94b44f57d, 0x1d1be0eebac278f6},
{0xa1ba1ba79e1632dc, 0x6462d92a69731733},
{0xca28a291859bbf93, 0x7d7b8f7503cfdcff},
{0xfcb2cb35e702af78, 0x5cda735244c3d43f},
{0x9defbf01b061adab, 0x3a0888136afa64a8},
{0xc56baec21c7a1916, 0x088aaa1845b8fdd1},
{0xf6c69a72a3989f5b, 0x8aad549e57273d46},
{0x9a3c2087a63f6399, 0x36ac54e2f678864c},
{0xc0cb28a98fcf3c7f, 0x84576a1bb416a7de},
{0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d6},
{0x969eb7c47859e743, 0x9f644ae5a4b1b326},
{0xbc4665b596706114, 0x873d5d9f0dde1fef},
{0xeb57ff22fc0c7959, 0xa90cb506d155a7eb},
{0x9316ff75dd87cbd8, 0x09a7f12442d588f3},
{0xb7dcbf5354e9bece, 0x0c11ed6d538aeb30},
{0xe5d3ef282a242e81, 0x8f1668c8a86da5fb},
{0x8fa475791a569d10, 0xf96e017d694487bd},
{0xb38d92d760ec4455, 0x37c981dcc395a9ad},
{0xe070f78d3927556a, 0x85bbe253f47b1418},
{0x8c469ab843b89562, 0x93956d7478ccec8f},
{0xaf58416654a6babb, 0x387ac8d1970027b3},
{0xdb2e51bfe9d0696a, 0x06997b05fcc0319f},
{0x88fcf317f22241e2, 0x441fece3bdf81f04},
{0xab3c2fddeeaad25a, 0xd527e81cad7626c4},
{0xd60b3bd56a5586f1, 0x8a71e223d8d3b075},
{0x85c7056562757456, 0xf6872d5667844e4a},
{0xa738c6bebb12d16c, 0xb428f8ac016561dc},
{0xd106f86e69d785c7, 0xe13336d701beba53},
{0x82a45b450226b39c, 0xecc0024661173474},
{0xa34d721642b06084, 0x27f002d7f95d0191},
{0xcc20ce9bd35c78a5, 0x31ec038df7b441f5},
{0xff290242c83396ce, 0x7e67047175a15272},
{0x9f79a169bd203e41, 0x0f0062c6e984d387},
{0xc75809c42c684dd1, 0x52c07b78a3e60869},
{0xf92e0c3537826145, 0xa7709a56ccdf8a83},
{0x9bbcc7a142b17ccb, 0x88a66076400bb692},
{0xc2abf989935ddbfe, 0x6acff893d00ea436},
{0xf356f7ebf83552fe, 0x0583f6b8c4124d44},
{0x98165af37b2153de, 0xc3727a337a8b704b},
{0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5d},
{0xeda2ee1c7064130c, 0x1162def06f79df74},
{0x9485d4d1c63e8be7, 0x8addcb5645ac2ba9},
{0xb9a74a0637ce2ee1, 0x6d953e2bd7173693},
{0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0438},
{0x910ab1d4db9914a0, 0x1d9c9892400a22a3},
{0xb54d5e4a127f59c8, 0x2503beb6d00cab4c},
{0xe2a0b5dc971f303a, 0x2e44ae64840fd61e},
{0x8da471a9de737e24, 0x5ceaecfed289e5d3},
{0xb10d8e1456105dad, 0x7425a83e872c5f48},
{0xdd50f1996b947518, 0xd12f124e28f7771a},
{0x8a5296ffe33cc92f, 0x82bd6b70d99aaa70},
{0xace73cbfdc0bfb7b, 0x636cc64d1001550c},
{0xd8210befd30efa5a, 0x3c47f7e05401aa4f},
{0x8714a775e3e95c78, 0x65acfaec34810a72},
{0xa8d9d1535ce3b396, 0x7f1839a741a14d0e},
{0xd31045a8341ca07c, 0x1ede48111209a051},
{0x83ea2b892091e44d, 0x934aed0aab460433},
{0xa4e4b66b68b65d60, 0xf81da84d56178540},
{0xce1de40642e3f4b9, 0x36251260ab9d668f},
{0x80d2ae83e9ce78f3, 0xc1d72b7c6b42601a},
{0xa1075a24e4421730, 0xb24cf65b8612f820},
{0xc94930ae1d529cfc, 0xdee033f26797b628},
{0xfb9b7cd9a4a7443c, 0x169840ef017da3b2},
{0x9d412e0806e88aa5, 0x8e1f289560ee864f},
{0xc491798a08a2ad4e, 0xf1a6f2bab92a27e3},
{0xf5b5d7ec8acb58a2, 0xae10af696774b1dc},
{0x9991a6f3d6bf1765, 0xacca6da1e0a8ef2a},
{0xbff610b0cc6edd3f, 0x17fd090a58d32af4},
{0xeff394dcff8a948e, 0xddfc4b4cef07f5b1},
{0x95f83d0a1fb69cd9, 0x4abdaf101564f98f},
{0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f2},
{0xea53df5fd18d5513, 0x84c86189216dc5ee},
{0x92746b9be2f8552c, 0x32fd3cf5b4e49bb5},
{0xb7118682dbb66a77, 0x3fbc8c33221dc2a2},
{0xe4d5e82392a40515, 0x0fabaf3feaa5334b},
{0x8f05b1163ba6832d, 0x29cb4d87f2a7400f},
{0xb2c71d5bca9023f8, 0x743e20e9ef511013},
{0xdf78e4b2bd342cf6, 0x914da9246b255417},
{0x8bab8eefb6409c1a, 0x1ad089b6c2f7548f},
{0xae9672aba3d0c320, 0xa184ac2473b529b2},
{0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741f},
{0x8865899617fb1871, 0x7e2fa67c7a658893},
{0xaa7eebfb9df9de8d, 0xddbb901b98feeab8},
{0xd51ea6fa85785631, 0x552a74227f3ea566},
{0x8533285c936b35de, 0xd53a88958f872760},
{0xa67ff273b8460356, 0x8a892abaf368f138},
{0xd01fef10a657842c, 0x2d2b7569b0432d86},
{0x8213f56a67f6b29b, 0x9c3b29620e29fc74},
{0xa298f2c501f45f42, 0x8349f3ba91b47b90},
{0xcb3f2f7642717713, 0x241c70a936219a74},
{0xfe0efb53d30dd4d7, 0xed238cd383aa0111},
{0x9ec95d1463e8a506, 0xf4363804324a40ab},
{0xc67bb4597ce2ce48, 0xb143c6053edcd0d6},
{0xf81aa16fdc1b81da, 0xdd94b7868e94050b},
{0x9b10a4e5e9913128, 0xca7cf2b4191c8327},
{0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f1},
{0xf24a01a73cf2dccf, 0xbc633b39673c8ced},
{0x976e41088617ca01, 0xd5be0503e085d814},
{0xbd49d14aa79dbc82, 0x4b2d8644d8a74e19},
{0xec9c459d51852ba2, 0xddf8e7d60ed1219f},
{0x93e1ab8252f33b45, 0xcabb90e5c942b504},
{0xb8da1662e7b00a17, 0x3d6a751f3b936244},
{0xe7109bfba19c0c9d, 0x0cc512670a783ad5},
{0x906a617d450187e2, 0x27fb2b80668b24c6},
{0xb484f9dc9641e9da, 0xb1f9f660802dedf7},
{0xe1a63853bbd26451, 0x5e7873f8a0396974},
{0x8d07e33455637eb2, 0xdb0b487b6423e1e9},
{0xb049dc016abc5e5f, 0x91ce1a9a3d2cda63},
{0xdc5c5301c56b75f7, 0x7641a140cc7810fc},
{0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9e},
{0xac2820d9623bf429, 0x546345fa9fbdcd45},
{0xd732290fbacaf133, 0xa97c177947ad4096},
{0x867f59a9d4bed6c0, 0x49ed8eabcccc485e},
{0xa81f301449ee8c70, 0x5c68f256bfff5a75},
{0xd226fc195c6a2f8c, 0x73832eec6fff3112},
{0x83585d8fd9c25db7, 0xc831fd53c5ff7eac},
{0xa42e74f3d032f525, 0xba3e7ca8b77f5e56},
{0xcd3a1230c43fb26f, 0x28ce1bd2e55f35ec},
{0x80444b5e7aa7cf85, 0x7980d163cf5b81b4},
{0xa0555e361951c366, 0xd7e105bcc3326220},
{0xc86ab5c39fa63440, 0x8dd9472bf3fefaa8},
{0xfa856334878fc150, 0xb14f98f6f0feb952},
{0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d4},
{0xc3b8358109e84f07, 0x0a862f80ec4700c9},
{0xf4a642e14c6262c8, 0xcd27bb612758c0fb},
{0x98e7e9cccfbd7dbd, 0x8038d51cb897789d},
{0xbf21e44003acdd2c, 0xe0470a63e6bd56c4},
{0xeeea5d5004981478, 0x1858ccfce06cac75},
{0x95527a5202df0ccb, 0x0f37801e0c43ebc9},
{0xbaa718e68396cffd, 0xd30560258f54e6bb},
{0xe950df20247c83fd, 0x47c6b82ef32a206a},
{0x91d28b7416cdd27e, 0x4cdc331d57fa5442},
{0xb6472e511c81471d, 0xe0133fe4adf8e953},
{0xe3d8f9e563a198e5, 0x58180fddd97723a7},
{0x8e679c2f5e44ff8f, 0x570f09eaa7ea7649},
{0xb201833b35d63f73, 0x2cd2cc6551e513db},
{0xde81e40a034bcf4f, 0xf8077f7ea65e58d2},
{0x8b112e86420f6191, 0xfb04afaf27faf783},
{0xadd57a27d29339f6, 0x79c5db9af1f9b564},
{0xd94ad8b1c7380874, 0x18375281ae7822bd},
{0x87cec76f1c830548, 0x8f2293910d0b15b6},
{0xa9c2794ae3a3c69a, 0xb2eb3875504ddb23},
{0xd433179d9c8cb841, 0x5fa60692a46151ec},
{0x849feec281d7f328, 0xdbc7c41ba6bcd334},
{0xa5c7ea73224deff3, 0x12b9b522906c0801},
{0xcf39e50feae16bef, 0xd768226b34870a01},
{0x81842f29f2cce375, 0xe6a1158300d46641},
{0xa1e53af46f801c53, 0x60495ae3c1097fd1},
{0xca5e89b18b602368, 0x385bb19cb14bdfc5},
{0xfcf62c1dee382c42, 0x46729e03dd9ed7b6},
{0x9e19db92b4e31ba9, 0x6c07a2c26a8346d2},
{0xc5a05277621be293, 0xc7098b7305241886},
2022-01-12 16:10:07 -08:00
{ 0xf70867153aa2db38,
0xb8cbee4fc66d1ea8 }
#else
2022-01-12 16:10:07 -08:00
{0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
{0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
{0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
{0x86a8d39ef77164bc, 0xae5dff9c02033198},
{0xd98ddaee19068c76, 0x3badd624dd9b0958},
{0xafbd2350644eeacf, 0xe5d1929ef90898fb},
{0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
{0xe55990879ddcaabd, 0xcc420a6a101d0516},
{0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
{0x95a8637627989aad, 0xdde7001379a44aa9},
{0xf1c90080baf72cb1, 0x5324c68b12dd6339},
{0xc350000000000000, 0x0000000000000000},
{0x9dc5ada82b70b59d, 0xf020000000000000},
{0xfee50b7025c36a08, 0x02f236d04753d5b5},
{0xcde6fd5e09abcf26, 0xed4c0226b55e6f87},
{0xa6539930bf6bff45, 0x84db8346b786151d},
{0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3},
{0xd910f7ff28069da4, 0x1b2ba1518094da05},
{0xaf58416654a6babb, 0x387ac8d1970027b3},
{0x8da471a9de737e24, 0x5ceaecfed289e5d3},
{0xe4d5e82392a40515, 0x0fabaf3feaa5334b},
{0xb8da1662e7b00a17, 0x3d6a751f3b936244},
2022-01-12 16:10:07 -08:00
{ 0x95527a5202df0ccb,
0x0f37801e0c43ebc9 }
2022-01-12 16:10:07 -08:00
#endif
};
#if FMT_USE_FULL_CACHE_DRAGONBOX
return pow10_significands[k - float_info<double>::min_k];
#else
static constexpr const uint64_t powers_of_5_64[] = {
0x0000000000000001, 0x0000000000000005, 0x0000000000000019,
0x000000000000007d, 0x0000000000000271, 0x0000000000000c35,
0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1,
0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd,
0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9,
0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5,
0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631,
0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed,
0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9};
static const int compression_ratio = 27;
// Compute base index.
int cache_index = (k - float_info<double>::min_k) / compression_ratio;
int kb = cache_index * compression_ratio + float_info<double>::min_k;
int offset = k - kb;
// Get base cache.
uint128_fallback base_cache = pow10_significands[cache_index];
if (offset == 0) return base_cache;
// Compute the required amount of bit-shift.
int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset;
FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected");
// Try to recover the real cache.
2022-01-12 16:10:07 -08:00
uint64_t pow5 = powers_of_5_64[offset];
uint128_fallback recovered_cache = umul128(base_cache.high(), pow5);
uint128_fallback middle_low = umul128(base_cache.low(), pow5);
recovered_cache += middle_low.high();
uint64_t high_to_middle = recovered_cache.high() << (64 - alpha);
uint64_t middle_to_low = recovered_cache.low() << (64 - alpha);
recovered_cache =
uint128_fallback{(recovered_cache.low() >> alpha) | high_to_middle,
((middle_low.low() >> alpha) | middle_to_low)};
FMT_ASSERT(recovered_cache.low() + 1 != 0, "");
return {recovered_cache.high(), recovered_cache.low() + 1};
#endif
}
struct compute_mul_result {
carrier_uint result;
bool is_integer;
};
struct compute_mul_parity_result {
bool parity;
bool is_integer;
};
static compute_mul_result compute_mul(
carrier_uint u, const cache_entry_type& cache) noexcept {
auto r = umul192_upper128(u, cache);
return {r.high(), r.low() == 0};
}
static uint32_t compute_delta(cache_entry_type const& cache,
int beta) noexcept {
return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta));
}
static compute_mul_parity_result compute_mul_parity(
carrier_uint two_f, const cache_entry_type& cache, int beta) noexcept {
FMT_ASSERT(beta >= 1, "");
FMT_ASSERT(beta < 64, "");
auto r = umul192_lower128(two_f, cache);
return {((r.high() >> (64 - beta)) & 1) != 0,
((r.high() << beta) | (r.low() >> (64 - beta))) == 0};
}
static carrier_uint compute_left_endpoint_for_shorter_interval_case(
const cache_entry_type& cache, int beta) noexcept {
return (cache.high() -
(cache.high() >> (num_significand_bits<double>() + 2))) >>
(64 - num_significand_bits<double>() - 1 - beta);
}
static carrier_uint compute_right_endpoint_for_shorter_interval_case(
const cache_entry_type& cache, int beta) noexcept {
return (cache.high() +
(cache.high() >> (num_significand_bits<double>() + 1))) >>
(64 - num_significand_bits<double>() - 1 - beta);
2020-02-04 14:50:46 -05:00
}
static carrier_uint compute_round_up_for_shorter_interval_case(
const cache_entry_type& cache, int beta) noexcept {
return ((cache.high() >> (64 - num_significand_bits<double>() - 2 - beta)) +
1) /
2;
}
};
// Various integer checks
template <class T>
bool is_left_endpoint_integer_shorter_interval(int exponent) noexcept {
const int case_shorter_interval_left_endpoint_lower_threshold = 2;
const int case_shorter_interval_left_endpoint_upper_threshold = 3;
return exponent >= case_shorter_interval_left_endpoint_lower_threshold &&
exponent <= case_shorter_interval_left_endpoint_upper_threshold;
}
// Remove trailing zeros from n and return the number of zeros removed (float)
FMT_INLINE int remove_trailing_zeros(uint32_t& n) noexcept {
FMT_ASSERT(n != 0, "");
const uint32_t mod_inv_5 = 0xcccccccd;
const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5;
int s = 0;
while (true) {
auto q = rotr(n * mod_inv_25, 2);
if (q > max_value<uint32_t>() / 100) break;
n = q;
s += 2;
}
auto q = rotr(n * mod_inv_5, 1);
if (q <= max_value<uint32_t>() / 10) {
n = q;
s |= 1;
}
return s;
}
// Removes trailing zeros and returns the number of zeros removed (double)
FMT_INLINE int remove_trailing_zeros(uint64_t& n) noexcept {
FMT_ASSERT(n != 0, "");
// This magic number is ceil(2^90 / 10^8).
constexpr uint64_t magic_number = 12379400392853802749ull;
auto nm = umul128(n, magic_number);
// Is n is divisible by 10^8?
if ((nm.high() & ((1ull << (90 - 64)) - 1)) == 0 && nm.low() < magic_number) {
// If yes, work with the quotient.
auto n32 = static_cast<uint32_t>(nm.high() >> (90 - 64));
const uint32_t mod_inv_5 = 0xcccccccd;
const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5;
int s = 8;
while (true) {
auto q = rotr(n32 * mod_inv_25, 2);
if (q > max_value<uint32_t>() / 100) break;
n32 = q;
s += 2;
}
auto q = rotr(n32 * mod_inv_5, 1);
if (q <= max_value<uint32_t>() / 10) {
n32 = q;
s |= 1;
2020-02-04 14:50:46 -05:00
}
n = n32;
return s;
}
// If n is not divisible by 10^8, work with n itself.
const uint64_t mod_inv_5 = 0xcccccccccccccccd;
const uint64_t mod_inv_25 = mod_inv_5 * mod_inv_5;
int s = 0;
while (true) {
auto q = rotr(n * mod_inv_25, 2);
if (q > max_value<uint64_t>() / 100) break;
n = q;
s += 2;
}
auto q = rotr(n * mod_inv_5, 1);
if (q <= max_value<uint64_t>() / 10) {
n = q;
s |= 1;
}
return s;
}
// The main algorithm for shorter interval case
template <class T>
FMT_INLINE decimal_fp<T> shorter_interval_case(int exponent) noexcept {
decimal_fp<T> ret_value;
// Compute k and beta
const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent);
const int beta = exponent + floor_log2_pow10(-minus_k);
// Compute xi and zi
using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case(
cache, beta);
auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case(
cache, beta);
// If the left endpoint is not an integer, increase it
if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi;
// Try bigger divisor
ret_value.significand = zi / 10;
// If succeed, remove trailing zeros if necessary and return
if (ret_value.significand * 10 >= xi) {
ret_value.exponent = minus_k + 1;
ret_value.exponent += remove_trailing_zeros(ret_value.significand);
return ret_value;
}
// Otherwise, compute the round-up of y
ret_value.significand =
cache_accessor<T>::compute_round_up_for_shorter_interval_case(cache,
beta);
ret_value.exponent = minus_k;
// When tie occurs, choose one of them according to the rule
if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold &&
exponent <= float_info<T>::shorter_interval_tie_upper_threshold) {
ret_value.significand = ret_value.significand % 2 == 0
? ret_value.significand
: ret_value.significand - 1;
} else if (ret_value.significand < xi) {
++ret_value.significand;
}
return ret_value;
}
template <typename T> decimal_fp<T> to_decimal(T x) noexcept {
// Step 1: integer promotion & Schubfach multiplier calculation.
using carrier_uint = typename float_info<T>::carrier_uint;
using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
auto br = bit_cast<carrier_uint>(x);
// Extract significand bits and exponent bits.
const carrier_uint significand_mask =
(static_cast<carrier_uint>(1) << num_significand_bits<T>()) - 1;
carrier_uint significand = (br & significand_mask);
int exponent =
static_cast<int>((br & exponent_mask<T>()) >> num_significand_bits<T>());
if (exponent != 0) { // Check if normal.
exponent -= exponent_bias<T>() + num_significand_bits<T>();
// Shorter interval case; proceed like Schubfach.
// In fact, when exponent == 1 and significand == 0, the interval is
// regular. However, it can be shown that the end-results are anyway same.
if (significand == 0) return shorter_interval_case<T>(exponent);
significand |= (static_cast<carrier_uint>(1) << num_significand_bits<T>());
} else {
// Subnormal case; the interval is always regular.
if (significand == 0) return {0, 0};
exponent =
std::numeric_limits<T>::min_exponent - num_significand_bits<T>() - 1;
}
const bool include_left_endpoint = (significand % 2 == 0);
const bool include_right_endpoint = include_left_endpoint;
// Compute k and beta.
const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa;
const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
const int beta = exponent + floor_log2_pow10(-minus_k);
// Compute zi and deltai.
// 10^kappa <= deltai < 10^(kappa + 1)
const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta);
const carrier_uint two_fc = significand << 1;
// For the case of binary32, the result of integer check is not correct for
// 29711844 * 2^-82
// = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18
// and 29711844 * 2^-81
// = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17,
// and they are the unique counterexamples. However, since 29711844 is even,
// this does not cause any problem for the endpoints calculations; it can only
// cause a problem when we need to perform integer check for the center.
// Fortunately, with these inputs, that branch is never executed, so we are
// fine.
const typename cache_accessor<T>::compute_mul_result z_mul =
cache_accessor<T>::compute_mul((two_fc | 1) << beta, cache);
// Step 2: Try larger divisor; remove trailing zeros if necessary.
// Using an upper bound on zi, we might be able to optimize the division
// better than the compiler; we are computing zi / big_divisor here.
decimal_fp<T> ret_value;
ret_value.significand = divide_by_10_to_kappa_plus_1(z_mul.result);
uint32_t r = static_cast<uint32_t>(z_mul.result - float_info<T>::big_divisor *
ret_value.significand);
if (r < deltai) {
// Exclude the right endpoint if necessary.
if (r == 0 && z_mul.is_integer && !include_right_endpoint) {
--ret_value.significand;
r = float_info<T>::big_divisor;
goto small_divisor_case_label;
}
} else if (r > deltai) {
goto small_divisor_case_label;
} else {
// r == deltai; compare fractional parts.
const carrier_uint two_fl = two_fc - 1;
if (!include_left_endpoint ||
exponent < float_info<T>::case_fc_pm_half_lower_threshold ||
exponent > float_info<T>::divisibility_check_by_5_threshold) {
// If the left endpoint is not included, the condition for
// success is z^(f) < delta^(f) (odd parity).
// Otherwise, the inequalities on exponent ensure that
// x is not an integer, so if z^(f) >= delta^(f) (even parity), we in fact
// have strict inequality.
if (!cache_accessor<T>::compute_mul_parity(two_fl, cache, beta).parity) {
goto small_divisor_case_label;
}
} else {
const typename cache_accessor<T>::compute_mul_parity_result x_mul =
cache_accessor<T>::compute_mul_parity(two_fl, cache, beta);
if (!x_mul.parity && !x_mul.is_integer) {
goto small_divisor_case_label;
}
2020-02-04 14:50:46 -05:00
}
}
ret_value.exponent = minus_k + float_info<T>::kappa + 1;
// We may need to remove trailing zeros.
ret_value.exponent += remove_trailing_zeros(ret_value.significand);
return ret_value;
// Step 3: Find the significand with the smaller divisor.
small_divisor_case_label:
ret_value.significand *= 10;
ret_value.exponent = minus_k + float_info<T>::kappa;
uint32_t dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2);
const bool approx_y_parity =
((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0;
// Is dist divisible by 10^kappa?
const bool divisible_by_small_divisor =
check_divisibility_and_divide_by_pow10<float_info<T>::kappa>(dist);
// Add dist / 10^kappa to the significand.
ret_value.significand += dist;
if (!divisible_by_small_divisor) return ret_value;
// Check z^(f) >= epsilon^(f).
// We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
// where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f).
// Since there are only 2 possibilities, we only need to care about the
// parity. Also, zi and r should have the same parity since the divisor
// is an even number.
const auto y_mul = cache_accessor<T>::compute_mul_parity(two_fc, cache, beta);
// If z^(f) >= epsilon^(f), we might have a tie when z^(f) == epsilon^(f),
// or equivalently, when y is an integer.
if (y_mul.parity != approx_y_parity)
--ret_value.significand;
else if (y_mul.is_integer && ret_value.significand % 2 != 0)
--ret_value.significand;
return ret_value;
}
} // namespace dragonbox
2020-02-04 14:50:46 -05:00
// format_dragon flags.
enum dragon {
predecessor_closer = 1,
fixup = 2, // Run fixup to correct exp10 which can be off by one.
fixed = 4,
};
2022-01-12 16:10:07 -08:00
// Formats a floating-point number using a variation of the Fixed-Precision
// Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
// https://fmt.dev/papers/p372-steele.pdf.
FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
unsigned flags, int num_digits,
buffer<char>& buf, int& exp10) {
2020-02-04 14:50:46 -05:00
bigint numerator; // 2 * R in (FPP)^2.
bigint denominator; // 2 * S in (FPP)^2.
// lower and upper are differences between value and corresponding boundaries.
bigint lower; // (M^- in (FPP)^2).
bigint upper_store; // upper's value if different from lower.
bigint* upper = nullptr; // (M^+ in (FPP)^2).
// Shift numerator and denominator by an extra bit or two (if lower boundary
// is closer) to make lower and upper integers. This eliminates multiplication
// by 2 during later computations.
bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
int shift = is_predecessor_closer ? 2 : 1;
2020-02-04 14:50:46 -05:00
if (value.e >= 0) {
numerator = value.f;
numerator <<= value.e + shift;
lower = 1;
2020-02-04 14:50:46 -05:00
lower <<= value.e;
if (is_predecessor_closer) {
upper_store = 1;
2020-02-04 14:50:46 -05:00
upper_store <<= value.e + 1;
upper = &upper_store;
}
denominator.assign_pow10(exp10);
2022-01-12 16:10:07 -08:00
denominator <<= shift;
2020-02-04 14:50:46 -05:00
} else if (exp10 < 0) {
numerator.assign_pow10(-exp10);
lower.assign(numerator);
if (is_predecessor_closer) {
2020-02-04 14:50:46 -05:00
upper_store.assign(numerator);
upper_store <<= 1;
upper = &upper_store;
}
numerator *= value.f;
numerator <<= shift;
denominator = 1;
2020-02-04 14:50:46 -05:00
denominator <<= shift - value.e;
} else {
numerator = value.f;
numerator <<= shift;
2020-02-04 14:50:46 -05:00
denominator.assign_pow10(exp10);
denominator <<= shift - value.e;
lower = 1;
if (is_predecessor_closer) {
upper_store = 1ULL << 1;
2020-02-04 14:50:46 -05:00
upper = &upper_store;
}
}
bool even = (value.f & 1) == 0;
if (!upper) upper = &lower;
if ((flags & dragon::fixup) != 0) {
if (add_compare(numerator, *upper, denominator) + even <= 0) {
--exp10;
numerator *= 10;
if (num_digits < 0) {
lower *= 10;
if (upper != &lower) *upper *= 10;
}
}
if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
}
2020-02-04 14:50:46 -05:00
// Invariant: value == (numerator / denominator) * pow(10, exp10).
if (num_digits < 0) {
// Generate the shortest representation.
num_digits = 0;
char* data = buf.data();
for (;;) {
int digit = numerator.divmod_assign(denominator);
bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
// numerator + upper >[=] pow10:
bool high = add_compare(numerator, *upper, denominator) + even > 0;
data[num_digits++] = static_cast<char>('0' + digit);
if (low || high) {
if (!low) {
2020-02-04 14:50:46 -05:00
++data[num_digits - 1];
} else if (high) {
int result = add_compare(numerator, numerator, denominator);
// Round half to even.
if (result > 0 || (result == 0 && (digit % 2) != 0))
++data[num_digits - 1];
}
buf.try_resize(to_unsigned(num_digits));
exp10 -= num_digits - 1;
return;
2020-02-04 14:50:46 -05:00
}
numerator *= 10;
lower *= 10;
if (upper != &lower) *upper *= 10;
2020-02-04 14:50:46 -05:00
}
}
// Generate the given number of digits.
exp10 -= num_digits - 1;
if (num_digits == 0) {
denominator *= 10;
2022-01-12 16:10:07 -08:00
auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
buf.push_back(digit);
return;
}
buf.try_resize(to_unsigned(num_digits));
for (int i = 0; i < num_digits - 1; ++i) {
int digit = numerator.divmod_assign(denominator);
buf[i] = static_cast<char>('0' + digit);
2020-02-04 14:50:46 -05:00
numerator *= 10;
}
int digit = numerator.divmod_assign(denominator);
auto result = add_compare(numerator, numerator, denominator);
if (result > 0 || (result == 0 && (digit % 2) != 0)) {
if (digit == 9) {
const auto overflow = '0' + 10;
buf[num_digits - 1] = overflow;
// Propagate the carry.
for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
buf[i] = '0';
++buf[i - 1];
}
if (buf[0] == overflow) {
buf[0] = '1';
++exp10;
}
return;
}
++digit;
}
buf[num_digits - 1] = static_cast<char>('0' + digit);
2020-02-04 14:50:46 -05:00
}
#ifdef _MSC_VER
FMT_FUNC auto fmt_snprintf(char* buf, size_t size, const char* fmt, ...)
-> int {
auto args = va_list();
va_start(args, fmt);
int result = vsnprintf_s(buf, size, _TRUNCATE, fmt, args);
va_end(args);
return result;
}
#endif
2022-01-12 16:10:07 -08:00
template <typename Float>
FMT_HEADER_ONLY_CONSTEXPR20 int format_float(Float value, int precision,
float_specs specs,
buffer<char>& buf) {
// float is passed as double to reduce the number of instantiations.
static_assert(!std::is_same<Float, float>::value, "");
FMT_ASSERT(value >= 0, "value is negative");
auto converted_value = convert_float(value);
2020-02-04 14:50:46 -05:00
const bool fixed = specs.format == float_format::fixed;
if (value <= 0) { // <= instead of == to silence a warning.
if (precision <= 0 || !fixed) {
buf.push_back('0');
return 0;
}
buf.try_resize(to_unsigned(precision));
2022-01-12 16:10:07 -08:00
fill_n(buf.data(), precision, '0');
2020-02-04 14:50:46 -05:00
return -precision;
}
int exp = 0;
bool use_dragon = true;
unsigned dragon_flags = 0;
if (!is_fast_float<Float>()) {
const auto inv_log2_10 = 0.3010299956639812; // 1 / log2(10)
using info = dragonbox::float_info<decltype(converted_value)>;
const auto f = basic_fp<typename info::carrier_uint>(converted_value);
// Compute exp, an approximate power of 10, such that
// 10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
// This is based on log10(value) == log2(value) / log2(10) and approximation
// of log2(value) by e + num_fraction_bits idea from double-conversion.
exp = static_cast<int>(
std::ceil((f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10));
dragon_flags = dragon::fixup;
} else if (!is_constant_evaluated() && precision < 0) {
// Use Dragonbox for the shortest format.
if (specs.binary32) {
auto dec = dragonbox::to_decimal(static_cast<float>(value));
write<char>(buffer_appender<char>(buf), dec.significand);
return dec.exponent;
}
auto dec = dragonbox::to_decimal(static_cast<double>(value));
write<char>(buffer_appender<char>(buf), dec.significand);
return dec.exponent;
} else {
2022-01-12 16:10:07 -08:00
// Use Grisu + Dragon4 for the given precision:
// https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
const int min_exp = -60; // alpha in Grisu.
int cached_exp10 = 0; // K in Grisu.
fp normalized = normalize(fp(converted_value));
2022-01-12 16:10:07 -08:00
const auto cached_pow = get_cached_power(
min_exp - (normalized.e + fp::num_significand_bits), cached_exp10);
normalized = normalized * cached_pow;
gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error &&
!is_constant_evaluated()) {
exp += handler.exp10;
buf.try_resize(to_unsigned(handler.size));
use_dragon = false;
} else {
exp += handler.size - cached_exp10 - 1;
precision = handler.precision;
}
}
if (use_dragon) {
auto f = basic_fp<uint128_t>();
bool is_predecessor_closer = specs.binary32
? f.assign(static_cast<float>(value))
: f.assign(converted_value);
if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
if (fixed) dragon_flags |= dragon::fixed;
2022-01-12 16:10:07 -08:00
// Limit precision to the maximum possible number of significant digits in
// an IEEE754 double because we don't need to generate zeros.
const int max_double_digits = 767;
if (precision > max_double_digits) precision = max_double_digits;
format_dragon(f, dragon_flags, precision, buf, exp);
}
if (!fixed && !specs.showpoint) {
// Remove trailing zeros.
auto num_digits = buf.size();
while (num_digits > 0 && buf[num_digits - 1] == '0') {
--num_digits;
++exp;
2020-02-04 14:50:46 -05:00
}
buf.try_resize(num_digits);
}
return exp;
2022-01-12 16:10:07 -08:00
}
} // namespace detail
template <> struct formatter<detail::bigint> {
FMT_CONSTEXPR auto parse(format_parse_context& ctx)
-> format_parse_context::iterator {
2020-02-04 14:50:46 -05:00
return ctx.begin();
}
template <typename FormatContext>
auto format(const detail::bigint& n, FormatContext& ctx) const ->
typename FormatContext::iterator {
2020-02-04 14:50:46 -05:00
auto out = ctx.out();
bool first = true;
for (auto i = n.bigits_.size(); i > 0; --i) {
auto value = n.bigits_[i - 1u];
2020-02-04 14:50:46 -05:00
if (first) {
2022-01-12 16:10:07 -08:00
out = format_to(out, FMT_STRING("{:x}"), value);
2020-02-04 14:50:46 -05:00
first = false;
continue;
}
2022-01-12 16:10:07 -08:00
out = format_to(out, FMT_STRING("{:08x}"), value);
2020-02-04 14:50:46 -05:00
}
if (n.exp_ > 0)
2022-01-12 16:10:07 -08:00
out = format_to(out, FMT_STRING("p{}"),
n.exp_ * detail::bigint::bigit_bits);
2020-02-04 14:50:46 -05:00
return out;
}
};
FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
2022-01-12 16:10:07 -08:00
for_each_codepoint(s, [this](uint32_t cp, string_view) {
if (cp == invalid_code_point) FMT_THROW(std::runtime_error("invalid utf8"));
if (cp <= 0xFFFF) {
buffer_.push_back(static_cast<wchar_t>(cp));
} else {
cp -= 0x10000;
buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
}
2022-01-12 16:10:07 -08:00
return true;
});
buffer_.push_back(0);
}
FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
const char* message) noexcept {
FMT_TRY {
2022-01-12 16:10:07 -08:00
auto ec = std::error_code(error_code, std::generic_category());
write(std::back_inserter(out), std::system_error(ec, message).what());
return;
2020-02-04 14:50:46 -05:00
}
FMT_CATCH(...) {}
format_error_code(out, error_code, message);
}
2020-02-04 14:50:46 -05:00
FMT_FUNC void report_system_error(int error_code,
const char* message) noexcept {
report_error(format_system_error, error_code, message);
}
2022-01-12 16:10:07 -08:00
// DEPRECATED!
// This function is defined here and not inline for ABI compatiblity.
FMT_FUNC void detail::error_handler::on_error(const char* message) {
throw_format_error(message);
}
FMT_FUNC std::string vformat(string_view fmt, format_args args) {
// Don't optimize the "{}" case to keep the binary size small and because it
// can be better optimized in fmt::format anyway.
auto buffer = memory_buffer();
detail::vformat_to(buffer, fmt, args);
return to_string(buffer);
}
#ifdef _WIN32
namespace detail {
using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>;
extern "C" __declspec(dllimport) int __stdcall WriteConsoleW( //
void*, const void*, dword, dword*, void*);
} // namespace detail
#endif
2022-01-12 16:10:07 -08:00
namespace detail {
FMT_FUNC void print(std::FILE* f, string_view text) {
#ifdef _WIN32
auto fd = _fileno(f);
if (_isatty(fd)) {
2022-01-12 16:10:07 -08:00
detail::utf8_to_utf16 u16(string_view(text.data(), text.size()));
auto written = detail::dword();
2022-01-12 16:10:07 -08:00
if (detail::WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)),
u16.c_str(), static_cast<uint32_t>(u16.size()),
&written, nullptr)) {
return;
}
2022-01-12 16:10:07 -08:00
// Fallback to fwrite on failure. It can happen if the output has been
// redirected to NUL.
}
#endif
2022-01-12 16:10:07 -08:00
detail::fwrite_fully(text.data(), 1, text.size(), f);
}
} // namespace detail
FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
memory_buffer buffer;
detail::vformat_to(buffer, format_str, args);
detail::print(f, {buffer.data(), buffer.size()});
}
#ifdef _WIN32
// Print assuming legacy (non-Unicode) encoding.
FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str,
format_args args) {
memory_buffer buffer;
detail::vformat_to(buffer, format_str,
basic_format_args<buffer_context<char>>(args));
fwrite_fully(buffer.data(), 1, buffer.size(), f);
}
#endif
FMT_FUNC void vprint(string_view format_str, format_args args) {
vprint(stdout, format_str, args);
}
namespace detail {
struct singleton {
unsigned char upper;
unsigned char lower_count;
};
inline auto is_printable(uint16_t x, const singleton* singletons,
size_t singletons_size,
const unsigned char* singleton_lowers,
const unsigned char* normal, size_t normal_size)
-> bool {
auto upper = x >> 8;
auto lower_start = 0;
for (size_t i = 0; i < singletons_size; ++i) {
auto s = singletons[i];
auto lower_end = lower_start + s.lower_count;
if (upper < s.upper) break;
if (upper == s.upper) {
for (auto j = lower_start; j < lower_end; ++j) {
if (singleton_lowers[j] == (x & 0xff)) return false;
}
}
lower_start = lower_end;
}
auto xsigned = static_cast<int>(x);
auto current = true;
for (size_t i = 0; i < normal_size; ++i) {
auto v = static_cast<int>(normal[i]);
auto len = (v & 0x80) != 0 ? (v & 0x7f) << 8 | normal[++i] : v;
xsigned -= len;
if (xsigned < 0) break;
current = !current;
}
return current;
}
// This code is generated by support/printable.py.
FMT_FUNC auto is_printable(uint32_t cp) -> bool {
static constexpr singleton singletons0[] = {
{0x00, 1}, {0x03, 5}, {0x05, 6}, {0x06, 3}, {0x07, 6}, {0x08, 8},
{0x09, 17}, {0x0a, 28}, {0x0b, 25}, {0x0c, 20}, {0x0d, 16}, {0x0e, 13},
{0x0f, 4}, {0x10, 3}, {0x12, 18}, {0x13, 9}, {0x16, 1}, {0x17, 5},
{0x18, 2}, {0x19, 3}, {0x1a, 7}, {0x1c, 2}, {0x1d, 1}, {0x1f, 22},
{0x20, 3}, {0x2b, 3}, {0x2c, 2}, {0x2d, 11}, {0x2e, 1}, {0x30, 3},
{0x31, 2}, {0x32, 1}, {0xa7, 2}, {0xa9, 2}, {0xaa, 4}, {0xab, 8},
{0xfa, 2}, {0xfb, 5}, {0xfd, 4}, {0xfe, 3}, {0xff, 9},
};
static constexpr unsigned char singletons0_lower[] = {
0xad, 0x78, 0x79, 0x8b, 0x8d, 0xa2, 0x30, 0x57, 0x58, 0x8b, 0x8c, 0x90,
0x1c, 0x1d, 0xdd, 0x0e, 0x0f, 0x4b, 0x4c, 0xfb, 0xfc, 0x2e, 0x2f, 0x3f,
0x5c, 0x5d, 0x5f, 0xb5, 0xe2, 0x84, 0x8d, 0x8e, 0x91, 0x92, 0xa9, 0xb1,
0xba, 0xbb, 0xc5, 0xc6, 0xc9, 0xca, 0xde, 0xe4, 0xe5, 0xff, 0x00, 0x04,
0x11, 0x12, 0x29, 0x31, 0x34, 0x37, 0x3a, 0x3b, 0x3d, 0x49, 0x4a, 0x5d,
0x84, 0x8e, 0x92, 0xa9, 0xb1, 0xb4, 0xba, 0xbb, 0xc6, 0xca, 0xce, 0xcf,
0xe4, 0xe5, 0x00, 0x04, 0x0d, 0x0e, 0x11, 0x12, 0x29, 0x31, 0x34, 0x3a,
0x3b, 0x45, 0x46, 0x49, 0x4a, 0x5e, 0x64, 0x65, 0x84, 0x91, 0x9b, 0x9d,
0xc9, 0xce, 0xcf, 0x0d, 0x11, 0x29, 0x45, 0x49, 0x57, 0x64, 0x65, 0x8d,
0x91, 0xa9, 0xb4, 0xba, 0xbb, 0xc5, 0xc9, 0xdf, 0xe4, 0xe5, 0xf0, 0x0d,
0x11, 0x45, 0x49, 0x64, 0x65, 0x80, 0x84, 0xb2, 0xbc, 0xbe, 0xbf, 0xd5,
0xd7, 0xf0, 0xf1, 0x83, 0x85, 0x8b, 0xa4, 0xa6, 0xbe, 0xbf, 0xc5, 0xc7,
0xce, 0xcf, 0xda, 0xdb, 0x48, 0x98, 0xbd, 0xcd, 0xc6, 0xce, 0xcf, 0x49,
0x4e, 0x4f, 0x57, 0x59, 0x5e, 0x5f, 0x89, 0x8e, 0x8f, 0xb1, 0xb6, 0xb7,
0xbf, 0xc1, 0xc6, 0xc7, 0xd7, 0x11, 0x16, 0x17, 0x5b, 0x5c, 0xf6, 0xf7,
0xfe, 0xff, 0x80, 0x0d, 0x6d, 0x71, 0xde, 0xdf, 0x0e, 0x0f, 0x1f, 0x6e,
0x6f, 0x1c, 0x1d, 0x5f, 0x7d, 0x7e, 0xae, 0xaf, 0xbb, 0xbc, 0xfa, 0x16,
0x17, 0x1e, 0x1f, 0x46, 0x47, 0x4e, 0x4f, 0x58, 0x5a, 0x5c, 0x5e, 0x7e,
0x7f, 0xb5, 0xc5, 0xd4, 0xd5, 0xdc, 0xf0, 0xf1, 0xf5, 0x72, 0x73, 0x8f,
0x74, 0x75, 0x96, 0x2f, 0x5f, 0x26, 0x2e, 0x2f, 0xa7, 0xaf, 0xb7, 0xbf,
0xc7, 0xcf, 0xd7, 0xdf, 0x9a, 0x40, 0x97, 0x98, 0x30, 0x8f, 0x1f, 0xc0,
0xc1, 0xce, 0xff, 0x4e, 0x4f, 0x5a, 0x5b, 0x07, 0x08, 0x0f, 0x10, 0x27,
0x2f, 0xee, 0xef, 0x6e, 0x6f, 0x37, 0x3d, 0x3f, 0x42, 0x45, 0x90, 0x91,
0xfe, 0xff, 0x53, 0x67, 0x75, 0xc8, 0xc9, 0xd0, 0xd1, 0xd8, 0xd9, 0xe7,
0xfe, 0xff,
};
static constexpr singleton singletons1[] = {
{0x00, 6}, {0x01, 1}, {0x03, 1}, {0x04, 2}, {0x08, 8}, {0x09, 2},
{0x0a, 5}, {0x0b, 2}, {0x0e, 4}, {0x10, 1}, {0x11, 2}, {0x12, 5},
{0x13, 17}, {0x14, 1}, {0x15, 2}, {0x17, 2}, {0x19, 13}, {0x1c, 5},
{0x1d, 8}, {0x24, 1}, {0x6a, 3}, {0x6b, 2}, {0xbc, 2}, {0xd1, 2},
{0xd4, 12}, {0xd5, 9}, {0xd6, 2}, {0xd7, 2}, {0xda, 1}, {0xe0, 5},
{0xe1, 2}, {0xe8, 2}, {0xee, 32}, {0xf0, 4}, {0xf8, 2}, {0xf9, 2},
{0xfa, 2}, {0xfb, 1},
};
static constexpr unsigned char singletons1_lower[] = {
0x0c, 0x27, 0x3b, 0x3e, 0x4e, 0x4f, 0x8f, 0x9e, 0x9e, 0x9f, 0x06, 0x07,
0x09, 0x36, 0x3d, 0x3e, 0x56, 0xf3, 0xd0, 0xd1, 0x04, 0x14, 0x18, 0x36,
0x37, 0x56, 0x57, 0x7f, 0xaa, 0xae, 0xaf, 0xbd, 0x35, 0xe0, 0x12, 0x87,
0x89, 0x8e, 0x9e, 0x04, 0x0d, 0x0e, 0x11, 0x12, 0x29, 0x31, 0x34, 0x3a,
0x45, 0x46, 0x49, 0x4a, 0x4e, 0x4f, 0x64, 0x65, 0x5c, 0xb6, 0xb7, 0x1b,
0x1c, 0x07, 0x08, 0x0a, 0x0b, 0x14, 0x17, 0x36, 0x39, 0x3a, 0xa8, 0xa9,
0xd8, 0xd9, 0x09, 0x37, 0x90, 0x91, 0xa8, 0x07, 0x0a, 0x3b, 0x3e, 0x66,
0x69, 0x8f, 0x92, 0x6f, 0x5f, 0xee, 0xef, 0x5a, 0x62, 0x9a, 0x9b, 0x27,
0x28, 0x55, 0x9d, 0xa0, 0xa1, 0xa3, 0xa4, 0xa7, 0xa8, 0xad, 0xba, 0xbc,
0xc4, 0x06, 0x0b, 0x0c, 0x15, 0x1d, 0x3a, 0x3f, 0x45, 0x51, 0xa6, 0xa7,
0xcc, 0xcd, 0xa0, 0x07, 0x19, 0x1a, 0x22, 0x25, 0x3e, 0x3f, 0xc5, 0xc6,
0x04, 0x20, 0x23, 0x25, 0x26, 0x28, 0x33, 0x38, 0x3a, 0x48, 0x4a, 0x4c,
0x50, 0x53, 0x55, 0x56, 0x58, 0x5a, 0x5c, 0x5e, 0x60, 0x63, 0x65, 0x66,
0x6b, 0x73, 0x78, 0x7d, 0x7f, 0x8a, 0xa4, 0xaa, 0xaf, 0xb0, 0xc0, 0xd0,
0xae, 0xaf, 0x79, 0xcc, 0x6e, 0x6f, 0x93,
};
static constexpr unsigned char normal0[] = {
0x00, 0x20, 0x5f, 0x22, 0x82, 0xdf, 0x04, 0x82, 0x44, 0x08, 0x1b, 0x04,
0x06, 0x11, 0x81, 0xac, 0x0e, 0x80, 0xab, 0x35, 0x28, 0x0b, 0x80, 0xe0,
0x03, 0x19, 0x08, 0x01, 0x04, 0x2f, 0x04, 0x34, 0x04, 0x07, 0x03, 0x01,
0x07, 0x06, 0x07, 0x11, 0x0a, 0x50, 0x0f, 0x12, 0x07, 0x55, 0x07, 0x03,
0x04, 0x1c, 0x0a, 0x09, 0x03, 0x08, 0x03, 0x07, 0x03, 0x02, 0x03, 0x03,
0x03, 0x0c, 0x04, 0x05, 0x03, 0x0b, 0x06, 0x01, 0x0e, 0x15, 0x05, 0x3a,
0x03, 0x11, 0x07, 0x06, 0x05, 0x10, 0x07, 0x57, 0x07, 0x02, 0x07, 0x15,
0x0d, 0x50, 0x04, 0x43, 0x03, 0x2d, 0x03, 0x01, 0x04, 0x11, 0x06, 0x0f,
0x0c, 0x3a, 0x04, 0x1d, 0x25, 0x5f, 0x20, 0x6d, 0x04, 0x6a, 0x25, 0x80,
0xc8, 0x05, 0x82, 0xb0, 0x03, 0x1a, 0x06, 0x82, 0xfd, 0x03, 0x59, 0x07,
0x15, 0x0b, 0x17, 0x09, 0x14, 0x0c, 0x14, 0x0c, 0x6a, 0x06, 0x0a, 0x06,
0x1a, 0x06, 0x59, 0x07, 0x2b, 0x05, 0x46, 0x0a, 0x2c, 0x04, 0x0c, 0x04,
0x01, 0x03, 0x31, 0x0b, 0x2c, 0x04, 0x1a, 0x06, 0x0b, 0x03, 0x80, 0xac,
0x06, 0x0a, 0x06, 0x21, 0x3f, 0x4c, 0x04, 0x2d, 0x03, 0x74, 0x08, 0x3c,
0x03, 0x0f, 0x03, 0x3c, 0x07, 0x38, 0x08, 0x2b, 0x05, 0x82, 0xff, 0x11,
0x18, 0x08, 0x2f, 0x11, 0x2d, 0x03, 0x20, 0x10, 0x21, 0x0f, 0x80, 0x8c,
0x04, 0x82, 0x97, 0x19, 0x0b, 0x15, 0x88, 0x94, 0x05, 0x2f, 0x05, 0x3b,
0x07, 0x02, 0x0e, 0x18, 0x09, 0x80, 0xb3, 0x2d, 0x74, 0x0c, 0x80, 0xd6,
0x1a, 0x0c, 0x05, 0x80, 0xff, 0x05, 0x80, 0xdf, 0x0c, 0xee, 0x0d, 0x03,
0x84, 0x8d, 0x03, 0x37, 0x09, 0x81, 0x5c, 0x14, 0x80, 0xb8, 0x08, 0x80,
0xcb, 0x2a, 0x38, 0x03, 0x0a, 0x06, 0x38, 0x08, 0x46, 0x08, 0x0c, 0x06,
0x74, 0x0b, 0x1e, 0x03, 0x5a, 0x04, 0x59, 0x09, 0x80, 0x83, 0x18, 0x1c,
0x0a, 0x16, 0x09, 0x4c, 0x04, 0x80, 0x8a, 0x06, 0xab, 0xa4, 0x0c, 0x17,
0x04, 0x31, 0xa1, 0x04, 0x81, 0xda, 0x26, 0x07, 0x0c, 0x05, 0x05, 0x80,
0xa5, 0x11, 0x81, 0x6d, 0x10, 0x78, 0x28, 0x2a, 0x06, 0x4c, 0x04, 0x80,
0x8d, 0x04, 0x80, 0xbe, 0x03, 0x1b, 0x03, 0x0f, 0x0d,
};
static constexpr unsigned char normal1[] = {
0x5e, 0x22, 0x7b, 0x05, 0x03, 0x04, 0x2d, 0x03, 0x66, 0x03, 0x01, 0x2f,
0x2e, 0x80, 0x82, 0x1d, 0x03, 0x31, 0x0f, 0x1c, 0x04, 0x24, 0x09, 0x1e,
0x05, 0x2b, 0x05, 0x44, 0x04, 0x0e, 0x2a, 0x80, 0xaa, 0x06, 0x24, 0x04,
0x24, 0x04, 0x28, 0x08, 0x34, 0x0b, 0x01, 0x80, 0x90, 0x81, 0x37, 0x09,
0x16, 0x0a, 0x08, 0x80, 0x98, 0x39, 0x03, 0x63, 0x08, 0x09, 0x30, 0x16,
0x05, 0x21, 0x03, 0x1b, 0x05, 0x01, 0x40, 0x38, 0x04, 0x4b, 0x05, 0x2f,
0x04, 0x0a, 0x07, 0x09, 0x07, 0x40, 0x20, 0x27, 0x04, 0x0c, 0x09, 0x36,
0x03, 0x3a, 0x05, 0x1a, 0x07, 0x04, 0x0c, 0x07, 0x50, 0x49, 0x37, 0x33,
0x0d, 0x33, 0x07, 0x2e, 0x08, 0x0a, 0x81, 0x26, 0x52, 0x4e, 0x28, 0x08,
0x2a, 0x56, 0x1c, 0x14, 0x17, 0x09, 0x4e, 0x04, 0x1e, 0x0f, 0x43, 0x0e,
0x19, 0x07, 0x0a, 0x06, 0x48, 0x08, 0x27, 0x09, 0x75, 0x0b, 0x3f, 0x41,
0x2a, 0x06, 0x3b, 0x05, 0x0a, 0x06, 0x51, 0x06, 0x01, 0x05, 0x10, 0x03,
0x05, 0x80, 0x8b, 0x62, 0x1e, 0x48, 0x08, 0x0a, 0x80, 0xa6, 0x5e, 0x22,
0x45, 0x0b, 0x0a, 0x06, 0x0d, 0x13, 0x39, 0x07, 0x0a, 0x36, 0x2c, 0x04,
0x10, 0x80, 0xc0, 0x3c, 0x64, 0x53, 0x0c, 0x48, 0x09, 0x0a, 0x46, 0x45,
0x1b, 0x48, 0x08, 0x53, 0x1d, 0x39, 0x81, 0x07, 0x46, 0x0a, 0x1d, 0x03,
0x47, 0x49, 0x37, 0x03, 0x0e, 0x08, 0x0a, 0x06, 0x39, 0x07, 0x0a, 0x81,
0x36, 0x19, 0x80, 0xb7, 0x01, 0x0f, 0x32, 0x0d, 0x83, 0x9b, 0x66, 0x75,
0x0b, 0x80, 0xc4, 0x8a, 0xbc, 0x84, 0x2f, 0x8f, 0xd1, 0x82, 0x47, 0xa1,
0xb9, 0x82, 0x39, 0x07, 0x2a, 0x04, 0x02, 0x60, 0x26, 0x0a, 0x46, 0x0a,
0x28, 0x05, 0x13, 0x82, 0xb0, 0x5b, 0x65, 0x4b, 0x04, 0x39, 0x07, 0x11,
0x40, 0x05, 0x0b, 0x02, 0x0e, 0x97, 0xf8, 0x08, 0x84, 0xd6, 0x2a, 0x09,
0xa2, 0xf7, 0x81, 0x1f, 0x31, 0x03, 0x11, 0x04, 0x08, 0x81, 0x8c, 0x89,
0x04, 0x6b, 0x05, 0x0d, 0x03, 0x09, 0x07, 0x10, 0x93, 0x60, 0x80, 0xf6,
0x0a, 0x73, 0x08, 0x6e, 0x17, 0x46, 0x80, 0x9a, 0x14, 0x0c, 0x57, 0x09,
0x19, 0x80, 0x87, 0x81, 0x47, 0x03, 0x85, 0x42, 0x0f, 0x15, 0x85, 0x50,
0x2b, 0x80, 0xd5, 0x2d, 0x03, 0x1a, 0x04, 0x02, 0x81, 0x70, 0x3a, 0x05,
0x01, 0x85, 0x00, 0x80, 0xd7, 0x29, 0x4c, 0x04, 0x0a, 0x04, 0x02, 0x83,
0x11, 0x44, 0x4c, 0x3d, 0x80, 0xc2, 0x3c, 0x06, 0x01, 0x04, 0x55, 0x05,
0x1b, 0x34, 0x02, 0x81, 0x0e, 0x2c, 0x04, 0x64, 0x0c, 0x56, 0x0a, 0x80,
0xae, 0x38, 0x1d, 0x0d, 0x2c, 0x04, 0x09, 0x07, 0x02, 0x0e, 0x06, 0x80,
0x9a, 0x83, 0xd8, 0x08, 0x0d, 0x03, 0x0d, 0x03, 0x74, 0x0c, 0x59, 0x07,
0x0c, 0x14, 0x0c, 0x04, 0x38, 0x08, 0x0a, 0x06, 0x28, 0x08, 0x22, 0x4e,
0x81, 0x54, 0x0c, 0x15, 0x03, 0x03, 0x05, 0x07, 0x09, 0x19, 0x07, 0x07,
0x09, 0x03, 0x0d, 0x07, 0x29, 0x80, 0xcb, 0x25, 0x0a, 0x84, 0x06,
};
auto lower = static_cast<uint16_t>(cp);
if (cp < 0x10000) {
return is_printable(lower, singletons0,
sizeof(singletons0) / sizeof(*singletons0),
singletons0_lower, normal0, sizeof(normal0));
}
if (cp < 0x20000) {
return is_printable(lower, singletons1,
sizeof(singletons1) / sizeof(*singletons1),
singletons1_lower, normal1, sizeof(normal1));
}
if (0x2a6de <= cp && cp < 0x2a700) return false;
if (0x2b735 <= cp && cp < 0x2b740) return false;
if (0x2b81e <= cp && cp < 0x2b820) return false;
if (0x2cea2 <= cp && cp < 0x2ceb0) return false;
if (0x2ebe1 <= cp && cp < 0x2f800) return false;
if (0x2fa1e <= cp && cp < 0x30000) return false;
if (0x3134b <= cp && cp < 0xe0100) return false;
if (0xe01f0 <= cp && cp < 0x110000) return false;
return cp < 0x110000;
}
} // namespace detail
FMT_END_NAMESPACE
#endif // FMT_FORMAT_INL_H_