mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-24 06:51:17 +01:00
Merge pull request #10903 from shuffle2/hash-reorg
Common/Hash: use zlib-ng for adler32. small cleanups.
This commit is contained in:
commit
7d2d5d914b
@ -22,94 +22,28 @@
|
||||
|
||||
namespace Common
|
||||
{
|
||||
static u64 (*ptrHashFunction)(const u8* src, u32 len, u32 samples) = nullptr;
|
||||
|
||||
// uint32_t
|
||||
// WARNING - may read one more byte!
|
||||
// Implementation from Wikipedia.
|
||||
u32 HashFletcher(const u8* data_u8, size_t length)
|
||||
{
|
||||
const u16* data = (const u16*)data_u8; /* Pointer to the data to be summed */
|
||||
size_t len = (length + 1) / 2; /* Length in 16-bit words */
|
||||
u32 sum1 = 0xffff, sum2 = 0xffff;
|
||||
|
||||
while (len)
|
||||
{
|
||||
size_t tlen = len > 360 ? 360 : len;
|
||||
len -= tlen;
|
||||
|
||||
do
|
||||
{
|
||||
sum1 += *data++;
|
||||
sum2 += sum1;
|
||||
} while (--tlen);
|
||||
|
||||
sum1 = (sum1 & 0xffff) + (sum1 >> 16);
|
||||
sum2 = (sum2 & 0xffff) + (sum2 >> 16);
|
||||
}
|
||||
|
||||
// Second reduction step to reduce sums to 16 bits
|
||||
sum1 = (sum1 & 0xffff) + (sum1 >> 16);
|
||||
sum2 = (sum2 & 0xffff) + (sum2 >> 16);
|
||||
return (sum2 << 16 | sum1);
|
||||
}
|
||||
|
||||
// Implementation from Wikipedia
|
||||
// Slightly slower than Fletcher above, but slightly more reliable.
|
||||
// data: Pointer to the data to be summed; len is in bytes
|
||||
u32 HashAdler32(const u8* data, size_t len)
|
||||
{
|
||||
static const u32 MOD_ADLER = 65521;
|
||||
u32 a = 1, b = 0;
|
||||
|
||||
while (len)
|
||||
{
|
||||
size_t tlen = len > 5550 ? 5550 : len;
|
||||
len -= tlen;
|
||||
|
||||
do
|
||||
{
|
||||
a += *data++;
|
||||
b += a;
|
||||
} while (--tlen);
|
||||
|
||||
a = (a & 0xffff) + (a >> 16) * (65536 - MOD_ADLER);
|
||||
b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER);
|
||||
}
|
||||
|
||||
// It can be shown that a <= 0x1013a here, so a single subtract will do.
|
||||
if (a >= MOD_ADLER)
|
||||
{
|
||||
a -= MOD_ADLER;
|
||||
}
|
||||
|
||||
// It can be shown that b can reach 0xfff87 here.
|
||||
b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER);
|
||||
|
||||
if (b >= MOD_ADLER)
|
||||
{
|
||||
b -= MOD_ADLER;
|
||||
}
|
||||
|
||||
return ((b << 16) | a);
|
||||
// Use fast implementation from zlib-ng
|
||||
return adler32_z(1, data, len);
|
||||
}
|
||||
|
||||
// Stupid hash - but can't go back now :)
|
||||
// Don't use for new things. At least it's reasonably fast.
|
||||
u32 HashEctor(const u8* ptr, size_t length)
|
||||
u32 HashEctor(const u8* data, size_t len)
|
||||
{
|
||||
u32 crc = 0;
|
||||
|
||||
for (size_t i = 0; i < length; i++)
|
||||
for (size_t i = 0; i < len; i++)
|
||||
{
|
||||
crc ^= ptr[i];
|
||||
crc ^= data[i];
|
||||
crc = (crc << 3) | (crc >> 29);
|
||||
}
|
||||
|
||||
return (crc);
|
||||
return crc;
|
||||
}
|
||||
|
||||
#if _ARCH_64
|
||||
#ifdef _ARCH_64
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Block read - if your platform needs to do endian-swapping or can only
|
||||
@ -250,133 +184,8 @@ static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples)
|
||||
return h1;
|
||||
}
|
||||
|
||||
// CRC32 hash using the SSE4.2 instruction
|
||||
#if defined(_M_X86_64)
|
||||
|
||||
FUNCTION_TARGET_SSE42
|
||||
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
u64 h[4] = {len, 0, 0, 0};
|
||||
u32 Step = (len / 8);
|
||||
const u64* data = (const u64*)src;
|
||||
const u64* end = data + Step;
|
||||
if (samples == 0)
|
||||
samples = std::max(Step, 1u);
|
||||
Step = Step / samples;
|
||||
if (Step < 1)
|
||||
Step = 1;
|
||||
|
||||
while (data < end - Step * 3)
|
||||
{
|
||||
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
||||
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
||||
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
||||
h[3] = _mm_crc32_u64(h[3], data[Step * 3]);
|
||||
data += Step * 4;
|
||||
}
|
||||
if (data < end - Step * 0)
|
||||
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
||||
if (data < end - Step * 1)
|
||||
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
||||
if (data < end - Step * 2)
|
||||
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
||||
|
||||
if (len & 7)
|
||||
{
|
||||
u64 temp = 0;
|
||||
memcpy(&temp, end, len & 7);
|
||||
h[0] = _mm_crc32_u64(h[0], temp);
|
||||
}
|
||||
|
||||
// FIXME: is there a better way to combine these partial hashes?
|
||||
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
||||
}
|
||||
|
||||
#elif defined(_M_ARM_64)
|
||||
|
||||
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
u64 h[4] = {len, 0, 0, 0};
|
||||
u32 Step = (len / 8);
|
||||
const u64* data = (const u64*)src;
|
||||
const u64* end = data + Step;
|
||||
if (samples == 0)
|
||||
samples = std::max(Step, 1u);
|
||||
Step = Step / samples;
|
||||
if (Step < 1)
|
||||
Step = 1;
|
||||
|
||||
while (data < end - Step * 3)
|
||||
{
|
||||
h[0] = __crc32d(h[0], data[Step * 0]);
|
||||
h[1] = __crc32d(h[1], data[Step * 1]);
|
||||
h[2] = __crc32d(h[2], data[Step * 2]);
|
||||
h[3] = __crc32d(h[3], data[Step * 3]);
|
||||
data += Step * 4;
|
||||
}
|
||||
if (data < end - Step * 0)
|
||||
h[0] = __crc32d(h[0], data[Step * 0]);
|
||||
if (data < end - Step * 1)
|
||||
h[1] = __crc32d(h[1], data[Step * 1]);
|
||||
if (data < end - Step * 2)
|
||||
h[2] = __crc32d(h[2], data[Step * 2]);
|
||||
|
||||
if (len & 7)
|
||||
{
|
||||
u64 temp = 0;
|
||||
memcpy(&temp, end, len & 7);
|
||||
h[0] = __crc32d(h[0], temp);
|
||||
}
|
||||
|
||||
// FIXME: is there a better way to combine these partial hashes?
|
||||
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
// CRC32 hash using the SSE4.2 instruction
|
||||
#if defined(_M_X86)
|
||||
|
||||
FUNCTION_TARGET_SSE42
|
||||
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
u32 h = len;
|
||||
u32 Step = (len / 4);
|
||||
const u32* data = (const u32*)src;
|
||||
const u32* end = data + Step;
|
||||
if (samples == 0)
|
||||
samples = std::max(Step, 1u);
|
||||
Step = Step / samples;
|
||||
if (Step < 1)
|
||||
Step = 1;
|
||||
while (data < end)
|
||||
{
|
||||
h = _mm_crc32_u32(h, data[0]);
|
||||
data += Step;
|
||||
}
|
||||
|
||||
const u8* data2 = (const u8*)end;
|
||||
return (u64)_mm_crc32_u32(h, u32(data2[0]));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Block read - if your platform needs to do endian-swapping or can only
|
||||
// handle aligned reads, do the conversion here
|
||||
@ -504,55 +313,159 @@ static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples)
|
||||
|
||||
return *((u64*)&out);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(_M_X86_64)
|
||||
|
||||
FUNCTION_TARGET_SSE42
|
||||
static u64 GetHash64_SSE42_CRC32(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
u64 h[4] = {len, 0, 0, 0};
|
||||
u32 Step = (len / 8);
|
||||
const u64* data = (const u64*)src;
|
||||
const u64* end = data + Step;
|
||||
if (samples == 0)
|
||||
samples = std::max(Step, 1u);
|
||||
Step = Step / samples;
|
||||
if (Step < 1)
|
||||
Step = 1;
|
||||
|
||||
while (data < end - Step * 3)
|
||||
{
|
||||
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
||||
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
||||
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
||||
h[3] = _mm_crc32_u64(h[3], data[Step * 3]);
|
||||
data += Step * 4;
|
||||
}
|
||||
if (data < end - Step * 0)
|
||||
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
||||
if (data < end - Step * 1)
|
||||
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
||||
if (data < end - Step * 2)
|
||||
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
||||
|
||||
if (len & 7)
|
||||
{
|
||||
u64 temp = 0;
|
||||
memcpy(&temp, end, len & 7);
|
||||
h[0] = _mm_crc32_u64(h[0], temp);
|
||||
}
|
||||
|
||||
// FIXME: is there a better way to combine these partial hashes?
|
||||
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
||||
}
|
||||
|
||||
#elif defined(_M_X86)
|
||||
|
||||
FUNCTION_TARGET_SSE42
|
||||
static u64 GetHash64_SSE42_CRC32(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
u32 h = len;
|
||||
u32 Step = (len / 4);
|
||||
const u32* data = (const u32*)src;
|
||||
const u32* end = data + Step;
|
||||
if (samples == 0)
|
||||
samples = std::max(Step, 1u);
|
||||
Step = Step / samples;
|
||||
if (Step < 1)
|
||||
Step = 1;
|
||||
while (data < end)
|
||||
{
|
||||
h = _mm_crc32_u32(h, data[0]);
|
||||
data += Step;
|
||||
}
|
||||
|
||||
const u8* data2 = (const u8*)end;
|
||||
return (u64)_mm_crc32_u32(h, u32(data2[0]));
|
||||
}
|
||||
|
||||
#elif defined(_M_ARM_64)
|
||||
|
||||
static u64 GetHash64_ARMv8_CRC32(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
u64 h[4] = {len, 0, 0, 0};
|
||||
u32 Step = (len / 8);
|
||||
const u64* data = (const u64*)src;
|
||||
const u64* end = data + Step;
|
||||
if (samples == 0)
|
||||
samples = std::max(Step, 1u);
|
||||
Step = Step / samples;
|
||||
if (Step < 1)
|
||||
Step = 1;
|
||||
|
||||
while (data < end - Step * 3)
|
||||
{
|
||||
h[0] = __crc32d(h[0], data[Step * 0]);
|
||||
h[1] = __crc32d(h[1], data[Step * 1]);
|
||||
h[2] = __crc32d(h[2], data[Step * 2]);
|
||||
h[3] = __crc32d(h[3], data[Step * 3]);
|
||||
data += Step * 4;
|
||||
}
|
||||
if (data < end - Step * 0)
|
||||
h[0] = __crc32d(h[0], data[Step * 0]);
|
||||
if (data < end - Step * 1)
|
||||
h[1] = __crc32d(h[1], data[Step * 1]);
|
||||
if (data < end - Step * 2)
|
||||
h[2] = __crc32d(h[2], data[Step * 2]);
|
||||
|
||||
if (len & 7)
|
||||
{
|
||||
u64 temp = 0;
|
||||
memcpy(&temp, end, len & 7);
|
||||
h[0] = __crc32d(h[0], temp);
|
||||
}
|
||||
|
||||
// FIXME: is there a better way to combine these partial hashes?
|
||||
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
using TextureHashFunction = u64 (*)(const u8* src, u32 len, u32 samples);
|
||||
static u64 SetHash64Function(const u8* src, u32 len, u32 samples);
|
||||
static TextureHashFunction s_texture_hash_func = SetHash64Function;
|
||||
|
||||
static u64 SetHash64Function(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
if (cpu_info.bCRC32)
|
||||
{
|
||||
#if defined(_M_X86_64) || defined(_M_X86)
|
||||
s_texture_hash_func = &GetHash64_SSE42_CRC32;
|
||||
#elif defined(_M_ARM_64)
|
||||
s_texture_hash_func = &GetHash64_ARMv8_CRC32;
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
s_texture_hash_func = &GetMurmurHash3;
|
||||
}
|
||||
return s_texture_hash_func(src, len, samples);
|
||||
}
|
||||
|
||||
u64 GetHash64(const u8* src, u32 len, u32 samples)
|
||||
{
|
||||
return ptrHashFunction(src, len, samples);
|
||||
}
|
||||
|
||||
// sets the hash function used for the texture cache
|
||||
void SetHash64Function()
|
||||
{
|
||||
#if defined(_M_X86_64) || defined(_M_X86)
|
||||
if (cpu_info.bSSE4_2) // sse crc32 version
|
||||
{
|
||||
ptrHashFunction = &GetCRC32;
|
||||
}
|
||||
else
|
||||
#elif defined(_M_ARM_64)
|
||||
if (cpu_info.bCRC32)
|
||||
{
|
||||
ptrHashFunction = &GetCRC32;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
ptrHashFunction = &GetMurmurHash3;
|
||||
}
|
||||
}
|
||||
|
||||
u32 ComputeCRC32(std::string_view data)
|
||||
{
|
||||
return ComputeCRC32(reinterpret_cast<const u8*>(data.data()), static_cast<u32>(data.size()));
|
||||
}
|
||||
|
||||
u32 ComputeCRC32(const u8* ptr, u32 length)
|
||||
{
|
||||
return UpdateCRC32(StartCRC32(), ptr, length);
|
||||
return s_texture_hash_func(src, len, samples);
|
||||
}
|
||||
|
||||
u32 StartCRC32()
|
||||
{
|
||||
return crc32(0L, Z_NULL, 0);
|
||||
return crc32_z(0L, Z_NULL, 0);
|
||||
}
|
||||
|
||||
u32 UpdateCRC32(u32 crc, const u8* ptr, u32 length)
|
||||
u32 UpdateCRC32(u32 crc, const u8* data, size_t len)
|
||||
{
|
||||
static_assert(std::is_same_v<const u8*, const Bytef*>);
|
||||
static_assert(std::is_same_v<u32, uInt>);
|
||||
// Use zlib's crc32 implementation to compute the hash
|
||||
// crc32_z (which takes a size_t) would be better, but it isn't available on Android
|
||||
return crc32(crc, ptr, length);
|
||||
return crc32_z(crc, data, len);
|
||||
}
|
||||
|
||||
u32 ComputeCRC32(const u8* data, size_t len)
|
||||
{
|
||||
return UpdateCRC32(StartCRC32(), data, len);
|
||||
}
|
||||
|
||||
u32 ComputeCRC32(std::string_view data)
|
||||
{
|
||||
return ComputeCRC32(reinterpret_cast<const u8*>(data.data()), data.size());
|
||||
}
|
||||
} // namespace Common
|
||||
|
@ -10,14 +10,15 @@
|
||||
|
||||
namespace Common
|
||||
{
|
||||
u32 HashFletcher(const u8* data_u8, size_t length); // FAST. Length & 1 == 0.
|
||||
u32 HashAdler32(const u8* data, size_t len); // Fairly accurate, slightly slower
|
||||
u32 HashEctor(const u8* ptr, size_t length); // JUNK. DO NOT USE FOR NEW THINGS
|
||||
u64 GetHash64(const u8* src, u32 len, u32 samples);
|
||||
void SetHash64Function();
|
||||
u32 HashAdler32(const u8* data, size_t len);
|
||||
// JUNK. DO NOT USE FOR NEW THINGS
|
||||
u32 HashEctor(const u8* data, size_t len);
|
||||
|
||||
// Specialized hash function used for the texture cache
|
||||
u64 GetHash64(const u8* src, u32 len, u32 samples);
|
||||
|
||||
u32 ComputeCRC32(std::string_view data);
|
||||
u32 ComputeCRC32(const u8* ptr, u32 length);
|
||||
u32 StartCRC32();
|
||||
u32 UpdateCRC32(u32 crc, const u8* ptr, u32 length);
|
||||
u32 UpdateCRC32(u32 crc, const u8* data, size_t len);
|
||||
u32 ComputeCRC32(const u8* data, size_t len);
|
||||
u32 ComputeCRC32(std::string_view data);
|
||||
} // namespace Common
|
||||
|
@ -1175,8 +1175,8 @@ void VolumeVerifier::Process()
|
||||
if (m_hashes_to_calculate.crc32)
|
||||
{
|
||||
m_crc32_future = std::async(std::launch::async, [this, byte_increment] {
|
||||
m_crc32_context =
|
||||
Common::UpdateCRC32(m_crc32_context, m_data.data(), static_cast<u32>(byte_increment));
|
||||
m_crc32_context = Common::UpdateCRC32(m_crc32_context, m_data.data(),
|
||||
static_cast<size_t>(byte_increment));
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -7,7 +7,6 @@
|
||||
#include <functional> // for hash
|
||||
|
||||
#include "Common/CommonTypes.h"
|
||||
#include "Common/Hash.h"
|
||||
#include "VideoCommon/CPMemory.h"
|
||||
|
||||
// m_components
|
||||
@ -79,10 +78,37 @@ namespace std
|
||||
template <>
|
||||
struct hash<PortableVertexDeclaration>
|
||||
{
|
||||
size_t operator()(const PortableVertexDeclaration& decl) const
|
||||
// Implementation from Wikipedia.
|
||||
template <typename T>
|
||||
u32 Fletcher32(const T& data) const
|
||||
{
|
||||
return Common::HashFletcher(reinterpret_cast<const u8*>(&decl), sizeof(decl));
|
||||
static_assert(sizeof(T) % sizeof(u16) == 0);
|
||||
|
||||
auto buf = reinterpret_cast<const u16*>(&data);
|
||||
size_t len = sizeof(T) / sizeof(u16);
|
||||
u32 sum1 = 0xffff, sum2 = 0xffff;
|
||||
|
||||
while (len)
|
||||
{
|
||||
size_t tlen = len > 360 ? 360 : len;
|
||||
len -= tlen;
|
||||
|
||||
do
|
||||
{
|
||||
sum1 += *buf++;
|
||||
sum2 += sum1;
|
||||
} while (--tlen);
|
||||
|
||||
sum1 = (sum1 & 0xffff) + (sum1 >> 16);
|
||||
sum2 = (sum2 & 0xffff) + (sum2 >> 16);
|
||||
}
|
||||
|
||||
// Second reduction step to reduce sums to 16 bits
|
||||
sum1 = (sum1 & 0xffff) + (sum1 >> 16);
|
||||
sum2 = (sum2 & 0xffff) + (sum2 >> 16);
|
||||
return (sum2 << 16 | sum1);
|
||||
}
|
||||
size_t operator()(const PortableVertexDeclaration& decl) const { return Fletcher32(decl); }
|
||||
};
|
||||
} // namespace std
|
||||
|
||||
|
@ -94,8 +94,6 @@ TextureCacheBase::TextureCacheBase()
|
||||
|
||||
HiresTexture::Init();
|
||||
|
||||
Common::SetHash64Function();
|
||||
|
||||
TMEM::InvalidateAll();
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user