Merge pull request #927 from FioraAeterna/fastermmu

Fiora's Faster MMU Project
This commit is contained in:
Pierre Bourdon 2014-09-14 00:36:07 +02:00
commit 2ab19c7cec
9 changed files with 322 additions and 160 deletions

View File

@ -132,8 +132,6 @@ ps_adds1
*/ */
static int CODE_SIZE = 1024*1024*32;
void Jit64::Init() void Jit64::Init()
{ {
jo.optimizeStack = true; jo.optimizeStack = true;
@ -169,10 +167,13 @@ void Jit64::Init()
trampolines.Init(); trampolines.Init();
AllocCodeSpace(CODE_SIZE); AllocCodeSpace(CODE_SIZE);
blocks.Init(); blocks.Init();
asm_routines.Init(); asm_routines.Init();
// important: do this *after* generating the global asm routines, because we can't use farcode in them.
// it'll crash because the farcode functions get cleared on JIT clears.
farcode.Init(js.memcheck ? FARCODE_SIZE_MMU : FARCODE_SIZE);
code_block.m_stats = &js.st; code_block.m_stats = &js.st;
code_block.m_gpa = &js.gpa; code_block.m_gpa = &js.gpa;
code_block.m_fpa = &js.fpa; code_block.m_fpa = &js.fpa;
@ -183,6 +184,7 @@ void Jit64::ClearCache()
{ {
blocks.Clear(); blocks.Clear();
trampolines.ClearCodeSpace(); trampolines.ClearCodeSpace();
farcode.ClearCodeSpace();
ClearCodeSpace(); ClearCodeSpace();
} }
@ -193,6 +195,7 @@ void Jit64::Shutdown()
blocks.Shutdown(); blocks.Shutdown();
trampolines.Shutdown(); trampolines.Shutdown();
asm_routines.Shutdown(); asm_routines.Shutdown();
farcode.Shutdown();
} }
// This is only called by FallBackToInterpreter() in this file. It will execute an instruction with the interpreter functions. // This is only called by FallBackToInterpreter() in this file. It will execute an instruction with the interpreter functions.
@ -372,7 +375,8 @@ void Jit64::Trace()
void STACKALIGN Jit64::Jit(u32 em_address) void STACKALIGN Jit64::Jit(u32 em_address)
{ {
if (GetSpaceLeft() < 0x10000 || blocks.IsFull() || SConfig::GetInstance().m_LocalCoreStartupParameter.bJITNoBlockCache) if (GetSpaceLeft() < 0x10000 || farcode.GetSpaceLeft() < 0x10000 || blocks.IsFull() ||
SConfig::GetInstance().m_LocalCoreStartupParameter.bJITNoBlockCache)
{ {
ClearCache(); ClearCache();
} }
@ -525,12 +529,13 @@ const u8* Jit64::DoJit(u32 em_address, PPCAnalyst::CodeBuffer *code_buf, JitBloc
{ {
if ((opinfo->flags & FL_USE_FPU) && !js.firstFPInstructionFound) if ((opinfo->flags & FL_USE_FPU) && !js.firstFPInstructionFound)
{ {
gpr.Flush();
fpr.Flush();
//This instruction uses FPU - needs to add FP exception bailout //This instruction uses FPU - needs to add FP exception bailout
TEST(32, PPCSTATE(msr), Imm32(1 << 13)); // Test FP enabled bit TEST(32, PPCSTATE(msr), Imm32(1 << 13)); // Test FP enabled bit
FixupBranch b1 = J_CC(CC_NZ, true); FixupBranch b1 = J_CC(CC_Z, true);
SwitchToFarCode();
SetJumpTarget(b1);
gpr.Flush(FLUSH_MAINTAIN_STATE);
fpr.Flush(FLUSH_MAINTAIN_STATE);
// If a FPU exception occurs, the exception handler will read // If a FPU exception occurs, the exception handler will read
// from PC. Update PC with the latest value in case that happens. // from PC. Update PC with the latest value in case that happens.
@ -538,32 +543,34 @@ const u8* Jit64::DoJit(u32 em_address, PPCAnalyst::CodeBuffer *code_buf, JitBloc
OR(32, PPCSTATE(Exceptions), Imm32(EXCEPTION_FPU_UNAVAILABLE)); OR(32, PPCSTATE(Exceptions), Imm32(EXCEPTION_FPU_UNAVAILABLE));
WriteExceptionExit(); WriteExceptionExit();
SetJumpTarget(b1); SwitchToNearCode();
js.firstFPInstructionFound = true; js.firstFPInstructionFound = true;
} }
// Add an external exception check if the instruction writes to the FIFO. // Add an external exception check if the instruction writes to the FIFO.
if (jit->js.fifoWriteAddresses.find(ops[i].address) != jit->js.fifoWriteAddresses.end()) if (jit->js.fifoWriteAddresses.find(ops[i].address) != jit->js.fifoWriteAddresses.end())
{ {
gpr.Flush();
fpr.Flush();
TEST(32, PPCSTATE(Exceptions), Imm32(EXCEPTION_ISI | EXCEPTION_PROGRAM | EXCEPTION_SYSCALL | EXCEPTION_FPU_UNAVAILABLE | EXCEPTION_DSI | EXCEPTION_ALIGNMENT)); TEST(32, PPCSTATE(Exceptions), Imm32(EXCEPTION_ISI | EXCEPTION_PROGRAM | EXCEPTION_SYSCALL | EXCEPTION_FPU_UNAVAILABLE | EXCEPTION_DSI | EXCEPTION_ALIGNMENT));
FixupBranch clearInt = J_CC(CC_NZ, true); FixupBranch clearInt = J_CC(CC_NZ);
TEST(32, PPCSTATE(Exceptions), Imm32(EXCEPTION_EXTERNAL_INT)); TEST(32, PPCSTATE(Exceptions), Imm32(EXCEPTION_EXTERNAL_INT));
FixupBranch noExtException = J_CC(CC_Z, true); FixupBranch extException = J_CC(CC_NZ, true);
SwitchToFarCode();
SetJumpTarget(extException);
TEST(32, PPCSTATE(msr), Imm32(0x0008000)); TEST(32, PPCSTATE(msr), Imm32(0x0008000));
FixupBranch noExtIntEnable = J_CC(CC_Z, true); FixupBranch noExtIntEnable = J_CC(CC_Z, true);
TEST(32, M((void *)&ProcessorInterface::m_InterruptCause), Imm32(ProcessorInterface::INT_CAUSE_CP | ProcessorInterface::INT_CAUSE_PE_TOKEN | ProcessorInterface::INT_CAUSE_PE_FINISH)); TEST(32, M((void *)&ProcessorInterface::m_InterruptCause), Imm32(ProcessorInterface::INT_CAUSE_CP | ProcessorInterface::INT_CAUSE_PE_TOKEN | ProcessorInterface::INT_CAUSE_PE_FINISH));
FixupBranch noCPInt = J_CC(CC_Z, true); FixupBranch noCPInt = J_CC(CC_Z, true);
gpr.Flush(FLUSH_MAINTAIN_STATE);
fpr.Flush(FLUSH_MAINTAIN_STATE);
MOV(32, PPCSTATE(pc), Imm32(ops[i].address)); MOV(32, PPCSTATE(pc), Imm32(ops[i].address));
WriteExternalExceptionExit(); WriteExternalExceptionExit();
SwitchToNearCode();
SetJumpTarget(noCPInt); SetJumpTarget(noCPInt);
SetJumpTarget(noExtIntEnable); SetJumpTarget(noExtIntEnable);
SetJumpTarget(noExtException);
SetJumpTarget(clearInt); SetJumpTarget(clearInt);
} }
@ -585,18 +592,20 @@ const u8* Jit64::DoJit(u32 em_address, PPCAnalyst::CodeBuffer *code_buf, JitBloc
if (js.memcheck && (opinfo->flags & FL_LOADSTORE)) if (js.memcheck && (opinfo->flags & FL_LOADSTORE))
{ {
// In case we are about to jump to the dispatcher, flush regs
gpr.Flush();
fpr.Flush();
TEST(32, PPCSTATE(Exceptions), Imm32(EXCEPTION_DSI)); TEST(32, PPCSTATE(Exceptions), Imm32(EXCEPTION_DSI));
FixupBranch noMemException = J_CC(CC_Z, true); FixupBranch memException = J_CC(CC_NZ, true);
SwitchToFarCode();
SetJumpTarget(memException);
gpr.Flush(FLUSH_MAINTAIN_STATE);
fpr.Flush(FLUSH_MAINTAIN_STATE);
// If a memory exception occurs, the exception handler will read // If a memory exception occurs, the exception handler will read
// from PC. Update PC with the latest value in case that happens. // from PC. Update PC with the latest value in case that happens.
MOV(32, PPCSTATE(pc), Imm32(ops[i].address)); MOV(32, PPCSTATE(pc), Imm32(ops[i].address));
WriteExceptionExit(); WriteExceptionExit();
SetJumpTarget(noMemException); SwitchToNearCode();
} }
if (opinfo->flags & FL_LOADSTORE) if (opinfo->flags & FL_LOADSTORE)

View File

@ -238,7 +238,7 @@ void Jit64::lXXx(UGeckoInstruction inst)
if (update && storeAddress) if (update && storeAddress)
{ {
gpr.BindToRegister(a, true, true); gpr.BindToRegister(a, true, true);
MEMCHECK_START MEMCHECK_START(false)
MOV(32, gpr.R(a), opAddress); MOV(32, gpr.R(a), opAddress);
MEMCHECK_END MEMCHECK_END
} }
@ -279,18 +279,20 @@ void Jit64::dcbz(UGeckoInstruction inst)
ADD(32, R(RSCRATCH), gpr.R(a)); ADD(32, R(RSCRATCH), gpr.R(a));
AND(32, R(RSCRATCH), Imm32(~31)); AND(32, R(RSCRATCH), Imm32(~31));
TEST(32, R(RSCRATCH), Imm32(mem_mask)); TEST(32, R(RSCRATCH), Imm32(mem_mask));
FixupBranch fast = J_CC(CC_Z, true); FixupBranch slow = J_CC(CC_NZ, true);
// Should this code ever run? I can't find any games that use DCBZ on non-physical addresses, but // Should this code ever run? I can't find any games that use DCBZ on non-physical addresses, but
// supposedly there are, at least for some MMU titles. Let's be careful and support it to be sure. // supposedly there are, at least for some MMU titles. Let's be careful and support it to be sure.
SwitchToFarCode();
SetJumpTarget(slow);
MOV(32, M(&PC), Imm32(jit->js.compilerPC)); MOV(32, M(&PC), Imm32(jit->js.compilerPC));
u32 registersInUse = CallerSavedRegistersInUse(); u32 registersInUse = CallerSavedRegistersInUse();
ABI_PushRegistersAndAdjustStack(registersInUse, 0); ABI_PushRegistersAndAdjustStack(registersInUse, 0);
ABI_CallFunctionR((void *)&Memory::ClearCacheLine, RSCRATCH); ABI_CallFunctionR((void *)&Memory::ClearCacheLine, RSCRATCH);
ABI_PopRegistersAndAdjustStack(registersInUse, 0); ABI_PopRegistersAndAdjustStack(registersInUse, 0);
FixupBranch exit = J(true);
FixupBranch exit = J(); SwitchToNearCode();
SetJumpTarget(fast);
PXOR(XMM0, R(XMM0)); PXOR(XMM0, R(XMM0));
MOVAPS(MComplex(RMEM, RSCRATCH, SCALE_1, 0), XMM0); MOVAPS(MComplex(RMEM, RSCRATCH, SCALE_1, 0), XMM0);
MOVAPS(MComplex(RMEM, RSCRATCH, SCALE_1, 16), XMM0); MOVAPS(MComplex(RMEM, RSCRATCH, SCALE_1, 16), XMM0);
@ -411,7 +413,7 @@ void Jit64::stX(UGeckoInstruction inst)
if (update && offset) if (update && offset)
{ {
MEMCHECK_START MEMCHECK_START(false)
gpr.KillImmediate(a, true, true); gpr.KillImmediate(a, true, true);
ADD(32, gpr.R(a), Imm32((u32)offset)); ADD(32, gpr.R(a), Imm32((u32)offset));
@ -433,10 +435,11 @@ void Jit64::stXx(UGeckoInstruction inst)
int a = inst.RA, b = inst.RB, s = inst.RS; int a = inst.RA, b = inst.RB, s = inst.RS;
FALLBACK_IF(!a || a == s || a == b); FALLBACK_IF(!a || a == s || a == b);
bool update = !!(inst.SUBOP10 & 32);
gpr.Lock(a, b, s); gpr.Lock(a, b, s);
if (inst.SUBOP10 & 32) if (update)
{ {
gpr.BindToRegister(a, true, true); gpr.BindToRegister(a, true, true);
ADD(32, gpr.R(a), gpr.R(b)); ADD(32, gpr.R(a), gpr.R(b));
@ -483,6 +486,14 @@ void Jit64::stXx(UGeckoInstruction inst)
} }
SafeWriteRegToReg(reg_value, RSCRATCH2, accessSize, 0, CallerSavedRegistersInUse()); SafeWriteRegToReg(reg_value, RSCRATCH2, accessSize, 0, CallerSavedRegistersInUse());
if (update && js.memcheck)
{
// revert the address change if an exception occurred
MEMCHECK_START(true)
SUB(32, gpr.R(a), gpr.R(b));
MEMCHECK_END;
}
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX(); gpr.UnlockAllX();
} }

View File

@ -27,13 +27,18 @@ void Jit64::lfXXX(UGeckoInstruction inst)
int a = inst.RA; int a = inst.RA;
int b = inst.RB; int b = inst.RB;
FALLBACK_IF(!indexed && !a); FALLBACK_IF((!indexed && !a) || (update && a == d));
if (update) if (update)
gpr.BindToRegister(a, true, true); gpr.BindToRegister(a, true, true);
s32 offset = 0; s32 offset = 0;
OpArg addr = gpr.R(a); OpArg addr = gpr.R(a);
if (update && js.memcheck)
{
addr = R(RSCRATCH2);
MOV(32, addr, gpr.R(a));
}
if (indexed) if (indexed)
{ {
if (update) if (update)
@ -58,14 +63,17 @@ void Jit64::lfXXX(UGeckoInstruction inst)
if (update) if (update)
ADD(32, addr, Imm32((s32)(s16)inst.SIMM_16)); ADD(32, addr, Imm32((s32)(s16)inst.SIMM_16));
else else
offset = (s32)(s16)inst.SIMM_16; offset = (s16)inst.SIMM_16;
} }
SafeLoadToReg(RSCRATCH, addr, single ? 32 : 64, offset, CallerSavedRegistersInUse(), false); u32 registersInUse = CallerSavedRegistersInUse();
if (update && js.memcheck)
registersInUse |= (1 << RSCRATCH2);
SafeLoadToReg(RSCRATCH, addr, single ? 32 : 64, offset, registersInUse, false);
fpr.Lock(d); fpr.Lock(d);
fpr.BindToRegister(d, js.memcheck || !single); fpr.BindToRegister(d, js.memcheck || !single);
MEMCHECK_START MEMCHECK_START(false)
if (single) if (single)
{ {
ConvertSingleToDouble(fpr.RX(d), RSCRATCH, true); ConvertSingleToDouble(fpr.RX(d), RSCRATCH, true);
@ -75,6 +83,8 @@ void Jit64::lfXXX(UGeckoInstruction inst)
MOVQ_xmm(XMM0, R(RSCRATCH)); MOVQ_xmm(XMM0, R(RSCRATCH));
MOVSD(fpr.RX(d), R(XMM0)); MOVSD(fpr.RX(d), R(XMM0));
} }
if (update && js.memcheck)
MOV(32, gpr.R(a), addr);
MEMCHECK_END MEMCHECK_END
fpr.UnlockAll(); fpr.UnlockAll();
gpr.UnlockAll(); gpr.UnlockAll();
@ -93,9 +103,10 @@ void Jit64::stfXXX(UGeckoInstruction inst)
int a = inst.RA; int a = inst.RA;
int b = inst.RB; int b = inst.RB;
FALLBACK_IF(!indexed && !a); FALLBACK_IF((!indexed && !a) || (update && (a == s || a == b)));
s32 offset = 0; s32 offset = 0;
s32 imm = (s16)inst.SIMM_16;
if (indexed) if (indexed)
{ {
if (update) if (update)
@ -121,11 +132,11 @@ void Jit64::stfXXX(UGeckoInstruction inst)
if (update) if (update)
{ {
gpr.BindToRegister(a, true, true); gpr.BindToRegister(a, true, true);
ADD(32, gpr.R(a), Imm32((s32)(s16)inst.SIMM_16)); ADD(32, gpr.R(a), Imm32(imm));
} }
else else
{ {
offset = (s32)(s16)inst.SIMM_16; offset = imm;
} }
MOV(32, R(RSCRATCH2), gpr.R(a)); MOV(32, R(RSCRATCH2), gpr.R(a));
} }
@ -145,6 +156,13 @@ void Jit64::stfXXX(UGeckoInstruction inst)
MOV(64, R(RSCRATCH), fpr.R(s)); MOV(64, R(RSCRATCH), fpr.R(s));
SafeWriteRegToReg(RSCRATCH, RSCRATCH2, 64, offset, CallerSavedRegistersInUse()); SafeWriteRegToReg(RSCRATCH, RSCRATCH2, 64, offset, CallerSavedRegistersInUse());
} }
if (js.memcheck && update)
{
// revert the address change if an exception occurred
MEMCHECK_START(true)
SUB(32, gpr.R(a), indexed ? gpr.R(b) : Imm32(imm));
MEMCHECK_END
}
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX(); gpr.UnlockAllX();
} }

View File

@ -20,30 +20,31 @@ void Jit64::psq_st(UGeckoInstruction inst)
{ {
INSTRUCTION_START INSTRUCTION_START
JITDISABLE(bJITLoadStorePairedOff); JITDISABLE(bJITLoadStorePairedOff);
FALLBACK_IF(js.memcheck || !inst.RA); FALLBACK_IF(!inst.RA);
bool update = inst.OPCD == 61; bool update = inst.OPCD == 61;
int offset = inst.SIMM_12; int offset = inst.SIMM_12;
int a = inst.RA; int a = inst.RA;
int s = inst.RS; // Fp numbers int s = inst.RS;
gpr.FlushLockX(RSCRATCH, RSCRATCH_EXTRA); gpr.FlushLockX(RSCRATCH_EXTRA);
if (update) if (update)
gpr.BindToRegister(inst.RA, true, true); gpr.BindToRegister(a, true, true);
fpr.BindToRegister(inst.RS, true, false); fpr.BindToRegister(s, true, false);
MOV(32, R(RSCRATCH_EXTRA), gpr.R(inst.RA)); MOV(32, R(RSCRATCH_EXTRA), gpr.R(a));
if (offset) if (offset)
ADD(32, R(RSCRATCH_EXTRA), Imm32((u32)offset)); ADD(32, R(RSCRATCH_EXTRA), Imm32((u32)offset));
if (update && offset) // In memcheck mode, don't update the address until the exception check
if (update && offset && !js.memcheck)
MOV(32, gpr.R(a), R(RSCRATCH_EXTRA)); MOV(32, gpr.R(a), R(RSCRATCH_EXTRA));
// Some games (e.g. Dirt 2) incorrectly set the unused bits which breaks the lookup table code. // Some games (e.g. Dirt 2) incorrectly set the unused bits which breaks the lookup table code.
// Hence, we need to mask out the unused bits. The layout of the GQR register is // Hence, we need to mask out the unused bits. The layout of the GQR register is
// UU[SCALE]UUUUU[TYPE] where SCALE is 6 bits and TYPE is 3 bits, so we have to AND with // UU[SCALE]UUUUU[TYPE] where SCALE is 6 bits and TYPE is 3 bits, so we have to AND with
// 0b0011111100000111, or 0x3F07. // 0b0011111100000111, or 0x3F07.
MOV(32, R(RSCRATCH), Imm32(0x3F07)); MOV(32, R(RSCRATCH2), Imm32(0x3F07));
AND(32, R(RSCRATCH), PPCSTATE(spr[SPR_GQR0 + inst.I])); AND(32, R(RSCRATCH2), PPCSTATE(spr[SPR_GQR0 + inst.I]));
MOVZX(32, 8, RSCRATCH2, R(RSCRATCH)); MOVZX(32, 8, RSCRATCH, R(RSCRATCH2));
// FIXME: Fix ModR/M encoding to allow [RSCRATCH2*4+disp32] without a base register! // FIXME: Fix ModR/M encoding to allow [RSCRATCH2*4+disp32] without a base register!
if (inst.W) if (inst.W)
@ -51,13 +52,20 @@ void Jit64::psq_st(UGeckoInstruction inst)
// One value // One value
PXOR(XMM0, R(XMM0)); // TODO: See if we can get rid of this cheaply by tweaking the code in the singleStore* functions. PXOR(XMM0, R(XMM0)); // TODO: See if we can get rid of this cheaply by tweaking the code in the singleStore* functions.
CVTSD2SS(XMM0, fpr.R(s)); CVTSD2SS(XMM0, fpr.R(s));
CALLptr(MScaled(RSCRATCH2, SCALE_8, (u32)(u64)asm_routines.singleStoreQuantized)); CALLptr(MScaled(RSCRATCH, SCALE_8, (u32)(u64)asm_routines.singleStoreQuantized));
} }
else else
{ {
// Pair of values // Pair of values
CVTPD2PS(XMM0, fpr.R(s)); CVTPD2PS(XMM0, fpr.R(s));
CALLptr(MScaled(RSCRATCH2, SCALE_8, (u32)(u64)asm_routines.pairedStoreQuantized)); CALLptr(MScaled(RSCRATCH, SCALE_8, (u32)(u64)asm_routines.pairedStoreQuantized));
}
if (update && offset && js.memcheck)
{
MEMCHECK_START(false)
ADD(32, gpr.R(a), Imm32((u32)offset));
MEMCHECK_END
} }
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX(); gpr.UnlockAllX();
@ -67,33 +75,38 @@ void Jit64::psq_l(UGeckoInstruction inst)
{ {
INSTRUCTION_START INSTRUCTION_START
JITDISABLE(bJITLoadStorePairedOff); JITDISABLE(bJITLoadStorePairedOff);
FALLBACK_IF(js.memcheck || !inst.RA); FALLBACK_IF(!inst.RA);
bool update = inst.OPCD == 57; bool update = inst.OPCD == 57;
int offset = inst.SIMM_12; int offset = inst.SIMM_12;
int a = inst.RA;
int s = inst.RS;
gpr.FlushLockX(RSCRATCH, RSCRATCH_EXTRA); gpr.FlushLockX(RSCRATCH_EXTRA);
gpr.BindToRegister(inst.RA, true, update && offset); gpr.BindToRegister(a, true, update && offset);
fpr.BindToRegister(inst.RS, false, true); fpr.BindToRegister(s, false, true);
if (offset) if (offset)
LEA(32, RSCRATCH_EXTRA, MDisp(gpr.RX(inst.RA), offset)); LEA(32, RSCRATCH_EXTRA, MDisp(gpr.RX(a), offset));
else else
MOV(32, R(RSCRATCH_EXTRA), gpr.R(inst.RA)); MOV(32, R(RSCRATCH_EXTRA), gpr.R(a));
if (update && offset) // In memcheck mode, don't update the address until the exception check
MOV(32, gpr.R(inst.RA), R(RSCRATCH_EXTRA)); if (update && offset && !js.memcheck)
MOV(32, R(RSCRATCH), Imm32(0x3F07)); MOV(32, gpr.R(a), R(RSCRATCH_EXTRA));
AND(32, R(RSCRATCH), M(((char *)&GQR(inst.I)) + 2)); MOV(32, R(RSCRATCH2), Imm32(0x3F07));
MOVZX(32, 8, RSCRATCH2, R(RSCRATCH)); AND(32, R(RSCRATCH2), M(((char *)&GQR(inst.I)) + 2));
MOVZX(32, 8, RSCRATCH, R(RSCRATCH2));
if (inst.W) if (inst.W)
OR(32, R(RSCRATCH2), Imm8(8)); OR(32, R(RSCRATCH), Imm8(8));
CALLptr(MScaled(RSCRATCH2, SCALE_8, (u32)(u64)asm_routines.pairedLoadQuantized)); CALLptr(MScaled(RSCRATCH, SCALE_8, (u32)(u64)asm_routines.pairedLoadQuantized));
// MEMCHECK_START // FIXME: MMU does not work here because of unsafe memory access MEMCHECK_START(false)
CVTPS2PD(fpr.RX(s), R(XMM0));
CVTPS2PD(fpr.RX(inst.RS), R(XMM0)); if (update && offset && js.memcheck)
{
// MEMCHECK_END ADD(32, gpr.R(a), Imm32((u32)offset));
}
MEMCHECK_END
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX(); gpr.UnlockAllX();

View File

@ -1590,13 +1590,13 @@ static void DoWriteCode(IRBuilder* ibuild, JitIL* Jit, u32 exitAddress)
// Hence, we need to mask out the unused bits. The layout of the GQR register is // Hence, we need to mask out the unused bits. The layout of the GQR register is
// UU[SCALE]UUUUU[TYPE] where SCALE is 6 bits and TYPE is 3 bits, so we have to AND with // UU[SCALE]UUUUU[TYPE] where SCALE is 6 bits and TYPE is 3 bits, so we have to AND with
// 0b0011111100000111, or 0x3F07. // 0b0011111100000111, or 0x3F07.
Jit->MOV(32, R(RSCRATCH), Imm32(0x3F07)); Jit->MOV(32, R(RSCRATCH2), Imm32(0x3F07));
Jit->AND(32, R(RSCRATCH), M(((char *)&GQR(quantreg)) + 2)); Jit->AND(32, R(RSCRATCH2), M(((char *)&GQR(quantreg)) + 2));
Jit->MOVZX(32, 8, RSCRATCH2, R(RSCRATCH)); Jit->MOVZX(32, 8, RSCRATCH, R(RSCRATCH2));
Jit->OR(32, R(RSCRATCH2), Imm8(w << 3)); Jit->OR(32, R(RSCRATCH), Imm8(w << 3));
Jit->MOV(32, R(RSCRATCH_EXTRA), regLocForInst(RI, getOp1(I))); Jit->MOV(32, R(RSCRATCH_EXTRA), regLocForInst(RI, getOp1(I)));
Jit->CALLptr(MScaled(RSCRATCH2, SCALE_8, (u32)(u64)(((JitIL *)jit)->asm_routines.pairedLoadQuantized))); Jit->CALLptr(MScaled(RSCRATCH, SCALE_8, (u32)(u64)(((JitIL *)jit)->asm_routines.pairedLoadQuantized)));
Jit->MOVAPD(reg, R(XMM0)); Jit->MOVAPD(reg, R(XMM0));
RI.fregs[reg] = I; RI.fregs[reg] = I;
regNormalRegClear(RI, I); regNormalRegClear(RI, I);
@ -1641,13 +1641,13 @@ static void DoWriteCode(IRBuilder* ibuild, JitIL* Jit, u32 exitAddress)
regSpill(RI, RSCRATCH); regSpill(RI, RSCRATCH);
regSpill(RI, RSCRATCH2); regSpill(RI, RSCRATCH2);
u32 quantreg = *I >> 24; u32 quantreg = *I >> 24;
Jit->MOV(32, R(RSCRATCH), Imm32(0x3F07)); Jit->MOV(32, R(RSCRATCH2), Imm32(0x3F07));
Jit->AND(32, R(RSCRATCH), PPCSTATE(spr[SPR_GQR0 + quantreg])); Jit->AND(32, R(RSCRATCH2), PPCSTATE(spr[SPR_GQR0 + quantreg]));
Jit->MOVZX(32, 8, RSCRATCH2, R(RSCRATCH)); Jit->MOVZX(32, 8, RSCRATCH, R(RSCRATCH2));
Jit->MOV(32, R(RSCRATCH_EXTRA), regLocForInst(RI, getOp2(I))); Jit->MOV(32, R(RSCRATCH_EXTRA), regLocForInst(RI, getOp2(I)));
Jit->MOVAPD(XMM0, fregLocForInst(RI, getOp1(I))); Jit->MOVAPD(XMM0, fregLocForInst(RI, getOp1(I)));
Jit->CALLptr(MScaled(RSCRATCH2, SCALE_8, (u32)(u64)(((JitIL *)jit)->asm_routines.pairedStoreQuantized))); Jit->CALLptr(MScaled(RSCRATCH, SCALE_8, (u32)(u64)(((JitIL *)jit)->asm_routines.pairedStoreQuantized)));
if (RI.IInfo[I - RI.FirstI] & 4) if (RI.IInfo[I - RI.FirstI] & 4)
fregClearInst(RI, getOp1(I)); fregClearInst(RI, getOp1(I));
if (RI.IInfo[I - RI.FirstI] & 8) if (RI.IInfo[I - RI.FirstI] & 8)

View File

@ -241,8 +241,6 @@ namespace JitILProfiler
} }
}; };
static int CODE_SIZE = 1024*1024*32;
void JitIL::Init() void JitIL::Init()
{ {
jo.optimizeStack = true; jo.optimizeStack = true;
@ -273,10 +271,11 @@ void JitIL::Init()
trampolines.Init(); trampolines.Init();
AllocCodeSpace(CODE_SIZE); AllocCodeSpace(CODE_SIZE);
blocks.Init(); blocks.Init();
asm_routines.Init(); asm_routines.Init();
farcode.Init(js.memcheck ? FARCODE_SIZE_MMU : FARCODE_SIZE);
code_block.m_stats = &js.st; code_block.m_stats = &js.st;
code_block.m_gpa = &js.gpa; code_block.m_gpa = &js.gpa;
code_block.m_fpa = &js.fpa; code_block.m_fpa = &js.fpa;
@ -306,6 +305,7 @@ void JitIL::Shutdown()
blocks.Shutdown(); blocks.Shutdown();
trampolines.Shutdown(); trampolines.Shutdown();
asm_routines.Shutdown(); asm_routines.Shutdown();
farcode.Shutdown();
} }
@ -504,7 +504,8 @@ void JitIL::Trace()
void STACKALIGN JitIL::Jit(u32 em_address) void STACKALIGN JitIL::Jit(u32 em_address)
{ {
if (GetSpaceLeft() < 0x10000 || blocks.IsFull() || SConfig::GetInstance().m_LocalCoreStartupParameter.bJITNoBlockCache) if (GetSpaceLeft() < 0x10000 || farcode.GetSpaceLeft() < 0x10000 || blocks.IsFull() ||
SConfig::GetInstance().m_LocalCoreStartupParameter.bJITNoBlockCache)
{ {
ClearCache(); ClearCache();
} }

View File

@ -17,6 +17,8 @@
(1 << (XMM0+16)) | \ (1 << (XMM0+16)) | \
(1 << (XMM1+16)))) (1 << (XMM1+16))))
#define QUANTIZED_REGS_TO_SAVE_LOAD (QUANTIZED_REGS_TO_SAVE | (1 << RSCRATCH2))
using namespace Gen; using namespace Gen;
static int temp32; static int temp32;
@ -250,24 +252,29 @@ void CommonAsmRoutines::GenQuantizedStores()
UD2(); UD2();
const u8* storePairedFloat = AlignCode4(); const u8* storePairedFloat = AlignCode4();
FixupBranch skip_complex, too_complex;
SHUFPS(XMM0, R(XMM0), 1); SHUFPS(XMM0, R(XMM0), 1);
MOVQ_xmm(M(&psTemp[0]), XMM0); MOVQ_xmm(M(&psTemp[0]), XMM0);
if (!jit->js.memcheck)
{
TEST(32, R(RSCRATCH_EXTRA), Imm32(0x0C000000)); TEST(32, R(RSCRATCH_EXTRA), Imm32(0x0C000000));
FixupBranch too_complex = J_CC(CC_NZ, true); too_complex = J_CC(CC_NZ, true);
MOV(64, R(RSCRATCH), M(&psTemp[0])); MOV(64, R(RSCRATCH), M(&psTemp[0]));
SwapAndStore(64, MComplex(RMEM, RSCRATCH_EXTRA, SCALE_1, 0), RSCRATCH); SwapAndStore(64, MComplex(RMEM, RSCRATCH_EXTRA, SCALE_1, 0), RSCRATCH);
FixupBranch skip_complex = J(true); skip_complex = J(true);
SetJumpTarget(too_complex); SetJumpTarget(too_complex);
}
// RSP alignment here is 8 due to the call. // RSP alignment here is 8 due to the call.
ABI_PushRegistersAndAdjustStack(QUANTIZED_REGS_TO_SAVE, 8); ABI_PushRegistersAndAdjustStack(QUANTIZED_REGS_TO_SAVE, 8);
ABI_CallFunctionR((void *)&WriteDual32, RSCRATCH_EXTRA); ABI_CallFunctionR((void *)&WriteDual32, RSCRATCH_EXTRA);
ABI_PopRegistersAndAdjustStack(QUANTIZED_REGS_TO_SAVE, 8); ABI_PopRegistersAndAdjustStack(QUANTIZED_REGS_TO_SAVE, 8);
if (!jit->js.memcheck)
SetJumpTarget(skip_complex); SetJumpTarget(skip_complex);
RET(); RET();
const u8* storePairedU8 = AlignCode4(); const u8* storePairedU8 = AlignCode4();
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_quantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_quantizeTableS));
PUNPCKLDQ(XMM1, R(XMM1)); PUNPCKLDQ(XMM1, R(XMM1));
MULPS(XMM0, R(XMM1)); MULPS(XMM0, R(XMM1));
#ifdef QUANTIZE_OVERFLOW_SAFE #ifdef QUANTIZE_OVERFLOW_SAFE
@ -284,8 +291,8 @@ void CommonAsmRoutines::GenQuantizedStores()
RET(); RET();
const u8* storePairedS8 = AlignCode4(); const u8* storePairedS8 = AlignCode4();
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_quantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_quantizeTableS));
PUNPCKLDQ(XMM1, R(XMM1)); PUNPCKLDQ(XMM1, R(XMM1));
MULPS(XMM0, R(XMM1)); MULPS(XMM0, R(XMM1));
#ifdef QUANTIZE_OVERFLOW_SAFE #ifdef QUANTIZE_OVERFLOW_SAFE
@ -303,8 +310,8 @@ void CommonAsmRoutines::GenQuantizedStores()
RET(); RET();
const u8* storePairedU16 = AlignCode4(); const u8* storePairedU16 = AlignCode4();
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_quantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_quantizeTableS));
PUNPCKLDQ(XMM1, R(XMM1)); PUNPCKLDQ(XMM1, R(XMM1));
MULPS(XMM0, R(XMM1)); MULPS(XMM0, R(XMM1));
@ -329,8 +336,8 @@ void CommonAsmRoutines::GenQuantizedStores()
RET(); RET();
const u8* storePairedS16 = AlignCode4(); const u8* storePairedS16 = AlignCode4();
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_quantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_quantizeTableS));
// SHUFPS or UNPCKLPS might be a better choice here. The last one might just be an alias though. // SHUFPS or UNPCKLPS might be a better choice here. The last one might just be an alias though.
PUNPCKLDQ(XMM1, R(XMM1)); PUNPCKLDQ(XMM1, R(XMM1));
MULPS(XMM0, R(XMM1)); MULPS(XMM0, R(XMM1));
@ -388,8 +395,8 @@ void CommonAsmRoutines::GenQuantizedSingleStores()
}*/ }*/
const u8* storeSingleU8 = AlignCode4(); // Used by MKWii const u8* storeSingleU8 = AlignCode4(); // Used by MKWii
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_quantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_quantizeTableS));
MULSS(XMM0, R(XMM1)); MULSS(XMM0, R(XMM1));
PXOR(XMM1, R(XMM1)); PXOR(XMM1, R(XMM1));
MAXSS(XMM0, R(XMM1)); MAXSS(XMM0, R(XMM1));
@ -399,8 +406,8 @@ void CommonAsmRoutines::GenQuantizedSingleStores()
RET(); RET();
const u8* storeSingleS8 = AlignCode4(); const u8* storeSingleS8 = AlignCode4();
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_quantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_quantizeTableS));
MULSS(XMM0, R(XMM1)); MULSS(XMM0, R(XMM1));
MAXSS(XMM0, M((void *)&m_m128)); MAXSS(XMM0, M((void *)&m_m128));
MINSS(XMM0, M((void *)&m_127)); MINSS(XMM0, M((void *)&m_127));
@ -409,8 +416,8 @@ void CommonAsmRoutines::GenQuantizedSingleStores()
RET(); RET();
const u8* storeSingleU16 = AlignCode4(); // Used by MKWii const u8* storeSingleU16 = AlignCode4(); // Used by MKWii
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_quantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_quantizeTableS));
MULSS(XMM0, R(XMM1)); MULSS(XMM0, R(XMM1));
PXOR(XMM1, R(XMM1)); PXOR(XMM1, R(XMM1));
MAXSS(XMM0, R(XMM1)); MAXSS(XMM0, R(XMM1));
@ -420,8 +427,8 @@ void CommonAsmRoutines::GenQuantizedSingleStores()
RET(); RET();
const u8* storeSingleS16 = AlignCode4(); const u8* storeSingleS16 = AlignCode4();
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_quantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_quantizeTableS));
MULSS(XMM0, R(XMM1)); MULSS(XMM0, R(XMM1));
MAXSS(XMM0, M((void *)&m_m32768)); MAXSS(XMM0, M((void *)&m_m32768));
MINSS(XMM0, M((void *)&m_32767)); MINSS(XMM0, M((void *)&m_32767));
@ -448,7 +455,13 @@ void CommonAsmRoutines::GenQuantizedLoads()
UD2(); UD2();
const u8* loadPairedFloatTwo = AlignCode4(); const u8* loadPairedFloatTwo = AlignCode4();
if (cpu_info.bSSSE3) if (jit->js.memcheck)
{
SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 64, 0, QUANTIZED_REGS_TO_SAVE, false, SAFE_LOADSTORE_NO_PROLOG);
ROL(64, R(RSCRATCH_EXTRA), Imm8(32));
MOVQ_xmm(XMM0, R(RSCRATCH_EXTRA));
}
else if (cpu_info.bSSSE3)
{ {
MOVQ_xmm(XMM0, MComplex(RMEM, RSCRATCH_EXTRA, 1, 0)); MOVQ_xmm(XMM0, MComplex(RMEM, RSCRATCH_EXTRA, 1, 0));
PSHUFB(XMM0, M((void *)pbswapShuffle2x4)); PSHUFB(XMM0, M((void *)pbswapShuffle2x4));
@ -462,7 +475,13 @@ void CommonAsmRoutines::GenQuantizedLoads()
RET(); RET();
const u8* loadPairedFloatOne = AlignCode4(); const u8* loadPairedFloatOne = AlignCode4();
if (cpu_info.bSSSE3) if (jit->js.memcheck)
{
SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 32, 0, QUANTIZED_REGS_TO_SAVE, false, SAFE_LOADSTORE_NO_PROLOG);
MOVD_xmm(XMM0, R(RSCRATCH_EXTRA));
UNPCKLPS(XMM0, M((void*)m_one));
}
else if (cpu_info.bSSSE3)
{ {
MOVD_xmm(XMM0, MComplex(RMEM, RSCRATCH_EXTRA, 1, 0)); MOVD_xmm(XMM0, MComplex(RMEM, RSCRATCH_EXTRA, 1, 0));
PSHUFB(XMM0, M((void *)pbswapShuffle1x4)); PSHUFB(XMM0, M((void *)pbswapShuffle1x4));
@ -477,99 +496,130 @@ void CommonAsmRoutines::GenQuantizedLoads()
RET(); RET();
const u8* loadPairedU8Two = AlignCode4(); const u8* loadPairedU8Two = AlignCode4();
if (jit->js.memcheck)
{
// TODO: Support not swapping in safeLoadToReg to avoid bswapping twice
SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 16, 0, QUANTIZED_REGS_TO_SAVE_LOAD, false, SAFE_LOADSTORE_NO_PROLOG);
ROR(16, R(RSCRATCH_EXTRA), Imm8(8));
}
else
{
UnsafeLoadRegToRegNoSwap(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 16, 0); UnsafeLoadRegToRegNoSwap(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 16, 0);
}
MOVD_xmm(XMM0, R(RSCRATCH_EXTRA)); MOVD_xmm(XMM0, R(RSCRATCH_EXTRA));
PXOR(XMM1, R(XMM1)); PXOR(XMM1, R(XMM1));
PUNPCKLBW(XMM0, R(XMM1)); PUNPCKLBW(XMM0, R(XMM1));
PUNPCKLWD(XMM0, R(XMM1)); PUNPCKLWD(XMM0, R(XMM1));
CVTDQ2PS(XMM0, R(XMM0)); CVTDQ2PS(XMM0, R(XMM0));
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_dequantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_dequantizeTableS));
PUNPCKLDQ(XMM1, R(XMM1)); PUNPCKLDQ(XMM1, R(XMM1));
MULPS(XMM0, R(XMM1)); MULPS(XMM0, R(XMM1));
RET(); RET();
const u8* loadPairedU8One = AlignCode4(); const u8* loadPairedU8One = AlignCode4();
if (jit->js.memcheck)
SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 8, 0, QUANTIZED_REGS_TO_SAVE_LOAD, false, SAFE_LOADSTORE_NO_PROLOG);
else
UnsafeLoadRegToRegNoSwap(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 8, 0); // RSCRATCH_EXTRA = 0x000000xx UnsafeLoadRegToRegNoSwap(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 8, 0); // RSCRATCH_EXTRA = 0x000000xx
MOVD_xmm(XMM0, R(RSCRATCH_EXTRA)); MOVD_xmm(XMM0, R(RSCRATCH_EXTRA));
CVTDQ2PS(XMM0, R(XMM0)); // Is CVTSI2SS better? CVTDQ2PS(XMM0, R(XMM0)); // Is CVTSI2SS better?
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_dequantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_dequantizeTableS));
MULSS(XMM0, R(XMM1)); MULSS(XMM0, R(XMM1));
UNPCKLPS(XMM0, M((void*)m_one)); UNPCKLPS(XMM0, M((void*)m_one));
RET(); RET();
const u8* loadPairedS8Two = AlignCode4(); const u8* loadPairedS8Two = AlignCode4();
if (jit->js.memcheck)
{
// TODO: Support not swapping in safeLoadToReg to avoid bswapping twice
SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 16, 0, QUANTIZED_REGS_TO_SAVE_LOAD, false, SAFE_LOADSTORE_NO_PROLOG);
ROR(16, R(RSCRATCH_EXTRA), Imm8(8));
}
else
{
UnsafeLoadRegToRegNoSwap(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 16, 0); UnsafeLoadRegToRegNoSwap(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 16, 0);
}
MOVD_xmm(XMM0, R(RSCRATCH_EXTRA)); MOVD_xmm(XMM0, R(RSCRATCH_EXTRA));
PUNPCKLBW(XMM0, R(XMM0)); PUNPCKLBW(XMM0, R(XMM0));
PUNPCKLWD(XMM0, R(XMM0)); PUNPCKLWD(XMM0, R(XMM0));
PSRAD(XMM0, 24); PSRAD(XMM0, 24);
CVTDQ2PS(XMM0, R(XMM0)); CVTDQ2PS(XMM0, R(XMM0));
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_dequantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_dequantizeTableS));
PUNPCKLDQ(XMM1, R(XMM1)); PUNPCKLDQ(XMM1, R(XMM1));
MULPS(XMM0, R(XMM1)); MULPS(XMM0, R(XMM1));
RET(); RET();
const u8* loadPairedS8One = AlignCode4(); const u8* loadPairedS8One = AlignCode4();
UnsafeLoadRegToRegNoSwap(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 8, 0); if (jit->js.memcheck)
SHL(32, R(RSCRATCH_EXTRA), Imm8(24)); SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 8, 0, QUANTIZED_REGS_TO_SAVE_LOAD, true, SAFE_LOADSTORE_NO_PROLOG);
SAR(32, R(RSCRATCH_EXTRA), Imm8(24)); else
UnsafeLoadRegToRegNoSwap(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 8, 0, true);
MOVD_xmm(XMM0, R(RSCRATCH_EXTRA)); MOVD_xmm(XMM0, R(RSCRATCH_EXTRA));
CVTDQ2PS(XMM0, R(XMM0)); CVTDQ2PS(XMM0, R(XMM0));
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_dequantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_dequantizeTableS));
MULSS(XMM0, R(XMM1)); MULSS(XMM0, R(XMM1));
UNPCKLPS(XMM0, M((void*)m_one)); UNPCKLPS(XMM0, M((void*)m_one));
RET(); RET();
const u8* loadPairedU16Two = AlignCode4(); const u8* loadPairedU16Two = AlignCode4();
// TODO: Support not swapping in (un)safeLoadToReg to avoid bswapping twice
if (jit->js.memcheck)
SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 32, 0, QUANTIZED_REGS_TO_SAVE_LOAD, false, SAFE_LOADSTORE_NO_PROLOG);
else
UnsafeLoadRegToReg(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 32, 0, false); UnsafeLoadRegToReg(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 32, 0, false);
ROL(32, R(RSCRATCH_EXTRA), Imm8(16)); ROL(32, R(RSCRATCH_EXTRA), Imm8(16));
MOVD_xmm(XMM0, R(RSCRATCH_EXTRA)); MOVD_xmm(XMM0, R(RSCRATCH_EXTRA));
PXOR(XMM1, R(XMM1)); PXOR(XMM1, R(XMM1));
PUNPCKLWD(XMM0, R(XMM1)); PUNPCKLWD(XMM0, R(XMM1));
CVTDQ2PS(XMM0, R(XMM0)); CVTDQ2PS(XMM0, R(XMM0));
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_dequantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_dequantizeTableS));
PUNPCKLDQ(XMM1, R(XMM1)); PUNPCKLDQ(XMM1, R(XMM1));
MULPS(XMM0, R(XMM1)); MULPS(XMM0, R(XMM1));
RET(); RET();
const u8* loadPairedU16One = AlignCode4(); const u8* loadPairedU16One = AlignCode4();
UnsafeLoadRegToReg(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 32, 0, false); if (jit->js.memcheck)
SHR(32, R(RSCRATCH_EXTRA), Imm8(16)); SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 16, 0, QUANTIZED_REGS_TO_SAVE_LOAD, false, SAFE_LOADSTORE_NO_PROLOG);
else
UnsafeLoadRegToReg(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 16, 0, false);
MOVD_xmm(XMM0, R(RSCRATCH_EXTRA)); MOVD_xmm(XMM0, R(RSCRATCH_EXTRA));
CVTDQ2PS(XMM0, R(XMM0)); CVTDQ2PS(XMM0, R(XMM0));
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_dequantizeTableS)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_dequantizeTableS));
MULSS(XMM0, R(XMM1)); MULSS(XMM0, R(XMM1));
UNPCKLPS(XMM0, M((void*)m_one)); UNPCKLPS(XMM0, M((void*)m_one));
RET(); RET();
const u8* loadPairedS16Two = AlignCode4(); const u8* loadPairedS16Two = AlignCode4();
if (jit->js.memcheck)
SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 32, 0, QUANTIZED_REGS_TO_SAVE_LOAD, false, SAFE_LOADSTORE_NO_PROLOG);
else
UnsafeLoadRegToReg(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 32, 0, false); UnsafeLoadRegToReg(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 32, 0, false);
ROL(32, R(RSCRATCH_EXTRA), Imm8(16)); ROL(32, R(RSCRATCH_EXTRA), Imm8(16));
MOVD_xmm(XMM0, R(RSCRATCH_EXTRA)); MOVD_xmm(XMM0, R(RSCRATCH_EXTRA));
PUNPCKLWD(XMM0, R(XMM0)); PUNPCKLWD(XMM0, R(XMM0));
PSRAD(XMM0, 16); PSRAD(XMM0, 16);
CVTDQ2PS(XMM0, R(XMM0)); CVTDQ2PS(XMM0, R(XMM0));
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
AND(32, R(RSCRATCH), Imm32(0xFC)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_dequantizeTableS));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_dequantizeTableS));
PUNPCKLDQ(XMM1, R(XMM1)); PUNPCKLDQ(XMM1, R(XMM1));
MULPS(XMM0, R(XMM1)); MULPS(XMM0, R(XMM1));
RET(); RET();
const u8* loadPairedS16One = AlignCode4(); const u8* loadPairedS16One = AlignCode4();
UnsafeLoadRegToReg(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 32, 0, false); if (jit->js.memcheck)
SAR(32, R(RSCRATCH_EXTRA), Imm8(16)); SafeLoadToReg(RSCRATCH_EXTRA, R(RSCRATCH_EXTRA), 16, 0, QUANTIZED_REGS_TO_SAVE_LOAD, true, SAFE_LOADSTORE_NO_PROLOG);
else
UnsafeLoadRegToReg(RSCRATCH_EXTRA, RSCRATCH_EXTRA, 16, 0, true);
MOVD_xmm(XMM0, R(RSCRATCH_EXTRA)); MOVD_xmm(XMM0, R(RSCRATCH_EXTRA));
CVTDQ2PS(XMM0, R(XMM0)); CVTDQ2PS(XMM0, R(XMM0));
SHR(32, R(RSCRATCH), Imm8(6)); SHR(32, R(RSCRATCH2), Imm8(6));
AND(32, R(RSCRATCH), Imm32(0xFC)); MOVSS(XMM1, MDisp(RSCRATCH2, (u32)(u64)m_dequantizeTableS));
MOVSS(XMM1, MDisp(RSCRATCH, (u32)(u64)m_dequantizeTableS));
MULSS(XMM0, R(XMM1)); MULSS(XMM0, R(XMM1));
UNPCKLPS(XMM0, M((void*)m_one)); UNPCKLPS(XMM0, M((void*)m_one));
RET(); RET();

View File

@ -61,8 +61,11 @@ void EmuCodeBlock::UnsafeLoadRegToReg(X64Reg reg_addr, X64Reg reg_value, int acc
} }
} }
void EmuCodeBlock::UnsafeLoadRegToRegNoSwap(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset) void EmuCodeBlock::UnsafeLoadRegToRegNoSwap(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset, bool signExtend)
{ {
if (signExtend)
MOVSX(32, accessSize, reg_value, MComplex(RMEM, reg_addr, SCALE_1, offset));
else
MOVZX(32, accessSize, reg_value, MComplex(RMEM, reg_addr, SCALE_1, offset)); MOVZX(32, accessSize, reg_value, MComplex(RMEM, reg_addr, SCALE_1, offset));
} }
@ -315,8 +318,7 @@ void EmuCodeBlock::SafeLoadToReg(X64Reg reg_value, const Gen::OpArg & opAddress,
} }
ABI_PopRegistersAndAdjustStack(registersInUse, 0); ABI_PopRegistersAndAdjustStack(registersInUse, 0);
MEMCHECK_START MEMCHECK_START(false)
if (signExtend && accessSize < 32) if (signExtend && accessSize < 32)
{ {
// Need to sign extend values coming from the Read_U* functions. // Need to sign extend values coming from the Read_U* functions.
@ -326,7 +328,6 @@ void EmuCodeBlock::SafeLoadToReg(X64Reg reg_value, const Gen::OpArg & opAddress,
{ {
MOVZX(64, accessSize, reg_value, R(ABI_RETURN)); MOVZX(64, accessSize, reg_value, R(ABI_RETURN));
} }
MEMCHECK_END MEMCHECK_END
} }
} }
@ -348,9 +349,17 @@ void EmuCodeBlock::SafeLoadToReg(X64Reg reg_value, const Gen::OpArg & opAddress,
} }
TEST(32, addr_loc, Imm32(mem_mask)); TEST(32, addr_loc, Imm32(mem_mask));
FixupBranch fast = J_CC(CC_Z, true); FixupBranch slow, exit;
slow = J_CC(CC_NZ, farcode.Enabled());
UnsafeLoadToReg(reg_value, addr_loc, accessSize, 0, signExtend);
if (farcode.Enabled())
SwitchToFarCode();
else
exit = J(true);
SetJumpTarget(slow);
ABI_PushRegistersAndAdjustStack(registersInUse, 0); size_t rsp_alignment = (flags & SAFE_LOADSTORE_NO_PROLOG) ? 8 : 0;
ABI_PushRegistersAndAdjustStack(registersInUse, rsp_alignment);
switch (accessSize) switch (accessSize)
{ {
case 64: case 64:
@ -366,10 +375,9 @@ void EmuCodeBlock::SafeLoadToReg(X64Reg reg_value, const Gen::OpArg & opAddress,
ABI_CallFunctionA((void *)&Memory::Read_U8_ZX, addr_loc); ABI_CallFunctionA((void *)&Memory::Read_U8_ZX, addr_loc);
break; break;
} }
ABI_PopRegistersAndAdjustStack(registersInUse, 0); ABI_PopRegistersAndAdjustStack(registersInUse, rsp_alignment);
MEMCHECK_START
MEMCHECK_START(false)
if (signExtend && accessSize < 32) if (signExtend && accessSize < 32)
{ {
// Need to sign extend values coming from the Read_U* functions. // Need to sign extend values coming from the Read_U* functions.
@ -379,12 +387,13 @@ void EmuCodeBlock::SafeLoadToReg(X64Reg reg_value, const Gen::OpArg & opAddress,
{ {
MOVZX(64, accessSize, reg_value, R(ABI_RETURN)); MOVZX(64, accessSize, reg_value, R(ABI_RETURN));
} }
MEMCHECK_END MEMCHECK_END
FixupBranch exit = J(); if (farcode.Enabled())
SetJumpTarget(fast); {
UnsafeLoadToReg(reg_value, addr_loc, accessSize, 0, signExtend); exit = J(true);
SwitchToNearCode();
}
SetJumpTarget(exit); SetJumpTarget(exit);
} }
} }
@ -466,12 +475,21 @@ void EmuCodeBlock::SafeWriteRegToReg(X64Reg reg_value, X64Reg reg_addr, int acce
} }
#endif #endif
bool swap = !(flags & SAFE_LOADSTORE_NO_SWAP);
FixupBranch slow, exit;
TEST(32, R(reg_addr), Imm32(mem_mask)); TEST(32, R(reg_addr), Imm32(mem_mask));
FixupBranch fast = J_CC(CC_Z, true); slow = J_CC(CC_NZ, farcode.Enabled());
UnsafeWriteRegToReg(reg_value, reg_addr, accessSize, 0, swap);
if (farcode.Enabled())
SwitchToFarCode();
else
exit = J(true);
SetJumpTarget(slow);
// PC is used by memory watchpoints (if enabled) or to print accurate PC locations in debug logs // PC is used by memory watchpoints (if enabled) or to print accurate PC locations in debug logs
MOV(32, PPCSTATE(pc), Imm32(jit->js.compilerPC)); MOV(32, PPCSTATE(pc), Imm32(jit->js.compilerPC));
size_t rsp_alignment = (flags & SAFE_LOADSTORE_NO_PROLOG) ? 8 : 0; size_t rsp_alignment = (flags & SAFE_LOADSTORE_NO_PROLOG) ? 8 : 0;
bool swap = !(flags & SAFE_LOADSTORE_NO_SWAP);
ABI_PushRegistersAndAdjustStack(registersInUse, rsp_alignment); ABI_PushRegistersAndAdjustStack(registersInUse, rsp_alignment);
switch (accessSize) switch (accessSize)
{ {
@ -489,9 +507,11 @@ void EmuCodeBlock::SafeWriteRegToReg(X64Reg reg_value, X64Reg reg_addr, int acce
break; break;
} }
ABI_PopRegistersAndAdjustStack(registersInUse, rsp_alignment); ABI_PopRegistersAndAdjustStack(registersInUse, rsp_alignment);
FixupBranch exit = J(); if (farcode.Enabled())
SetJumpTarget(fast); {
UnsafeWriteRegToReg(reg_value, reg_addr, accessSize, 0, swap); exit = J(true);
SwitchToNearCode();
}
SetJumpTarget(exit); SetJumpTarget(exit);
} }
@ -655,15 +675,17 @@ void EmuCodeBlock::ConvertDoubleToSingle(X64Reg dst, X64Reg src)
// to save an instruction, since diverting a few more floats to the slow path can't hurt much. // to save an instruction, since diverting a few more floats to the slow path can't hurt much.
SUB(8, R(RSCRATCH), Imm8(0x6D)); SUB(8, R(RSCRATCH), Imm8(0x6D));
CMP(8, R(RSCRATCH), Imm8(0x3)); CMP(8, R(RSCRATCH), Imm8(0x3));
FixupBranch x87Conversion = J_CC(CC_BE); FixupBranch x87Conversion = J_CC(CC_BE, true);
CVTSD2SS(dst, R(src)); CVTSD2SS(dst, R(src));
FixupBranch continue1 = J();
SwitchToFarCode();
SetJumpTarget(x87Conversion); SetJumpTarget(x87Conversion);
MOVSD(M(&temp64), src); MOVSD(M(&temp64), src);
FLD(64, M(&temp64)); FLD(64, M(&temp64));
FSTP(32, M(&temp32)); FSTP(32, M(&temp32));
MOVSS(dst, M(&temp32)); MOVSS(dst, M(&temp32));
FixupBranch continue1 = J(true);
SwitchToNearCode();
SetJumpTarget(continue1); SetJumpTarget(continue1);
// We'd normally need to MOVDDUP here to put the single in the top half of the output register too, but // We'd normally need to MOVDDUP here to put the single in the top half of the output register too, but
@ -692,16 +714,17 @@ void EmuCodeBlock::ConvertSingleToDouble(X64Reg dst, X64Reg src, bool src_is_gpr
// through the slow path (0x00800000), but the performance effects of that should be negligible. // through the slow path (0x00800000), but the performance effects of that should be negligible.
SUB(32, R(gprsrc), Imm8(1)); SUB(32, R(gprsrc), Imm8(1));
TEST(32, R(gprsrc), Imm32(0x7f800000)); TEST(32, R(gprsrc), Imm32(0x7f800000));
FixupBranch x87Conversion = J_CC(CC_Z, true);
FixupBranch x87Conversion = J_CC(CC_Z);
CVTSS2SD(dst, R(dst)); CVTSS2SD(dst, R(dst));
FixupBranch continue1 = J();
SwitchToFarCode();
SetJumpTarget(x87Conversion); SetJumpTarget(x87Conversion);
MOVSS(M(&temp32), dst); MOVSS(M(&temp32), dst);
FLD(32, M(&temp32)); FLD(32, M(&temp32));
FSTP(64, M(&temp64)); FSTP(64, M(&temp64));
MOVSD(dst, M(&temp64)); MOVSD(dst, M(&temp64));
FixupBranch continue1 = J(true);
SwitchToNearCode();
SetJumpTarget(continue1); SetJumpTarget(continue1);
MOVDDUP(dst, R(dst)); MOVDDUP(dst, R(dst));

View File

@ -11,11 +11,13 @@
namespace MMIO { class Mapping; } namespace MMIO { class Mapping; }
#define MEMCHECK_START \ // If inv is true, invert the check (i.e. skip over the associated code if an exception hits,
// instead of skipping over the code if an exception isn't hit).
#define MEMCHECK_START(inv) \
Gen::FixupBranch memException; \ Gen::FixupBranch memException; \
if (jit->js.memcheck) \ if (jit->js.memcheck) \
{ TEST(32, PPCSTATE(Exceptions), Gen::Imm32(EXCEPTION_DSI)); \ { TEST(32, PPCSTATE(Exceptions), Gen::Imm32(EXCEPTION_DSI)); \
memException = J_CC(Gen::CC_NZ, true); } memException = J_CC((inv) ? Gen::CC_Z : Gen::CC_NZ, true); }
#define MEMCHECK_END \ #define MEMCHECK_END \
if (jit->js.memcheck) \ if (jit->js.memcheck) \
@ -32,15 +34,50 @@ namespace MMIO { class Mapping; }
#define PPCSTATE_SRR0 PPCSTATE(spr[SPR_SRR0]) #define PPCSTATE_SRR0 PPCSTATE(spr[SPR_SRR0])
#define PPCSTATE_SRR1 PPCSTATE(spr[SPR_SRR1]) #define PPCSTATE_SRR1 PPCSTATE(spr[SPR_SRR1])
// A place to throw blocks of code we don't want polluting the cache, e.g. rarely taken
// exception branches.
class FarCodeCache : public Gen::X64CodeBlock
{
private:
bool m_enabled = false;
public:
bool Enabled() { return m_enabled; }
void Init(int size) { AllocCodeSpace(size); m_enabled = true; }
void Shutdown() { FreeCodeSpace(); m_enabled = false; }
};
// Like XCodeBlock but has some utilities for memory access. // Like XCodeBlock but has some utilities for memory access.
class EmuCodeBlock : public Gen::X64CodeBlock class EmuCodeBlock : public Gen::X64CodeBlock
{ {
public: public:
static const int CODE_SIZE = 1024 * 1024 * 32;
// a bit of a hack; the MMU results in a vast amount more code ending up in the far cache,
// mostly exception handling, so give it a whole bunch more space if the MMU is on.
static const int FARCODE_SIZE = 1024 * 1024 * 8;
static const int FARCODE_SIZE_MMU = 1024 * 1024 * 48;
FarCodeCache farcode;
u8* nearcode; // Backed up when we switch to far code.
// Simple functions to switch between near and far code emitting
void SwitchToFarCode()
{
nearcode = GetWritableCodePtr();
SetCodePtr(farcode.GetWritableCodePtr());
}
void SwitchToNearCode()
{
farcode.SetCodePtr(GetWritableCodePtr());
SetCodePtr(nearcode);
}
void LoadAndSwap(int size, Gen::X64Reg dst, const Gen::OpArg& src); void LoadAndSwap(int size, Gen::X64Reg dst, const Gen::OpArg& src);
void SwapAndStore(int size, const Gen::OpArg& dst, Gen::X64Reg src); void SwapAndStore(int size, const Gen::OpArg& dst, Gen::X64Reg src);
void UnsafeLoadRegToReg(Gen::X64Reg reg_addr, Gen::X64Reg reg_value, int accessSize, s32 offset = 0, bool signExtend = false); void UnsafeLoadRegToReg(Gen::X64Reg reg_addr, Gen::X64Reg reg_value, int accessSize, s32 offset = 0, bool signExtend = false);
void UnsafeLoadRegToRegNoSwap(Gen::X64Reg reg_addr, Gen::X64Reg reg_value, int accessSize, s32 offset); void UnsafeLoadRegToRegNoSwap(Gen::X64Reg reg_addr, Gen::X64Reg reg_value, int accessSize, s32 offset, bool signExtend = false);
// these return the address of the MOV, for backpatching // these return the address of the MOV, for backpatching
u8 *UnsafeWriteRegToReg(Gen::X64Reg reg_value, Gen::X64Reg reg_addr, int accessSize, s32 offset = 0, bool swap = true); u8 *UnsafeWriteRegToReg(Gen::X64Reg reg_value, Gen::X64Reg reg_addr, int accessSize, s32 offset = 0, bool swap = true);
u8 *UnsafeLoadToReg(Gen::X64Reg reg_value, Gen::OpArg opAddress, int accessSize, s32 offset, bool signExtend); u8 *UnsafeLoadToReg(Gen::X64Reg reg_value, Gen::OpArg opAddress, int accessSize, s32 offset, bool signExtend);