Merge pull request #4665 from lioncash/dsp-state

HW/DSP: Hide the DSP state global
This commit is contained in:
Markus Wick 2017-01-16 21:46:21 +01:00 committed by GitHub
commit 763e086e79
2 changed files with 179 additions and 180 deletions

View File

@ -112,12 +112,6 @@ struct ARAMInfo
u8* ptr = nullptr; // aka audio ram, auxiliary ram, MEM2, EXRAM, etc... u8* ptr = nullptr; // aka audio ram, auxiliary ram, MEM2, EXRAM, etc...
}; };
// STATE_TO_SAVE
static ARAMInfo g_ARAM;
static AudioDMA g_audioDMA;
static ARAM_DMA g_arDMA;
UDSPControl g_dspState;
union ARAM_Info union ARAM_Info
{ {
u16 Hex = 0; u16 Hex = 0;
@ -128,99 +122,105 @@ union ARAM_Info
u16 : 9; u16 : 9;
}; };
}; };
static ARAM_Info g_ARAM_Info;
// STATE_TO_SAVE
static ARAMInfo s_ARAM;
static AudioDMA s_audioDMA;
static ARAM_DMA s_arDMA;
static UDSPControl s_dspState;
static ARAM_Info s_ARAM_Info;
// Contains bitfields for some stuff we don't care about (and nothing ever reads): // Contains bitfields for some stuff we don't care about (and nothing ever reads):
// CAS latency/burst length/addressing mode/write mode // CAS latency/burst length/addressing mode/write mode
// We care about the LSB tho. It indicates that the ARAM controller has finished initializing // We care about the LSB tho. It indicates that the ARAM controller has finished initializing
static u16 g_AR_MODE; static u16 s_AR_MODE;
static u16 g_AR_REFRESH; static u16 s_AR_REFRESH;
static int s_dsp_slice = 0;
static std::unique_ptr<DSPEmulator> dsp_emulator; static std::unique_ptr<DSPEmulator> s_dsp_emulator;
static int dsp_slice = 0; static bool s_dsp_is_lle = false;
static bool dsp_is_lle = false;
// time given to LLE DSP on every read of the high bits in a mailbox // time given to LLE DSP on every read of the high bits in a mailbox
static const int DSP_MAIL_SLICE = 72; static const int DSP_MAIL_SLICE = 72;
void DoState(PointerWrap& p) void DoState(PointerWrap& p)
{ {
if (!g_ARAM.wii_mode) if (!s_ARAM.wii_mode)
p.DoArray(g_ARAM.ptr, g_ARAM.size); p.DoArray(s_ARAM.ptr, s_ARAM.size);
p.DoPOD(g_dspState); p.DoPOD(s_dspState);
p.DoPOD(g_audioDMA); p.DoPOD(s_audioDMA);
p.DoPOD(g_arDMA); p.DoPOD(s_arDMA);
p.Do(g_ARAM_Info); p.Do(s_ARAM_Info);
p.Do(g_AR_MODE); p.Do(s_AR_MODE);
p.Do(g_AR_REFRESH); p.Do(s_AR_REFRESH);
p.Do(dsp_slice); p.Do(s_dsp_slice);
dsp_emulator->DoState(p); s_dsp_emulator->DoState(p);
} }
static void UpdateInterrupts(); static void UpdateInterrupts();
static void Do_ARAM_DMA(); static void Do_ARAM_DMA();
static void GenerateDSPInterrupt(u64 DSPIntType, s64 cyclesLate = 0); static void GenerateDSPInterrupt(u64 DSPIntType, s64 cyclesLate = 0);
static CoreTiming::EventType* et_GenerateDSPInterrupt; static CoreTiming::EventType* s_et_GenerateDSPInterrupt;
static CoreTiming::EventType* et_CompleteARAM; static CoreTiming::EventType* s_et_CompleteARAM;
static void CompleteARAM(u64 userdata, s64 cyclesLate) static void CompleteARAM(u64 userdata, s64 cyclesLate)
{ {
g_dspState.DMAState = 0; s_dspState.DMAState = 0;
GenerateDSPInterrupt(INT_ARAM); GenerateDSPInterrupt(INT_ARAM);
} }
DSPEmulator* GetDSPEmulator() DSPEmulator* GetDSPEmulator()
{ {
return dsp_emulator.get(); return s_dsp_emulator.get();
} }
void Init(bool hle) void Init(bool hle)
{ {
dsp_emulator = CreateDSPEmulator(hle); s_dsp_emulator = CreateDSPEmulator(hle);
dsp_is_lle = dsp_emulator->IsLLE(); s_dsp_is_lle = s_dsp_emulator->IsLLE();
if (SConfig::GetInstance().bWii) if (SConfig::GetInstance().bWii)
{ {
g_ARAM.wii_mode = true; s_ARAM.wii_mode = true;
g_ARAM.size = Memory::EXRAM_SIZE; s_ARAM.size = Memory::EXRAM_SIZE;
g_ARAM.mask = Memory::EXRAM_MASK; s_ARAM.mask = Memory::EXRAM_MASK;
g_ARAM.ptr = Memory::m_pEXRAM; s_ARAM.ptr = Memory::m_pEXRAM;
} }
else else
{ {
// On the GameCube, ARAM is accessible only through this interface. // On the GameCube, ARAM is accessible only through this interface.
g_ARAM.wii_mode = false; s_ARAM.wii_mode = false;
g_ARAM.size = ARAM_SIZE; s_ARAM.size = ARAM_SIZE;
g_ARAM.mask = ARAM_MASK; s_ARAM.mask = ARAM_MASK;
g_ARAM.ptr = static_cast<u8*>(Common::AllocateMemoryPages(g_ARAM.size)); s_ARAM.ptr = static_cast<u8*>(Common::AllocateMemoryPages(s_ARAM.size));
} }
memset(&g_audioDMA, 0, sizeof(g_audioDMA)); s_audioDMA = {};
memset(&g_arDMA, 0, sizeof(g_arDMA)); s_arDMA = {};
g_dspState.Hex = 0; s_dspState.Hex = 0;
g_dspState.DSPHalt = 1; s_dspState.DSPHalt = 1;
g_ARAM_Info.Hex = 0; s_ARAM_Info.Hex = 0;
g_AR_MODE = 1; // ARAM Controller has init'd s_AR_MODE = 1; // ARAM Controller has init'd
g_AR_REFRESH = 156; // 156MHz s_AR_REFRESH = 156; // 156MHz
et_GenerateDSPInterrupt = CoreTiming::RegisterEvent("DSPint", GenerateDSPInterrupt); s_et_GenerateDSPInterrupt = CoreTiming::RegisterEvent("DSPint", GenerateDSPInterrupt);
et_CompleteARAM = CoreTiming::RegisterEvent("ARAMint", CompleteARAM); s_et_CompleteARAM = CoreTiming::RegisterEvent("ARAMint", CompleteARAM);
} }
void Shutdown() void Shutdown()
{ {
if (!g_ARAM.wii_mode) if (!s_ARAM.wii_mode)
{ {
Common::FreeMemoryPages(g_ARAM.ptr, g_ARAM.size); Common::FreeMemoryPages(s_ARAM.ptr, s_ARAM.size);
g_ARAM.ptr = nullptr; s_ARAM.ptr = nullptr;
} }
dsp_emulator->Shutdown(); s_dsp_emulator->Shutdown();
dsp_emulator.reset(); s_dsp_emulator.reset();
} }
void RegisterMMIO(MMIO::Mapping* mmio, u32 base) void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
@ -232,17 +232,17 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
u16* ptr; u16* ptr;
bool align_writes_on_32_bytes; bool align_writes_on_32_bytes;
} directly_mapped_vars[] = { } directly_mapped_vars[] = {
{AR_INFO, &g_ARAM_Info.Hex}, {AR_INFO, &s_ARAM_Info.Hex},
{AR_MODE, &g_AR_MODE}, {AR_MODE, &s_AR_MODE},
{AR_REFRESH, &g_AR_REFRESH}, {AR_REFRESH, &s_AR_REFRESH},
{AR_DMA_MMADDR_H, MMIO::Utils::HighPart(&g_arDMA.MMAddr)}, {AR_DMA_MMADDR_H, MMIO::Utils::HighPart(&s_arDMA.MMAddr)},
{AR_DMA_MMADDR_L, MMIO::Utils::LowPart(&g_arDMA.MMAddr), true}, {AR_DMA_MMADDR_L, MMIO::Utils::LowPart(&s_arDMA.MMAddr), true},
{AR_DMA_ARADDR_H, MMIO::Utils::HighPart(&g_arDMA.ARAddr)}, {AR_DMA_ARADDR_H, MMIO::Utils::HighPart(&s_arDMA.ARAddr)},
{AR_DMA_ARADDR_L, MMIO::Utils::LowPart(&g_arDMA.ARAddr), true}, {AR_DMA_ARADDR_L, MMIO::Utils::LowPart(&s_arDMA.ARAddr), true},
{AR_DMA_CNT_H, MMIO::Utils::HighPart(&g_arDMA.Cnt.Hex)}, {AR_DMA_CNT_H, MMIO::Utils::HighPart(&s_arDMA.Cnt.Hex)},
// AR_DMA_CNT_L triggers DMA // AR_DMA_CNT_L triggers DMA
{AUDIO_DMA_START_HI, MMIO::Utils::HighPart(&g_audioDMA.SourceAddress)}, {AUDIO_DMA_START_HI, MMIO::Utils::HighPart(&s_audioDMA.SourceAddress)},
{AUDIO_DMA_START_LO, MMIO::Utils::LowPart(&g_audioDMA.SourceAddress)}, {AUDIO_DMA_START_LO, MMIO::Utils::LowPart(&s_audioDMA.SourceAddress)},
}; };
for (auto& mapped_var : directly_mapped_vars) for (auto& mapped_var : directly_mapped_vars)
{ {
@ -252,78 +252,79 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
} }
// DSP mail MMIOs call DSP emulator functions to get results or write data. // DSP mail MMIOs call DSP emulator functions to get results or write data.
mmio->Register( mmio->Register(base | DSP_MAIL_TO_DSP_HI, MMIO::ComplexRead<u16>([](u32) {
base | DSP_MAIL_TO_DSP_HI, MMIO::ComplexRead<u16>([](u32) { if (s_dsp_slice > DSP_MAIL_SLICE && s_dsp_is_lle)
if (dsp_slice > DSP_MAIL_SLICE && dsp_is_lle)
{ {
dsp_emulator->DSP_Update(DSP_MAIL_SLICE); s_dsp_emulator->DSP_Update(DSP_MAIL_SLICE);
dsp_slice -= DSP_MAIL_SLICE; s_dsp_slice -= DSP_MAIL_SLICE;
} }
return dsp_emulator->DSP_ReadMailBoxHigh(true); return s_dsp_emulator->DSP_ReadMailBoxHigh(true);
}), }),
MMIO::ComplexWrite<u16>([](u32, u16 val) { dsp_emulator->DSP_WriteMailBoxHigh(true, val); })); MMIO::ComplexWrite<u16>(
mmio->Register( [](u32, u16 val) { s_dsp_emulator->DSP_WriteMailBoxHigh(true, val); }));
base | DSP_MAIL_TO_DSP_LO, mmio->Register(base | DSP_MAIL_TO_DSP_LO, MMIO::ComplexRead<u16>([](u32) {
MMIO::ComplexRead<u16>([](u32) { return dsp_emulator->DSP_ReadMailBoxLow(true); }), return s_dsp_emulator->DSP_ReadMailBoxLow(true);
MMIO::ComplexWrite<u16>([](u32, u16 val) { dsp_emulator->DSP_WriteMailBoxLow(true, val); })); }),
MMIO::ComplexWrite<u16>(
[](u32, u16 val) { s_dsp_emulator->DSP_WriteMailBoxLow(true, val); }));
mmio->Register(base | DSP_MAIL_FROM_DSP_HI, MMIO::ComplexRead<u16>([](u32) { mmio->Register(base | DSP_MAIL_FROM_DSP_HI, MMIO::ComplexRead<u16>([](u32) {
if (dsp_slice > DSP_MAIL_SLICE && dsp_is_lle) if (s_dsp_slice > DSP_MAIL_SLICE && s_dsp_is_lle)
{ {
dsp_emulator->DSP_Update(DSP_MAIL_SLICE); s_dsp_emulator->DSP_Update(DSP_MAIL_SLICE);
dsp_slice -= DSP_MAIL_SLICE; s_dsp_slice -= DSP_MAIL_SLICE;
} }
return dsp_emulator->DSP_ReadMailBoxHigh(false); return s_dsp_emulator->DSP_ReadMailBoxHigh(false);
}), }),
MMIO::InvalidWrite<u16>()); MMIO::InvalidWrite<u16>());
mmio->Register(base | DSP_MAIL_FROM_DSP_LO, MMIO::ComplexRead<u16>([](u32) { mmio->Register(base | DSP_MAIL_FROM_DSP_LO, MMIO::ComplexRead<u16>([](u32) {
return dsp_emulator->DSP_ReadMailBoxLow(false); return s_dsp_emulator->DSP_ReadMailBoxLow(false);
}), }),
MMIO::InvalidWrite<u16>()); MMIO::InvalidWrite<u16>());
mmio->Register( mmio->Register(
base | DSP_CONTROL, MMIO::ComplexRead<u16>([](u32) { base | DSP_CONTROL, MMIO::ComplexRead<u16>([](u32) {
return (g_dspState.Hex & ~DSP_CONTROL_MASK) | return (s_dspState.Hex & ~DSP_CONTROL_MASK) |
(dsp_emulator->DSP_ReadControlRegister() & DSP_CONTROL_MASK); (s_dsp_emulator->DSP_ReadControlRegister() & DSP_CONTROL_MASK);
}), }),
MMIO::ComplexWrite<u16>([](u32, u16 val) { MMIO::ComplexWrite<u16>([](u32, u16 val) {
UDSPControl tmpControl; UDSPControl tmpControl;
tmpControl.Hex = (val & ~DSP_CONTROL_MASK) | tmpControl.Hex = (val & ~DSP_CONTROL_MASK) |
(dsp_emulator->DSP_WriteControlRegister(val) & DSP_CONTROL_MASK); (s_dsp_emulator->DSP_WriteControlRegister(val) & DSP_CONTROL_MASK);
// Not really sure if this is correct, but it works... // Not really sure if this is correct, but it works...
// Kind of a hack because DSP_CONTROL_MASK should make this bit // Kind of a hack because DSP_CONTROL_MASK should make this bit
// only viewable to DSP emulator // only viewable to DSP emulator
if (val & 1 /*DSPReset*/) if (val & 1 /*DSPReset*/)
{ {
g_audioDMA.AudioDMAControl.Hex = 0; s_audioDMA.AudioDMAControl.Hex = 0;
} }
// Update DSP related flags // Update DSP related flags
g_dspState.DSPReset = tmpControl.DSPReset; s_dspState.DSPReset = tmpControl.DSPReset;
g_dspState.DSPAssertInt = tmpControl.DSPAssertInt; s_dspState.DSPAssertInt = tmpControl.DSPAssertInt;
g_dspState.DSPHalt = tmpControl.DSPHalt; s_dspState.DSPHalt = tmpControl.DSPHalt;
g_dspState.DSPInit = tmpControl.DSPInit; s_dspState.DSPInit = tmpControl.DSPInit;
// Interrupt (mask) // Interrupt (mask)
g_dspState.AID_mask = tmpControl.AID_mask; s_dspState.AID_mask = tmpControl.AID_mask;
g_dspState.ARAM_mask = tmpControl.ARAM_mask; s_dspState.ARAM_mask = tmpControl.ARAM_mask;
g_dspState.DSP_mask = tmpControl.DSP_mask; s_dspState.DSP_mask = tmpControl.DSP_mask;
// Interrupt // Interrupt
if (tmpControl.AID) if (tmpControl.AID)
g_dspState.AID = 0; s_dspState.AID = 0;
if (tmpControl.ARAM) if (tmpControl.ARAM)
g_dspState.ARAM = 0; s_dspState.ARAM = 0;
if (tmpControl.DSP) if (tmpControl.DSP)
g_dspState.DSP = 0; s_dspState.DSP = 0;
// unknown // unknown
g_dspState.DSPInitCode = tmpControl.DSPInitCode; s_dspState.DSPInitCode = tmpControl.DSPInitCode;
g_dspState.pad = tmpControl.pad; s_dspState.pad = tmpControl.pad;
if (g_dspState.pad != 0) if (s_dspState.pad != 0)
{ {
PanicAlert( PanicAlert(
"DSPInterface (w) g_dspState (CC00500A) gets a value with junk in the padding %08x", "DSPInterface (w) DSP state (CC00500A) gets a value with junk in the padding %08x",
val); val);
} }
@ -331,38 +332,38 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
})); }));
// ARAM MMIO controlling the DMA start. // ARAM MMIO controlling the DMA start.
mmio->Register(base | AR_DMA_CNT_L, MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&g_arDMA.Cnt.Hex)), mmio->Register(base | AR_DMA_CNT_L, MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&s_arDMA.Cnt.Hex)),
MMIO::ComplexWrite<u16>([](u32, u16 val) { MMIO::ComplexWrite<u16>([](u32, u16 val) {
g_arDMA.Cnt.Hex = (g_arDMA.Cnt.Hex & 0xFFFF0000) | (val & ~31); s_arDMA.Cnt.Hex = (s_arDMA.Cnt.Hex & 0xFFFF0000) | (val & ~31);
Do_ARAM_DMA(); Do_ARAM_DMA();
})); }));
// Audio DMA MMIO controlling the DMA start. // Audio DMA MMIO controlling the DMA start.
mmio->Register( mmio->Register(
base | AUDIO_DMA_CONTROL_LEN, MMIO::DirectRead<u16>(&g_audioDMA.AudioDMAControl.Hex), base | AUDIO_DMA_CONTROL_LEN, MMIO::DirectRead<u16>(&s_audioDMA.AudioDMAControl.Hex),
MMIO::ComplexWrite<u16>([](u32, u16 val) { MMIO::ComplexWrite<u16>([](u32, u16 val) {
bool already_enabled = g_audioDMA.AudioDMAControl.Enable; bool already_enabled = s_audioDMA.AudioDMAControl.Enable;
g_audioDMA.AudioDMAControl.Hex = val; s_audioDMA.AudioDMAControl.Hex = val;
// Only load new values if were not already doing a DMA transfer, // Only load new values if were not already doing a DMA transfer,
// otherwise just let the new values be autoloaded in when the // otherwise just let the new values be autoloaded in when the
// current transfer ends. // current transfer ends.
if (!already_enabled && g_audioDMA.AudioDMAControl.Enable) if (!already_enabled && s_audioDMA.AudioDMAControl.Enable)
{ {
g_audioDMA.current_source_address = g_audioDMA.SourceAddress; s_audioDMA.current_source_address = s_audioDMA.SourceAddress;
g_audioDMA.remaining_blocks_count = g_audioDMA.AudioDMAControl.NumBlocks; s_audioDMA.remaining_blocks_count = s_audioDMA.AudioDMAControl.NumBlocks;
INFO_LOG(AUDIO_INTERFACE, "Audio DMA configured: %i blocks from 0x%08x", INFO_LOG(AUDIO_INTERFACE, "Audio DMA configured: %i blocks from 0x%08x",
g_audioDMA.AudioDMAControl.NumBlocks, g_audioDMA.SourceAddress); s_audioDMA.AudioDMAControl.NumBlocks, s_audioDMA.SourceAddress);
// We make the samples ready as soon as possible // We make the samples ready as soon as possible
void* address = Memory::GetPointer(g_audioDMA.SourceAddress); void* address = Memory::GetPointer(s_audioDMA.SourceAddress);
AudioCommon::SendAIBuffer((short*)address, g_audioDMA.AudioDMAControl.NumBlocks * 8); AudioCommon::SendAIBuffer((short*)address, s_audioDMA.AudioDMAControl.NumBlocks * 8);
// TODO: need hardware tests for the timing of this interrupt. // TODO: need hardware tests for the timing of this interrupt.
// Sky Crawlers crashes at boot if this is scheduled less than 87 cycles in the future. // Sky Crawlers crashes at boot if this is scheduled less than 87 cycles in the future.
// Other Namco games crash too, see issue 9509. For now we will just push it to 200 cycles // Other Namco games crash too, see issue 9509. For now we will just push it to 200 cycles
CoreTiming::ScheduleEvent(200, et_GenerateDSPInterrupt, INT_AID); CoreTiming::ScheduleEvent(200, s_et_GenerateDSPInterrupt, INT_AID);
} }
})); }));
@ -372,7 +373,7 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
base | AUDIO_DMA_BLOCKS_LEFT, MMIO::ComplexRead<u16>([](u32) { base | AUDIO_DMA_BLOCKS_LEFT, MMIO::ComplexRead<u16>([](u32) {
// remaining_blocks_count is zero-based. DreamMix World Fighters will hang if it never // remaining_blocks_count is zero-based. DreamMix World Fighters will hang if it never
// reaches zero. // reaches zero.
return (g_audioDMA.remaining_blocks_count > 0 ? g_audioDMA.remaining_blocks_count - 1 : 0); return (s_audioDMA.remaining_blocks_count > 0 ? s_audioDMA.remaining_blocks_count - 1 : 0);
}), }),
MMIO::InvalidWrite<u16>()); MMIO::InvalidWrite<u16>());
@ -391,7 +392,7 @@ static void UpdateInterrupts()
// to the left of it. By doing: // to the left of it. By doing:
// (DSP_CONTROL>>1) & DSP_CONTROL & MASK_OF_ALL_INTERRUPT_BITS // (DSP_CONTROL>>1) & DSP_CONTROL & MASK_OF_ALL_INTERRUPT_BITS
// We can check if any of the interrupts are enabled and active, all at once. // We can check if any of the interrupts are enabled and active, all at once.
bool ints_set = (((g_dspState.Hex >> 1) & g_dspState.Hex & (INT_DSP | INT_ARAM | INT_AID)) != 0); bool ints_set = (((s_dspState.Hex >> 1) & s_dspState.Hex & (INT_DSP | INT_ARAM | INT_AID)) != 0);
ProcessorInterface::SetInterrupt(ProcessorInterface::INT_CAUSE_DSP, ints_set); ProcessorInterface::SetInterrupt(ProcessorInterface::INT_CAUSE_DSP, ints_set);
} }
@ -401,7 +402,7 @@ static void GenerateDSPInterrupt(u64 DSPIntType, s64 cyclesLate)
// The INT_* enumeration members have values that reflect their bit positions in // The INT_* enumeration members have values that reflect their bit positions in
// DSP_CONTROL - we mask by (INT_DSP | INT_ARAM | INT_AID) just to ensure people // DSP_CONTROL - we mask by (INT_DSP | INT_ARAM | INT_AID) just to ensure people
// don't call this with bogus values. // don't call this with bogus values.
g_dspState.Hex |= (DSPIntType & (INT_DSP | INT_ARAM | INT_AID)); s_dspState.Hex |= (DSPIntType & (INT_DSP | INT_ARAM | INT_AID));
UpdateInterrupts(); UpdateInterrupts();
} }
@ -410,23 +411,23 @@ static void GenerateDSPInterrupt(u64 DSPIntType, s64 cyclesLate)
void GenerateDSPInterruptFromDSPEmu(DSPInterruptType type) void GenerateDSPInterruptFromDSPEmu(DSPInterruptType type)
{ {
// TODO: Maybe rethink this? The timing is unpredictable. // TODO: Maybe rethink this? The timing is unpredictable.
CoreTiming::ScheduleEvent(0, et_GenerateDSPInterrupt, type, CoreTiming::FromThread::ANY); CoreTiming::ScheduleEvent(0, s_et_GenerateDSPInterrupt, type, CoreTiming::FromThread::ANY);
} }
// called whenever SystemTimers thinks the DSP deserves a few more cycles // called whenever SystemTimers thinks the DSP deserves a few more cycles
void UpdateDSPSlice(int cycles) void UpdateDSPSlice(int cycles)
{ {
if (dsp_is_lle) if (s_dsp_is_lle)
{ {
// use up the rest of the slice(if any) // use up the rest of the slice(if any)
dsp_emulator->DSP_Update(dsp_slice); s_dsp_emulator->DSP_Update(s_dsp_slice);
dsp_slice %= 6; s_dsp_slice %= 6;
// note the new budget // note the new budget
dsp_slice += cycles; s_dsp_slice += cycles;
} }
else else
{ {
dsp_emulator->DSP_Update(cycles); s_dsp_emulator->DSP_Update(cycles);
} }
} }
@ -434,28 +435,28 @@ void UpdateDSPSlice(int cycles)
void UpdateAudioDMA() void UpdateAudioDMA()
{ {
static short zero_samples[8 * 2] = {0}; static short zero_samples[8 * 2] = {0};
if (g_audioDMA.AudioDMAControl.Enable) if (s_audioDMA.AudioDMAControl.Enable)
{ {
// Read audio at g_audioDMA.current_source_address in RAM and push onto an // Read audio at g_audioDMA.current_source_address in RAM and push onto an
// external audio fifo in the emulator, to be mixed with the disc // external audio fifo in the emulator, to be mixed with the disc
// streaming output. // streaming output.
if (g_audioDMA.remaining_blocks_count != 0) if (s_audioDMA.remaining_blocks_count != 0)
{ {
g_audioDMA.remaining_blocks_count--; s_audioDMA.remaining_blocks_count--;
g_audioDMA.current_source_address += 32; s_audioDMA.current_source_address += 32;
} }
if (g_audioDMA.remaining_blocks_count == 0) if (s_audioDMA.remaining_blocks_count == 0)
{ {
g_audioDMA.current_source_address = g_audioDMA.SourceAddress; s_audioDMA.current_source_address = s_audioDMA.SourceAddress;
g_audioDMA.remaining_blocks_count = g_audioDMA.AudioDMAControl.NumBlocks; s_audioDMA.remaining_blocks_count = s_audioDMA.AudioDMAControl.NumBlocks;
if (g_audioDMA.remaining_blocks_count != 0) if (s_audioDMA.remaining_blocks_count != 0)
{ {
// We make the samples ready as soon as possible // We make the samples ready as soon as possible
void* address = Memory::GetPointer(g_audioDMA.SourceAddress); void* address = Memory::GetPointer(s_audioDMA.SourceAddress);
AudioCommon::SendAIBuffer((short*)address, g_audioDMA.AudioDMAControl.NumBlocks * 8); AudioCommon::SendAIBuffer((short*)address, s_audioDMA.AudioDMAControl.NumBlocks * 8);
} }
GenerateDSPInterrupt(DSP::INT_AID); GenerateDSPInterrupt(DSP::INT_AID);
} }
@ -468,57 +469,57 @@ void UpdateAudioDMA()
static void Do_ARAM_DMA() static void Do_ARAM_DMA()
{ {
g_dspState.DMAState = 1; s_dspState.DMAState = 1;
// ARAM DMA transfer rate has been measured on real hw // ARAM DMA transfer rate has been measured on real hw
int ticksToTransfer = (g_arDMA.Cnt.count / 32) * 246; int ticksToTransfer = (s_arDMA.Cnt.count / 32) * 246;
CoreTiming::ScheduleEvent(ticksToTransfer, et_CompleteARAM); CoreTiming::ScheduleEvent(ticksToTransfer, s_et_CompleteARAM);
// Real hardware DMAs in 32byte chunks, but we can get by with 8byte chunks // Real hardware DMAs in 32byte chunks, but we can get by with 8byte chunks
if (g_arDMA.Cnt.dir) if (s_arDMA.Cnt.dir)
{ {
// ARAM -> MRAM // ARAM -> MRAM
DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes from ARAM %08x to MRAM %08x PC: %08x", DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes from ARAM %08x to MRAM %08x PC: %08x",
g_arDMA.Cnt.count, g_arDMA.ARAddr, g_arDMA.MMAddr, PC); s_arDMA.Cnt.count, s_arDMA.ARAddr, s_arDMA.MMAddr, PC);
// Outgoing data from ARAM is mirrored every 64MB (verified on real HW) // Outgoing data from ARAM is mirrored every 64MB (verified on real HW)
g_arDMA.ARAddr &= 0x3ffffff; s_arDMA.ARAddr &= 0x3ffffff;
g_arDMA.MMAddr &= 0x3ffffff; s_arDMA.MMAddr &= 0x3ffffff;
if (g_arDMA.ARAddr < g_ARAM.size) if (s_arDMA.ARAddr < s_ARAM.size)
{ {
while (g_arDMA.Cnt.count) while (s_arDMA.Cnt.count)
{ {
// These are logically separated in code to show that a memory map has been set up // These are logically separated in code to show that a memory map has been set up
// See below in the write section for more information // See below in the write section for more information
if ((g_ARAM_Info.Hex & 0xf) == 3) if ((s_ARAM_Info.Hex & 0xf) == 3)
{ {
Memory::Write_U64_Swap(*(u64*)&g_ARAM.ptr[g_arDMA.ARAddr & g_ARAM.mask], g_arDMA.MMAddr); Memory::Write_U64_Swap(*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask], s_arDMA.MMAddr);
} }
else if ((g_ARAM_Info.Hex & 0xf) == 4) else if ((s_ARAM_Info.Hex & 0xf) == 4)
{ {
Memory::Write_U64_Swap(*(u64*)&g_ARAM.ptr[g_arDMA.ARAddr & g_ARAM.mask], g_arDMA.MMAddr); Memory::Write_U64_Swap(*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask], s_arDMA.MMAddr);
} }
else else
{ {
Memory::Write_U64_Swap(*(u64*)&g_ARAM.ptr[g_arDMA.ARAddr & g_ARAM.mask], g_arDMA.MMAddr); Memory::Write_U64_Swap(*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask], s_arDMA.MMAddr);
} }
g_arDMA.MMAddr += 8; s_arDMA.MMAddr += 8;
g_arDMA.ARAddr += 8; s_arDMA.ARAddr += 8;
g_arDMA.Cnt.count -= 8; s_arDMA.Cnt.count -= 8;
} }
} }
else else
{ {
// Assuming no external ARAM installed; returns zeros on out of bounds reads (verified on real // Assuming no external ARAM installed; returns zeros on out of bounds reads (verified on real
// HW) // HW)
while (g_arDMA.Cnt.count) while (s_arDMA.Cnt.count)
{ {
Memory::Write_U64(0, g_arDMA.MMAddr); Memory::Write_U64(0, s_arDMA.MMAddr);
g_arDMA.MMAddr += 8; s_arDMA.MMAddr += 8;
g_arDMA.ARAddr += 8; s_arDMA.ARAddr += 8;
g_arDMA.Cnt.count -= 8; s_arDMA.Cnt.count -= 8;
} }
} }
} }
@ -526,49 +527,49 @@ static void Do_ARAM_DMA()
{ {
// MRAM -> ARAM // MRAM -> ARAM
DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes from MRAM %08x to ARAM %08x PC: %08x", DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes from MRAM %08x to ARAM %08x PC: %08x",
g_arDMA.Cnt.count, g_arDMA.MMAddr, g_arDMA.ARAddr, PC); s_arDMA.Cnt.count, s_arDMA.MMAddr, s_arDMA.ARAddr, PC);
// Incoming data into ARAM is mirrored every 64MB (verified on real HW) // Incoming data into ARAM is mirrored every 64MB (verified on real HW)
g_arDMA.ARAddr &= 0x3ffffff; s_arDMA.ARAddr &= 0x3ffffff;
g_arDMA.MMAddr &= 0x3ffffff; s_arDMA.MMAddr &= 0x3ffffff;
if (g_arDMA.ARAddr < g_ARAM.size) if (s_arDMA.ARAddr < s_ARAM.size)
{ {
while (g_arDMA.Cnt.count) while (s_arDMA.Cnt.count)
{ {
if ((g_ARAM_Info.Hex & 0xf) == 3) if ((s_ARAM_Info.Hex & 0xf) == 3)
{ {
*(u64*)&g_ARAM.ptr[g_arDMA.ARAddr & g_ARAM.mask] = *(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(g_arDMA.MMAddr)); Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
} }
else if ((g_ARAM_Info.Hex & 0xf) == 4) else if ((s_ARAM_Info.Hex & 0xf) == 4)
{ {
if (g_arDMA.ARAddr < 0x400000) if (s_arDMA.ARAddr < 0x400000)
{ {
*(u64*)&g_ARAM.ptr[(g_arDMA.ARAddr + 0x400000) & g_ARAM.mask] = *(u64*)&s_ARAM.ptr[(s_arDMA.ARAddr + 0x400000) & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(g_arDMA.MMAddr)); Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
} }
*(u64*)&g_ARAM.ptr[g_arDMA.ARAddr & g_ARAM.mask] = *(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(g_arDMA.MMAddr)); Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
} }
else else
{ {
*(u64*)&g_ARAM.ptr[g_arDMA.ARAddr & g_ARAM.mask] = *(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(g_arDMA.MMAddr)); Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
} }
g_arDMA.MMAddr += 8; s_arDMA.MMAddr += 8;
g_arDMA.ARAddr += 8; s_arDMA.ARAddr += 8;
g_arDMA.Cnt.count -= 8; s_arDMA.Cnt.count -= 8;
} }
} }
else else
{ {
// Assuming no external ARAM installed; writes nothing to ARAM when out of bounds (verified on // Assuming no external ARAM installed; writes nothing to ARAM when out of bounds (verified on
// real HW) // real HW)
g_arDMA.MMAddr += g_arDMA.Cnt.count; s_arDMA.MMAddr += s_arDMA.Cnt.count;
g_arDMA.ARAddr += g_arDMA.Cnt.count; s_arDMA.ARAddr += s_arDMA.Cnt.count;
g_arDMA.Cnt.count = 0; s_arDMA.Cnt.count = 0;
} }
} }
} }
@ -579,16 +580,16 @@ static void Do_ARAM_DMA()
u8 ReadARAM(u32 _iAddress) u8 ReadARAM(u32 _iAddress)
{ {
// NOTICE_LOG(DSPINTERFACE, "ReadARAM 0x%08x", _iAddress); // NOTICE_LOG(DSPINTERFACE, "ReadARAM 0x%08x", _iAddress);
if (g_ARAM.wii_mode) if (s_ARAM.wii_mode)
{ {
if (_iAddress & 0x10000000) if (_iAddress & 0x10000000)
return g_ARAM.ptr[_iAddress & g_ARAM.mask]; return s_ARAM.ptr[_iAddress & s_ARAM.mask];
else else
return Memory::Read_U8(_iAddress & Memory::RAM_MASK); return Memory::Read_U8(_iAddress & Memory::RAM_MASK);
} }
else else
{ {
return g_ARAM.ptr[_iAddress & g_ARAM.mask]; return s_ARAM.ptr[_iAddress & s_ARAM.mask];
} }
} }
@ -596,12 +597,12 @@ void WriteARAM(u8 value, u32 _uAddress)
{ {
// NOTICE_LOG(DSPINTERFACE, "WriteARAM 0x%08x", _uAddress); // NOTICE_LOG(DSPINTERFACE, "WriteARAM 0x%08x", _uAddress);
// TODO: verify this on Wii // TODO: verify this on Wii
g_ARAM.ptr[_uAddress & g_ARAM.mask] = value; s_ARAM.ptr[_uAddress & s_ARAM.mask] = value;
} }
u8* GetARAMPtr() u8* GetARAMPtr()
{ {
return g_ARAM.ptr; return s_ARAM.ptr;
} }
} // end of namespace DSP } // end of namespace DSP

View File

@ -59,8 +59,6 @@ union UDSPControl
UDSPControl(u16 _Hex = 0) : Hex(_Hex) {} UDSPControl(u16 _Hex = 0) : Hex(_Hex) {}
}; };
extern UDSPControl g_dspState;
void Init(bool hle); void Init(bool hle);
void Shutdown(); void Shutdown();