Merge pull request #11321 from JosJuice/jitarm64-accurate-nans

JitArm64: Implement accurate NaNs
This commit is contained in:
Mai 2022-12-07 00:58:13 +00:00 committed by GitHub
commit 000c6c4813
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 404 additions and 128 deletions

View File

@ -2173,6 +2173,12 @@ void ARM64FloatEmitter::EmitScalar2RegMisc(bool U, u32 size, u32 opcode, ARM64Re
(DecodeReg(Rn) << 5) | DecodeReg(Rd)); (DecodeReg(Rn) << 5) | DecodeReg(Rd));
} }
void ARM64FloatEmitter::EmitScalarPairwise(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
Write32((1 << 30) | (U << 29) | (0b111100011 << 20) | (size << 22) | (opcode << 12) | (1 << 11) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd));
}
void ARM64FloatEmitter::Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) void ARM64FloatEmitter::Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{ {
ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "Singles are not supported!"); ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "Singles are not supported!");
@ -2985,6 +2991,28 @@ void ARM64FloatEmitter::FRSQRTE(ARM64Reg Rd, ARM64Reg Rn)
EmitScalar2RegMisc(1, IsDouble(Rd) ? 3 : 2, 0x1D, Rd, Rn); EmitScalar2RegMisc(1, IsDouble(Rd) ? 3 : 2, 0x1D, Rd, Rn);
} }
// Scalar - pairwise
void ARM64FloatEmitter::FADDP(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalarPairwise(1, IsDouble(Rd), 0b01101, Rd, Rn);
}
void ARM64FloatEmitter::FMAXP(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalarPairwise(1, IsDouble(Rd), 0b01111, Rd, Rn);
}
void ARM64FloatEmitter::FMINP(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalarPairwise(1, IsDouble(Rd) ? 3 : 2, 0b01111, Rd, Rn);
}
void ARM64FloatEmitter::FMAXNMP(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalarPairwise(1, IsDouble(Rd), 0b01100, Rd, Rn);
}
void ARM64FloatEmitter::FMINNMP(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalarPairwise(1, IsDouble(Rd) ? 3 : 2, 0b01100, Rd, Rn);
}
// Scalar - 2 Source // Scalar - 2 Source
void ARM64FloatEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) void ARM64FloatEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{ {

View File

@ -1130,6 +1130,13 @@ public:
void FRECPE(ARM64Reg Rd, ARM64Reg Rn); void FRECPE(ARM64Reg Rd, ARM64Reg Rn);
void FRSQRTE(ARM64Reg Rd, ARM64Reg Rn); void FRSQRTE(ARM64Reg Rd, ARM64Reg Rn);
// Scalar - pairwise
void FADDP(ARM64Reg Rd, ARM64Reg Rn);
void FMAXP(ARM64Reg Rd, ARM64Reg Rn);
void FMINP(ARM64Reg Rd, ARM64Reg Rn);
void FMAXNMP(ARM64Reg Rd, ARM64Reg Rn);
void FMINNMP(ARM64Reg Rd, ARM64Reg Rn);
// Scalar - 2 Source // Scalar - 2 Source
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
@ -1296,6 +1303,7 @@ private:
void EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn); void EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn);
void EmitScalar2RegMisc(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn); void EmitScalar2RegMisc(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitScalarPairwise(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn); void Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt,
ARM64Reg Rn); ARM64Reg Rn);

View File

@ -177,6 +177,10 @@ public:
void FloatCompare(UGeckoInstruction inst, bool upper = false); void FloatCompare(UGeckoInstruction inst, bool upper = false);
// temp_gpr can be INVALID_REG if single is true
void EmitQuietNaNBitConstant(Arm64Gen::ARM64Reg dest_reg, bool single,
Arm64Gen::ARM64Reg temp_gpr);
bool IsFPRStoreSafe(size_t guest_reg) const; bool IsFPRStoreSafe(size_t guest_reg) const;
protected: protected:

View File

@ -3,6 +3,8 @@
#include "Core/PowerPC/JitArm64/Jit.h" #include "Core/PowerPC/JitArm64/Jit.h"
#include <optional>
#include "Common/Arm64Emitter.h" #include "Common/Arm64Emitter.h"
#include "Common/CPUDetect.h" #include "Common/CPUDetect.h"
#include "Common/CommonTypes.h" #include "Common/CommonTypes.h"
@ -66,11 +68,19 @@ void JitArm64::fp_arith(UGeckoInstruction inst)
FALLBACK_IF(inst.Rc); FALLBACK_IF(inst.Rc);
FALLBACK_IF(jo.fp_exceptions || (jo.div_by_zero_exceptions && inst.SUBOP5 == 18)); FALLBACK_IF(jo.fp_exceptions || (jo.div_by_zero_exceptions && inst.SUBOP5 == 18));
u32 a = inst.FA, b = inst.FB, c = inst.FC, d = inst.FD; const u32 a = inst.FA;
u32 op5 = inst.SUBOP5; const u32 b = inst.FB;
const u32 c = inst.FC;
const u32 d = inst.FD;
const u32 op5 = inst.SUBOP5;
const bool use_c = op5 >= 25; // fmul and all kind of fmaddXX const bool use_c = op5 >= 25; // fmul and all kind of fmaddXX
const bool use_b = op5 != 25; // fmul uses no B const bool use_b = op5 != 25; // fmul uses no B
const bool fma = use_b && use_c;
const bool negate_result = (op5 & ~0x1) == 30;
// Addition and subtraction can't generate new NaNs, they can only take NaNs from inputs
const bool can_generate_nan = (op5 & ~0x1) != 20;
const bool output_is_single = inst.OPCD == 59; const bool output_is_single = inst.OPCD == 59;
const bool inaccurate_fma = op5 > 25 && !Config::Get(Config::SESSION_USE_FMA); const bool inaccurate_fma = op5 > 25 && !Config::Get(Config::SESSION_USE_FMA);
@ -82,53 +92,69 @@ void JitArm64::fp_arith(UGeckoInstruction inst)
}; };
const bool inputs_are_singles = inputs_are_singles_func(); const bool inputs_are_singles = inputs_are_singles_func();
const RegType type = const bool single = inputs_are_singles && output_is_single;
(inputs_are_singles && output_is_single) ? RegType::LowerPairSingle : RegType::LowerPair; const RegType type = single ? RegType::LowerPairSingle : RegType::LowerPair;
const RegType type_out = const RegType type_out =
output_is_single ? (inputs_are_singles ? RegType::DuplicatedSingle : RegType::Duplicated) : output_is_single ? (inputs_are_singles ? RegType::DuplicatedSingle : RegType::Duplicated) :
RegType::LowerPair; RegType::LowerPair;
const auto reg_encoder = const auto reg_encoder = single ? EncodeRegToSingle : EncodeRegToDouble;
(inputs_are_singles && output_is_single) ? EncodeRegToSingle : EncodeRegToDouble;
const ARM64Reg VA = reg_encoder(fpr.R(a, type)); const ARM64Reg VA = reg_encoder(fpr.R(a, type));
const ARM64Reg VB = use_b ? reg_encoder(fpr.R(b, type)) : ARM64Reg::INVALID_REG; const ARM64Reg VB = use_b ? reg_encoder(fpr.R(b, type)) : ARM64Reg::INVALID_REG;
ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG; const ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG;
const ARM64Reg VD = reg_encoder(fpr.RW(d, type_out)); const ARM64Reg VD = reg_encoder(fpr.RW(d, type_out));
ARM64Reg V0Q = ARM64Reg::INVALID_REG; ARM64Reg V0Q = ARM64Reg::INVALID_REG;
ARM64Reg V1Q = ARM64Reg::INVALID_REG; ARM64Reg V1Q = ARM64Reg::INVALID_REG;
ARM64Reg rounded_c_reg = VC;
if (round_c) if (round_c)
{ {
ASSERT_MSG(DYNA_REC, !inputs_are_singles, "Tried to apply 25-bit precision to single"); ASSERT_MSG(DYNA_REC, !inputs_are_singles, "Tried to apply 25-bit precision to single");
V1Q = fpr.GetReg(); V0Q = fpr.GetReg();
rounded_c_reg = reg_encoder(V0Q);
Force25BitPrecision(reg_encoder(V1Q), VC); Force25BitPrecision(rounded_c_reg, VC);
VC = reg_encoder(V1Q);
} }
ARM64Reg inaccurate_fma_temp_reg = VD; ARM64Reg inaccurate_fma_reg = VD;
if (inaccurate_fma && d == b) if (fma && inaccurate_fma && VD == VB)
{ {
if (V0Q == ARM64Reg::INVALID_REG)
V0Q = fpr.GetReg(); V0Q = fpr.GetReg();
inaccurate_fma_reg = reg_encoder(V0Q);
}
inaccurate_fma_temp_reg = reg_encoder(V0Q); ARM64Reg result_reg = VD;
const bool preserve_d =
m_accurate_nans && (VD == VA || (use_b && VD == VB) || (use_c && VD == VC));
if (preserve_d)
{
V1Q = fpr.GetReg();
result_reg = reg_encoder(V1Q);
}
const ARM64Reg temp_gpr = m_accurate_nans && !single ? gpr.GetReg() : ARM64Reg::INVALID_REG;
if (m_accurate_nans)
{
if (V0Q == ARM64Reg::INVALID_REG)
V0Q = fpr.GetReg();
} }
switch (op5) switch (op5)
{ {
case 18: case 18:
m_float_emit.FDIV(VD, VA, VB); m_float_emit.FDIV(result_reg, VA, VB);
break; break;
case 20: case 20:
m_float_emit.FSUB(VD, VA, VB); m_float_emit.FSUB(result_reg, VA, VB);
break; break;
case 21: case 21:
m_float_emit.FADD(VD, VA, VB); m_float_emit.FADD(result_reg, VA, VB);
break; break;
case 25: case 25:
m_float_emit.FMUL(VD, VA, VC); m_float_emit.FMUL(result_reg, VA, rounded_c_reg);
break; break;
// While it may seem like PowerPC's nmadd/nmsub map to AArch64's nmadd/msub [sic], // While it may seem like PowerPC's nmadd/nmsub map to AArch64's nmadd/msub [sic],
// the subtly different definitions affect how signed zeroes are handled. // the subtly different definitions affect how signed zeroes are handled.
@ -138,39 +164,116 @@ void JitArm64::fp_arith(UGeckoInstruction inst)
case 30: // fnmsub: "D = -(A*C - B)" vs "Vd = -((-Va) + Vn*Vm)" case 30: // fnmsub: "D = -(A*C - B)" vs "Vd = -((-Va) + Vn*Vm)"
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(inaccurate_fma_temp_reg, VA, VC); m_float_emit.FMUL(inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FSUB(VD, inaccurate_fma_temp_reg, VB); m_float_emit.FSUB(result_reg, inaccurate_fma_reg, VB);
} }
else else
{ {
m_float_emit.FNMSUB(VD, VA, VC, VB); m_float_emit.FNMSUB(result_reg, VA, rounded_c_reg, VB);
} }
if (op5 == 30)
m_float_emit.FNEG(VD, VD);
break; break;
case 29: // fmadd: "D = A*C + B" vs "Vd = Va + Vn*Vm" case 29: // fmadd: "D = A*C + B" vs "Vd = Va + Vn*Vm"
case 31: // fnmadd: "D = -(A*C + B)" vs "Vd = -(Va + Vn*Vm)" case 31: // fnmadd: "D = -(A*C + B)" vs "Vd = -(Va + Vn*Vm)"
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(inaccurate_fma_temp_reg, VA, VC); m_float_emit.FMUL(inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FADD(VD, inaccurate_fma_temp_reg, VB); m_float_emit.FADD(result_reg, inaccurate_fma_reg, VB);
} }
else else
{ {
m_float_emit.FMADD(VD, VA, VC, VB); m_float_emit.FMADD(result_reg, VA, rounded_c_reg, VB);
} }
if (op5 == 31)
m_float_emit.FNEG(VD, VD);
break; break;
default: default:
ASSERT_MSG(DYNA_REC, 0, "fp_arith"); ASSERT_MSG(DYNA_REC, 0, "fp_arith");
break; break;
} }
std::vector<FixupBranch> nan_fixups;
if (m_accurate_nans)
{
// Check if we need to handle NaNs
m_float_emit.FCMP(result_reg);
FixupBranch no_nan = B(CCFlags::CC_VC);
FixupBranch nan = B();
SetJumpTarget(no_nan);
SwitchToFarCode();
SetJumpTarget(nan);
const ARM64Reg quiet_bit_reg = reg_encoder(V0Q);
EmitQuietNaNBitConstant(quiet_bit_reg, inputs_are_singles && output_is_single, temp_gpr);
std::vector<ARM64Reg> inputs;
inputs.push_back(VA);
if (use_b && VA != VB)
inputs.push_back(VB);
if (use_c && VA != VC && (!use_b || VB != VC))
inputs.push_back(VC);
// If any inputs are NaNs, pick the first NaN of them and OR it with the quiet bit
for (size_t i = 0; i < inputs.size(); ++i)
{
// Skip checking if the input is a NaN if it's the last input and we're guaranteed to have at
// least one NaN input
const bool check_input = can_generate_nan || i != inputs.size() - 1;
const ARM64Reg input = inputs[i];
FixupBranch skip;
if (check_input)
{
m_float_emit.FCMP(input);
skip = B(CCFlags::CC_VC);
}
m_float_emit.ORR(EncodeRegToDouble(VD), EncodeRegToDouble(input),
EncodeRegToDouble(quiet_bit_reg));
nan_fixups.push_back(B());
if (check_input)
SetJumpTarget(skip);
}
std::optional<FixupBranch> nan_early_fixup;
if (can_generate_nan)
{
// There was no NaN in any of the inputs, so the NaN must have been generated by the
// arithmetic instruction. In this case, the result is already correct.
if (negate_result)
{
if (result_reg != VD)
m_float_emit.MOV(EncodeRegToDouble(VD), EncodeRegToDouble(result_reg));
nan_fixups.push_back(B());
}
else
{
nan_early_fixup = B();
}
}
SwitchToNearCode();
if (nan_early_fixup)
SetJumpTarget(*nan_early_fixup);
}
// PowerPC's nmadd/nmsub perform rounding before the final negation, which is not the case
// for any of AArch64's FMA instructions, so we negate using a separate instruction.
if (negate_result)
m_float_emit.FNEG(VD, result_reg);
else if (result_reg != VD)
m_float_emit.MOV(EncodeRegToDouble(VD), EncodeRegToDouble(result_reg));
for (FixupBranch fixup : nan_fixups)
SetJumpTarget(fixup);
if (V0Q != ARM64Reg::INVALID_REG) if (V0Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V0Q); fpr.Unlock(V0Q);
if (V1Q != ARM64Reg::INVALID_REG) if (V1Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V1Q); fpr.Unlock(V1Q);
if (temp_gpr != ARM64Reg::INVALID_REG)
gpr.Unlock(temp_gpr);
if (output_is_single) if (output_is_single)
{ {
@ -782,6 +885,29 @@ void JitArm64::ConvertSingleToDoublePair(size_t guest_reg, ARM64Reg dest_reg, AR
} }
} }
void JitArm64::EmitQuietNaNBitConstant(ARM64Reg dest_reg, bool single, ARM64Reg temp_gpr)
{
// dest_reg = QNaN & ~SNaN
//
// (Alternatively, dest_reg = QNaN would also work, but that would take
// two instructions to emit even for singles)
if (single)
{
m_float_emit.MOVI(32, dest_reg, 0x40, 16);
}
else
{
ASSERT(temp_gpr != ARM64Reg::INVALID_REG);
MOVI2R(EncodeRegTo64(temp_gpr), 0x0008'0000'0000'0000);
if (IsQuad(dest_reg))
m_float_emit.DUP(64, dest_reg, EncodeRegTo64(temp_gpr));
else
m_float_emit.FMOV(dest_reg, EncodeRegTo64(temp_gpr));
}
}
bool JitArm64::IsFPRStoreSafe(size_t guest_reg) const bool JitArm64::IsFPRStoreSafe(size_t guest_reg) const
{ {
return js.fpr_is_store_safe[guest_reg]; return js.fpr_is_store_safe[guest_reg];

View File

@ -83,8 +83,14 @@ void JitArm64::ps_arith(UGeckoInstruction inst)
const u32 d = inst.FD; const u32 d = inst.FD;
const u32 op5 = inst.SUBOP5; const u32 op5 = inst.SUBOP5;
const bool muls = (op5 & ~0x1) == 12;
const bool madds = (op5 & ~0x1) == 14;
const bool use_c = op5 == 25 || (op5 & ~0x13) == 12; // mul, muls, and all kinds of maddXX const bool use_c = op5 == 25 || (op5 & ~0x13) == 12; // mul, muls, and all kinds of maddXX
const bool use_b = op5 != 25 && (op5 & ~0x1) != 12; // mul and muls don't use B const bool use_b = op5 != 25 && !muls; // mul and muls don't use B
const bool duplicated_c = muls || madds;
const bool fma = use_b && use_c;
const bool negate_result = (op5 & ~0x1) == 30;
const bool msub = op5 == 28 || op5 == 30;
const auto singles_func = [&] { const auto singles_func = [&] {
return fpr.IsSingle(a) && (!use_b || fpr.IsSingle(b)) && (!use_c || fpr.IsSingle(c)); return fpr.IsSingle(a) && (!use_b || fpr.IsSingle(b)) && (!use_c || fpr.IsSingle(c));
@ -99,147 +105,127 @@ void JitArm64::ps_arith(UGeckoInstruction inst)
const ARM64Reg VA = reg_encoder(fpr.R(a, type)); const ARM64Reg VA = reg_encoder(fpr.R(a, type));
const ARM64Reg VB = use_b ? reg_encoder(fpr.R(b, type)) : ARM64Reg::INVALID_REG; const ARM64Reg VB = use_b ? reg_encoder(fpr.R(b, type)) : ARM64Reg::INVALID_REG;
ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG; const ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG;
const ARM64Reg VD = reg_encoder(fpr.RW(d, type)); const ARM64Reg VD = reg_encoder(fpr.RW(d, type));
ARM64Reg V0Q = ARM64Reg::INVALID_REG; ARM64Reg V0Q = ARM64Reg::INVALID_REG;
ARM64Reg V0 = ARM64Reg::INVALID_REG;
ARM64Reg V1Q = ARM64Reg::INVALID_REG; ARM64Reg V1Q = ARM64Reg::INVALID_REG;
ARM64Reg V2Q = ARM64Reg::INVALID_REG;
ARM64Reg V3Q = ARM64Reg::INVALID_REG;
const auto allocate_v0_if_needed = [&] { ARM64Reg rounded_c_reg = VC;
if (V0Q == ARM64Reg::INVALID_REG)
{
V0Q = fpr.GetReg();
V0 = reg_encoder(V0Q);
}
};
if (round_c) if (round_c)
{ {
ASSERT_MSG(DYNA_REC, !singles, "Tried to apply 25-bit precision to single"); ASSERT_MSG(DYNA_REC, !singles, "Tried to apply 25-bit precision to single");
V1Q = fpr.GetReg(); V0Q = fpr.GetReg();
rounded_c_reg = reg_encoder(V0Q);
Force25BitPrecision(reg_encoder(V1Q), VC); Force25BitPrecision(rounded_c_reg, VC);
VC = reg_encoder(V1Q);
} }
ARM64Reg inaccurate_fma_temp_reg = VD; ARM64Reg inaccurate_fma_reg = VD;
if (inaccurate_fma && d == b) if (fma && inaccurate_fma && VD == VB)
{ {
allocate_v0_if_needed(); if (V0Q == ARM64Reg::INVALID_REG)
inaccurate_fma_temp_reg = V0; V0Q = fpr.GetReg();
inaccurate_fma_reg = reg_encoder(V0Q);
} }
ARM64Reg result_reg = VD; ARM64Reg result_reg = VD;
const bool need_accurate_fma_reg =
fma && !inaccurate_fma && (msub || VD != VB) && (VD == VA || VD == rounded_c_reg);
const bool preserve_d =
m_accurate_nans && (VD == VA || (use_b && VD == VB) || (use_c && VD == VC));
if (need_accurate_fma_reg || preserve_d)
{
V1Q = fpr.GetReg();
result_reg = reg_encoder(V1Q);
}
const ARM64Reg temp_gpr = m_accurate_nans && !singles ? gpr.GetReg() : ARM64Reg::INVALID_REG;
if (m_accurate_nans)
{
if (V0Q == ARM64Reg::INVALID_REG)
V0Q = fpr.GetReg();
V2Q = fpr.GetReg();
if (duplicated_c || VD == result_reg)
V3Q = fpr.GetReg();
}
switch (op5) switch (op5)
{ {
case 12: // ps_muls0: d = a * c.ps0 case 12: // ps_muls0: d = a * c.ps0
m_float_emit.FMUL(size, VD, VA, VC, 0); m_float_emit.FMUL(size, result_reg, VA, rounded_c_reg, 0);
break; break;
case 13: // ps_muls1: d = a * c.ps1 case 13: // ps_muls1: d = a * c.ps1
m_float_emit.FMUL(size, VD, VA, VC, 1); m_float_emit.FMUL(size, result_reg, VA, rounded_c_reg, 1);
break; break;
case 14: // ps_madds0: d = a * c.ps0 + b case 14: // ps_madds0: d = a * c.ps0 + b
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(size, inaccurate_fma_temp_reg, VA, VC, 0); m_float_emit.FMUL(size, inaccurate_fma_reg, VA, rounded_c_reg, 0);
m_float_emit.FADD(size, VD, inaccurate_fma_temp_reg, VB); m_float_emit.FADD(size, result_reg, inaccurate_fma_reg, VB);
}
else if (VD == VB)
{
m_float_emit.FMLA(size, VD, VA, VC, 0);
}
else if (VD != VA && VD != VC)
{
m_float_emit.MOV(VD, VB);
m_float_emit.FMLA(size, VD, VA, VC, 0);
} }
else else
{ {
allocate_v0_if_needed(); if (result_reg != VB)
m_float_emit.MOV(V0, VB); m_float_emit.MOV(result_reg, VB);
m_float_emit.FMLA(size, V0, VA, VC, 0); m_float_emit.FMLA(size, result_reg, VA, rounded_c_reg, 0);
result_reg = V0;
} }
break; break;
case 15: // ps_madds1: d = a * c.ps1 + b case 15: // ps_madds1: d = a * c.ps1 + b
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(size, inaccurate_fma_temp_reg, VA, VC, 1); m_float_emit.FMUL(size, inaccurate_fma_reg, VA, rounded_c_reg, 1);
m_float_emit.FADD(size, VD, inaccurate_fma_temp_reg, VB); m_float_emit.FADD(size, result_reg, inaccurate_fma_reg, VB);
}
else if (VD == VB)
{
m_float_emit.FMLA(size, VD, VA, VC, 1);
}
else if (VD != VA && VD != VC)
{
m_float_emit.MOV(VD, VB);
m_float_emit.FMLA(size, VD, VA, VC, 1);
} }
else else
{ {
allocate_v0_if_needed(); if (result_reg != VB)
m_float_emit.MOV(V0, VB); m_float_emit.MOV(result_reg, VB);
m_float_emit.FMLA(size, V0, VA, VC, 1); m_float_emit.FMLA(size, result_reg, VA, rounded_c_reg, 1);
result_reg = V0;
} }
break; break;
case 18: // ps_div case 18: // ps_div
m_float_emit.FDIV(size, VD, VA, VB); m_float_emit.FDIV(size, result_reg, VA, VB);
break; break;
case 20: // ps_sub case 20: // ps_sub
m_float_emit.FSUB(size, VD, VA, VB); m_float_emit.FSUB(size, result_reg, VA, VB);
break; break;
case 21: // ps_add case 21: // ps_add
m_float_emit.FADD(size, VD, VA, VB); m_float_emit.FADD(size, result_reg, VA, VB);
break; break;
case 25: // ps_mul case 25: // ps_mul
m_float_emit.FMUL(size, VD, VA, VC); m_float_emit.FMUL(size, result_reg, VA, rounded_c_reg);
break; break;
case 28: // ps_msub: d = a * c - b case 28: // ps_msub: d = a * c - b
case 30: // ps_nmsub: d = -(a * c - b) case 30: // ps_nmsub: d = -(a * c - b)
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(size, inaccurate_fma_temp_reg, VA, VC); m_float_emit.FMUL(size, inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FSUB(size, VD, inaccurate_fma_temp_reg, VB); m_float_emit.FSUB(size, result_reg, inaccurate_fma_reg, VB);
}
else if (VD != VA && VD != VC)
{
m_float_emit.FNEG(size, VD, VB);
m_float_emit.FMLA(size, VD, VA, VC);
} }
else else
{ {
allocate_v0_if_needed(); m_float_emit.FNEG(size, result_reg, VB);
m_float_emit.FNEG(size, V0, VB); m_float_emit.FMLA(size, result_reg, VA, rounded_c_reg);
m_float_emit.FMLA(size, V0, VA, VC);
result_reg = V0;
} }
break; break;
case 29: // ps_madd: d = a * c + b case 29: // ps_madd: d = a * c + b
case 31: // ps_nmadd: d = -(a * c + b) case 31: // ps_nmadd: d = -(a * c + b)
if (inaccurate_fma) if (inaccurate_fma)
{ {
m_float_emit.FMUL(size, inaccurate_fma_temp_reg, VA, VC); m_float_emit.FMUL(size, inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FADD(size, VD, inaccurate_fma_temp_reg, VB); m_float_emit.FADD(size, result_reg, inaccurate_fma_reg, VB);
}
else if (VD == VB)
{
m_float_emit.FMLA(size, VD, VA, VC);
}
else if (VD != VA && VD != VC)
{
m_float_emit.MOV(VD, VB);
m_float_emit.FMLA(size, VD, VA, VC);
} }
else else
{ {
allocate_v0_if_needed(); if (result_reg != VB)
m_float_emit.MOV(V0, VB); m_float_emit.MOV(result_reg, VB);
m_float_emit.FMLA(size, V0, VA, VC); m_float_emit.FMLA(size, result_reg, VA, rounded_c_reg);
result_reg = V0;
} }
break; break;
default: default:
@ -247,24 +233,89 @@ void JitArm64::ps_arith(UGeckoInstruction inst)
break; break;
} }
switch (op5) FixupBranch nan_fixup;
if (m_accurate_nans)
{ {
case 30: // ps_nmsub const ARM64Reg nan_temp_reg = singles ? EncodeRegToSingle(V0Q) : EncodeRegToDouble(V0Q);
case 31: // ps_nmadd const ARM64Reg nan_temp_reg_paired = reg_encoder(V0Q);
const ARM64Reg zero_reg = reg_encoder(V2Q);
// Check if we need to handle NaNs
m_float_emit.FMAXP(nan_temp_reg, result_reg);
m_float_emit.FCMP(nan_temp_reg);
FixupBranch no_nan = B(CCFlags::CC_VC);
FixupBranch nan = B();
SetJumpTarget(no_nan);
SwitchToFarCode();
SetJumpTarget(nan);
// Pick the right NaNs
m_float_emit.MOVI(8, zero_reg, 0);
const auto check_input = [&](ARM64Reg input) {
m_float_emit.FACGE(size, nan_temp_reg_paired, input, zero_reg);
m_float_emit.BIF(result_reg, input, nan_temp_reg_paired);
};
ARM64Reg c_reg_for_nan_purposes = VC;
if (duplicated_c)
{
c_reg_for_nan_purposes = reg_encoder(V3Q);
m_float_emit.DUP(size, c_reg_for_nan_purposes, VC, op5 & 0x1);
}
if (use_c)
check_input(c_reg_for_nan_purposes);
if (use_b && (!use_c || VB != c_reg_for_nan_purposes))
check_input(VB);
if ((!use_b || VA != VB) && (!use_c || VA != c_reg_for_nan_purposes))
check_input(VA);
// Make the NaNs quiet
const ARM64Reg quiet_bit_reg = VD == result_reg ? reg_encoder(V3Q) : VD;
EmitQuietNaNBitConstant(quiet_bit_reg, singles, temp_gpr);
m_float_emit.FACGE(size, nan_temp_reg_paired, result_reg, zero_reg);
m_float_emit.ORR(quiet_bit_reg, quiet_bit_reg, result_reg);
if (negate_result)
m_float_emit.FNEG(size, result_reg, result_reg);
if (VD == result_reg)
m_float_emit.BIF(VD, quiet_bit_reg, nan_temp_reg_paired);
else // quiet_bit_reg == VD
m_float_emit.BIT(VD, result_reg, nan_temp_reg_paired);
nan_fixup = B();
SwitchToNearCode();
}
// PowerPC's nmadd/nmsub perform rounding before the final negation, which is not the case // PowerPC's nmadd/nmsub perform rounding before the final negation, which is not the case
// for any of AArch64's FMA instructions, so we negate using a separate instruction. // for any of AArch64's FMA instructions, so we negate using a separate instruction.
if (negate_result)
m_float_emit.FNEG(size, VD, result_reg); m_float_emit.FNEG(size, VD, result_reg);
break; else if (result_reg != VD)
default:
if (result_reg != VD)
m_float_emit.MOV(VD, result_reg); m_float_emit.MOV(VD, result_reg);
break;
} if (m_accurate_nans)
SetJumpTarget(nan_fixup);
if (V0Q != ARM64Reg::INVALID_REG) if (V0Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V0Q); fpr.Unlock(V0Q);
if (V1Q != ARM64Reg::INVALID_REG) if (V1Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V1Q); fpr.Unlock(V1Q);
if (V2Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V2Q);
if (V3Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V3Q);
if (temp_gpr != ARM64Reg::INVALID_REG)
gpr.Unlock(temp_gpr);
ASSERT_MSG(DYNA_REC, singles == singles_func(), ASSERT_MSG(DYNA_REC, singles == singles_func(),
"Register allocation turned singles into doubles in the middle of ps_arith"); "Register allocation turned singles into doubles in the middle of ps_arith");
@ -326,32 +377,91 @@ void JitArm64::ps_sumX(UGeckoInstruction inst)
const u32 c = inst.FC; const u32 c = inst.FC;
const u32 d = inst.FD; const u32 d = inst.FD;
const bool upper = inst.SUBOP5 == 11; const bool upper = inst.SUBOP5 & 0x1;
const bool singles = fpr.IsSingle(a) && fpr.IsSingle(b) && fpr.IsSingle(c); const bool singles = fpr.IsSingle(a) && fpr.IsSingle(b) && fpr.IsSingle(c);
const RegType type = singles ? RegType::Single : RegType::Register; const RegType type = singles ? RegType::Single : RegType::Register;
const u8 size = singles ? 32 : 64; const u8 size = singles ? 32 : 64;
const auto reg_encoder = singles ? EncodeRegToDouble : EncodeRegToQuad; const auto reg_encoder = singles ? EncodeRegToDouble : EncodeRegToQuad;
const auto scalar_reg_encoder = singles ? EncodeRegToSingle : EncodeRegToDouble;
const ARM64Reg VA = fpr.R(a, type); const ARM64Reg VA = fpr.R(a, type);
const ARM64Reg VB = fpr.R(b, type); const ARM64Reg VB = fpr.R(b, type);
const ARM64Reg VC = fpr.R(c, type); const ARM64Reg VC = fpr.R(c, type);
const ARM64Reg VD = fpr.RW(d, type); const ARM64Reg VD = fpr.RW(d, type);
const ARM64Reg V0 = fpr.GetReg(); const ARM64Reg V0 = fpr.GetReg();
const ARM64Reg V1 = m_accurate_nans ? fpr.GetReg() : ARM64Reg::INVALID_REG;
const ARM64Reg temp_gpr = m_accurate_nans && !singles ? gpr.GetReg() : ARM64Reg::INVALID_REG;
m_float_emit.DUP(size, reg_encoder(V0), reg_encoder(upper ? VA : VB), upper ? 0 : 1); m_float_emit.DUP(size, reg_encoder(V0), reg_encoder(VB), 1);
if (d != c)
FixupBranch a_nan_done, b_nan_done;
if (m_accurate_nans)
{ {
m_float_emit.FADD(size, reg_encoder(VD), reg_encoder(V0), reg_encoder(upper ? VB : VA)); const auto check_nan = [&](ARM64Reg input) {
m_float_emit.INS(size, VD, upper ? 0 : 1, VC, upper ? 0 : 1); m_float_emit.FCMP(scalar_reg_encoder(input));
FixupBranch not_nan = B(CCFlags::CC_VC);
FixupBranch nan = B();
SetJumpTarget(not_nan);
SwitchToFarCode();
SetJumpTarget(nan);
EmitQuietNaNBitConstant(scalar_reg_encoder(V1), singles, temp_gpr);
if (upper)
{
m_float_emit.ORR(EncodeRegToDouble(V1), EncodeRegToDouble(V1), EncodeRegToDouble(input));
m_float_emit.TRN1(size, reg_encoder(VD), reg_encoder(VC), reg_encoder(V1));
}
else if (d != c)
{
m_float_emit.ORR(EncodeRegToDouble(VD), EncodeRegToDouble(V1), EncodeRegToDouble(input));
m_float_emit.INS(size, VD, 1, VC, 1);
} }
else else
{ {
m_float_emit.FADD(size, reg_encoder(V0), reg_encoder(V0), reg_encoder(upper ? VB : VA)); m_float_emit.ORR(EncodeRegToDouble(V1), EncodeRegToDouble(V1), EncodeRegToDouble(input));
m_float_emit.INS(size, VD, upper ? 1 : 0, V0, upper ? 1 : 0); m_float_emit.INS(size, VD, 0, V1, 0);
}
FixupBranch nan_done = B();
SwitchToNearCode();
return nan_done;
};
a_nan_done = check_nan(VA);
b_nan_done = check_nan(V0);
}
if (upper)
{
m_float_emit.FADD(scalar_reg_encoder(V0), scalar_reg_encoder(V0), scalar_reg_encoder(VA));
m_float_emit.TRN1(size, reg_encoder(VD), reg_encoder(VC), reg_encoder(V0));
}
else if (d != c)
{
m_float_emit.FADD(scalar_reg_encoder(VD), scalar_reg_encoder(V0), scalar_reg_encoder(VA));
m_float_emit.INS(size, VD, 1, VC, 1);
}
else
{
m_float_emit.FADD(scalar_reg_encoder(V0), scalar_reg_encoder(V0), scalar_reg_encoder(VA));
m_float_emit.INS(size, VD, 0, V0, 0);
}
if (m_accurate_nans)
{
SetJumpTarget(a_nan_done);
SetJumpTarget(b_nan_done);
} }
fpr.Unlock(V0); fpr.Unlock(V0);
if (m_accurate_nans)
fpr.Unlock(V1);
if (temp_gpr != ARM64Reg::INVALID_REG)
gpr.Unlock(temp_gpr);
ASSERT_MSG(DYNA_REC, singles == (fpr.IsSingle(a) && fpr.IsSingle(b) && fpr.IsSingle(c)), ASSERT_MSG(DYNA_REC, singles == (fpr.IsSingle(a) && fpr.IsSingle(b) && fpr.IsSingle(c)),
"Register allocation turned singles into doubles in the middle of ps_sumX"); "Register allocation turned singles into doubles in the middle of ps_sumX");