Merge pull request #8765 from AdmiralCurtiss/jit-reuse-memory

Jit64 codegen space reuse.
This commit is contained in:
JMC47 2020-09-09 08:16:09 -04:00 committed by GitHub
commit a31c204ca8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
21 changed files with 1235 additions and 30 deletions

View File

@ -803,6 +803,8 @@ endif()
include_directories(Externals/picojson) include_directories(Externals/picojson)
add_subdirectory(Externals/rangeset)
######################################## ########################################
# Pre-build events: Define configuration variables and write SCM info header # Pre-build events: Define configuration variables and write SCM info header
# #

View File

@ -56,6 +56,8 @@ Dolphin includes or links code of the following third-party software projects:
[LGPLv2.1+](http://cgit.freedesktop.org/pulseaudio/pulseaudio/tree/LICENSE) [LGPLv2.1+](http://cgit.freedesktop.org/pulseaudio/pulseaudio/tree/LICENSE)
- [Qt5](http://qt-project.org/): - [Qt5](http://qt-project.org/):
[LGPLv3 and other licenses](http://doc.qt.io/qt-5/licensing.html) [LGPLv3 and other licenses](http://doc.qt.io/qt-5/licensing.html)
- [rangeset](https://github.com/AdmiralCurtiss/rangeset)
[zlib license](https://github.com/AdmiralCurtiss/rangeset/blob/master/LICENSE)
- [SDL](https://www.libsdl.org/): - [SDL](https://www.libsdl.org/):
[zlib license](http://hg.libsdl.org/SDL/file/tip/COPYING.txt) [zlib license](http://hg.libsdl.org/SDL/file/tip/COPYING.txt)
- [SFML](http://www.sfml-dev.org/): - [SFML](http://www.sfml-dev.org/):

4
Externals/rangeset/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,4 @@
add_library(RangeSet::RangeSet INTERFACE IMPORTED GLOBAL)
set_target_properties(RangeSet::RangeSet PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES ${CMAKE_CURRENT_LIST_DIR}/include
)

17
Externals/rangeset/LICENSE vendored Normal file
View File

@ -0,0 +1,17 @@
Copyright (c) 2020 Admiral H. Curtiss
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

View File

@ -0,0 +1,368 @@
#pragma once
#include <cassert>
#include <map>
namespace HyoutaUtilities {
template <typename T> class RangeSet {
private:
using MapT = std::map<T, T>;
public:
struct const_iterator {
public:
const T& from() const {
return It->first;
}
const T& to() const {
return It->second;
}
const_iterator& operator++() {
++It;
return *this;
}
const_iterator operator++(int) {
const_iterator old = *this;
++It;
return old;
}
const_iterator& operator--() {
--It;
return *this;
}
const_iterator operator--(int) {
const_iterator old = *this;
--It;
return old;
}
bool operator==(const const_iterator& rhs) const {
return this->It == rhs.It;
}
bool operator!=(const const_iterator& rhs) const {
return !operator==(rhs);
}
private:
typename MapT::const_iterator It;
const_iterator(typename MapT::const_iterator it) : It(it) {}
friend class RangeSet;
};
void insert(T from, T to) {
if (from >= to)
return;
// Start by finding the closest range.
// upper_bound() returns the closest range whose starting position
// is greater than 'from'.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
// This means we have three options:
// - 1. No range exists yet, this is the first range.
if (Map.empty()) {
insert_range(from, to);
return;
}
// - 2. The given range does not overlap the last range.
--bound;
if (from > get_to(bound)) {
insert_range(from, to);
return;
}
// - 3. The given range does overlap the last range.
maybe_expand_to(bound, to);
return;
}
if (bound == Map.begin()) {
// The given range starts before any of the existing ones.
// We must insert this as a new range even if we potentially overlap
// an existing one as we can't modify a key in a std::map.
auto inserted = insert_range(from, to);
merge_from_iterator_to_value(inserted, bound, to);
return;
}
auto abound = bound--;
// 'bound' now points at the first range in the map that
// could possibly be affected.
// If 'bound' overlaps with given range, update bounds object.
if (get_to(bound) >= from) {
maybe_expand_to(bound, to);
auto inserted = bound;
++bound;
merge_from_iterator_to_value(inserted, bound, to);
return;
}
// 'bound' *doesn't* overlap with given range, check next range.
// If this range overlaps with given range,
if (get_from(abound) <= to) {
// insert new range
auto inserted = insert_range(from, to >= get_to(abound) ? to : get_to(abound));
// and delete overlaps
abound = erase_range(abound);
merge_from_iterator_to_value(inserted, abound, to);
return;
}
// Otherwise, if we come here, then this new range overlaps nothing
// and must be inserted as a new range.
insert_range(from, to);
}
void erase(T from, T to) {
if (from >= to)
return;
// Like insert(), we use upper_bound to find the closest range.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
if (Map.empty()) {
// nothing to do
return;
}
--bound;
// 'bound' now points at the last range.
if (from >= get_to(bound)) {
// Given range is larger than any range that exists, nothing to do.
return;
}
if (to >= get_to(bound)) {
if (from == get_from(bound)) {
// Given range fully overlaps last range, erase it.
erase_range(bound);
return;
} else {
// Given range overlaps end of last range, reduce it.
reduce_to(bound, from);
return;
}
}
if (from == get_from(bound)) {
// Given range overlaps begin of last range, reduce it.
reduce_from(bound, to);
return;
} else {
// Given range overlaps middle of last range, bisect it.
bisect_range(bound, from, to);
return;
}
}
if (bound == Map.begin()) {
// If we found the first range that means 'from' is before any stored range.
// This means we can just erase from start until 'to' and be done with it.
erase_from_iterator_to_value(bound, to);
return;
}
// check previous range
auto abound = bound--;
if (from == get_from(bound)) {
// Similarly, if the previous range starts with the given one, just erase until 'to'.
erase_from_iterator_to_value(bound, to);
return;
}
// If we come here, the given range may or may not overlap part of the current 'bound'
// (but never the full range), which means we may need to update the end position of it,
// or possibly even split it into two.
if (from < get_to(bound)) {
if (to < get_to(bound)) {
// need to split in two
bisect_range(bound, from, to);
return;
} else {
// just update end
reduce_to(bound, from);
}
}
// and then just erase until 'to'
erase_from_iterator_to_value(abound, to);
return;
}
const_iterator erase(const_iterator it) {
return const_iterator(erase_range(it.It));
}
void clear() {
Map.clear();
}
bool contains(T value) const {
auto it = Map.upper_bound(value);
if (it == Map.begin())
return false;
--it;
return get_from(it) <= value && value < get_to(it);
}
size_t size() const {
return Map.size();
}
bool empty() const {
return Map.empty();
}
void swap(RangeSet<T>& other) {
Map.swap(other.Map);
}
const_iterator begin() const {
return const_iterator(Map.begin());
}
const_iterator end() const {
return const_iterator(Map.end());
}
const_iterator cbegin() const {
return const_iterator(Map.cbegin());
}
const_iterator cend() const {
return const_iterator(Map.cend());
}
bool operator==(const RangeSet<T>& other) const {
return this->Map == other.Map;
}
bool operator!=(const RangeSet<T>& other) const {
return !(*this == other);
}
private:
// Assumptions that can be made about the data:
// - Range are stored in the form [from, to[
// That is, the starting value is inclusive, and the end value is exclusive.
// - 'from' is the map key, 'to' is the map value
// - 'from' is always smaller than 'to'
// - Stored ranges never touch.
// - Stored ranges never overlap.
MapT Map;
T get_from(typename MapT::iterator it) const {
return it->first;
}
T get_to(typename MapT::iterator it) const {
return it->second;
}
T get_from(typename MapT::const_iterator it) const {
return it->first;
}
T get_to(typename MapT::const_iterator it) const {
return it->second;
}
typename MapT::iterator insert_range(T from, T to) {
return Map.emplace(from, to).first;
}
typename MapT::iterator erase_range(typename MapT::iterator it) {
return Map.erase(it);
}
typename MapT::const_iterator erase_range(typename MapT::const_iterator it) {
return Map.erase(it);
}
void bisect_range(typename MapT::iterator it, T from, T to) {
assert(get_from(it) < from);
assert(get_from(it) < to);
assert(get_to(it) > from);
assert(get_to(it) > to);
assert(from < to);
T itto = get_to(it);
reduce_to(it, from);
insert_range(to, itto);
}
typename MapT::iterator reduce_from(typename MapT::iterator it, T from) {
assert(get_from(it) < from);
T itto = get_to(it);
erase_range(it);
return insert_range(from, itto);
}
void maybe_expand_to(typename MapT::iterator it, T to) {
if (to <= get_to(it))
return;
expand_to(it, to);
}
void expand_to(typename MapT::iterator it, T to) {
assert(get_to(it) < to);
it->second = to;
}
void reduce_to(typename MapT::iterator it, T to) {
assert(get_to(it) > to);
it->second = to;
}
void merge_from_iterator_to_value(typename MapT::iterator inserted, typename MapT::iterator bound, T to) {
// Erase all ranges that overlap the inserted while updating the upper end.
while (bound != Map.end() && get_from(bound) <= to) {
maybe_expand_to(inserted, get_to(bound));
bound = erase_range(bound);
}
}
void erase_from_iterator_to_value(typename MapT::iterator bound, T to) {
// Assumption: Given bound starts at or after the 'from' value of the range to erase.
while (true) {
// Given range starts before stored range.
if (to <= get_from(bound)) {
// Range ends before this range too, nothing to do.
return;
}
if (to < get_to(bound)) {
// Range ends in the middle of current range, reduce current.
reduce_from(bound, to);
return;
}
if (to == get_to(bound)) {
// Range ends exactly with current range, erase current.
erase_range(bound);
return;
}
// Range ends later than current range.
// First erase current, then loop to check the range(s) after this one too.
bound = erase_range(bound);
if (bound == Map.end()) {
// Unless that was the last range, in which case there's nothing else to do.
return;
}
}
}
};
} // namespace HyoutaUtilities

View File

@ -0,0 +1,541 @@
#pragma once
#include <cassert>
#include <map>
#include <type_traits>
namespace HyoutaUtilities {
// Like RangeSet, but additionally stores a map of the ranges sorted by their size, for quickly finding the largest or
// smallest range.
template <typename T> class RangeSizeSet {
private:
// Key type used in the by-size multimap. Should be a type big enough to hold all possible distances between
// possible 'from' and 'to'.
// I'd actually love to just do
// using SizeT = typename std::conditional<std::is_pointer_v<T>,
// std::size_t, typename std::make_unsigned<T>::type>::type;
// but that's apparently not possible due to the std::make_unsigned<T>::type not existing for pointer types
// so we'll work around this...
template <typename U, bool IsPointer> struct GetSizeType { using S = typename std::make_unsigned<U>::type; };
template <typename U> struct GetSizeType<U, true> { using S = std::size_t; };
public:
using SizeT = typename GetSizeType<T, std::is_pointer_v<T>>::S;
private:
// Value type stored in the regular range map.
struct Value {
// End point of the range.
T To;
// Pointer to the same range in the by-size multimap.
typename std::multimap<SizeT, typename std::map<T, Value>::iterator, std::greater<SizeT>>::iterator SizeIt;
Value(T to) : To(to) {}
bool operator==(const Value& other) const {
return this->To == other.To;
}
bool operator!=(const Value& other) const {
return !operator==(other);
}
};
using MapT = std::map<T, Value>;
using SizeMapT = std::multimap<SizeT, typename MapT::iterator, std::greater<SizeT>>;
public:
struct by_size_const_iterator;
struct const_iterator {
public:
const T& from() const {
return It->first;
}
const T& to() const {
return It->second.To;
}
const_iterator& operator++() {
++It;
return *this;
}
const_iterator operator++(int) {
const_iterator old = *this;
++It;
return old;
}
const_iterator& operator--() {
--It;
return *this;
}
const_iterator operator--(int) {
const_iterator old = *this;
--It;
return old;
}
bool operator==(const const_iterator& rhs) const {
return this->It == rhs.It;
}
bool operator!=(const const_iterator& rhs) const {
return !operator==(rhs);
}
by_size_const_iterator to_size_iterator() {
return by_size_const_iterator(It->second.SizeIt);
}
private:
typename MapT::const_iterator It;
const_iterator(typename MapT::const_iterator it) : It(it) {}
friend class RangeSizeSet;
};
struct by_size_const_iterator {
public:
const T& from() const {
return It->second->first;
}
const T& to() const {
return It->second->second.To;
}
by_size_const_iterator& operator++() {
++It;
return *this;
}
by_size_const_iterator operator++(int) {
by_size_const_iterator old = *this;
++It;
return old;
}
by_size_const_iterator& operator--() {
--It;
return *this;
}
by_size_const_iterator operator--(int) {
by_size_const_iterator old = *this;
--It;
return old;
}
bool operator==(const by_size_const_iterator& rhs) const {
return this->It == rhs.It;
}
bool operator!=(const by_size_const_iterator& rhs) const {
return !operator==(rhs);
}
const_iterator to_range_iterator() {
return const_iterator(It->second);
}
private:
typename SizeMapT::const_iterator It;
by_size_const_iterator(typename SizeMapT::const_iterator it) : It(it) {}
friend class RangeSizeSet;
};
// We store iterators internally, so disallow copying.
RangeSizeSet() = default;
RangeSizeSet(const RangeSizeSet<T>&) = delete;
RangeSizeSet(RangeSizeSet<T>&&) = default;
RangeSizeSet<T>& operator=(const RangeSizeSet<T>&) = delete;
RangeSizeSet<T>& operator=(RangeSizeSet<T>&&) = default;
void insert(T from, T to) {
if (from >= to)
return;
// Start by finding the closest range.
// upper_bound() returns the closest range whose starting position
// is greater than 'from'.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
// This means we have three options:
// - 1. No range exists yet, this is the first range.
if (Map.empty()) {
insert_range(from, to);
return;
}
// - 2. The given range does not overlap the last range.
--bound;
if (from > get_to(bound)) {
insert_range(from, to);
return;
}
// - 3. The given range does overlap the last range.
maybe_expand_to(bound, to);
return;
}
if (bound == Map.begin()) {
// The given range starts before any of the existing ones.
// We must insert this as a new range even if we potentially overlap
// an existing one as we can't modify a key in a std::map.
auto inserted = insert_range(from, to);
merge_from_iterator_to_value(inserted, bound, to);
return;
}
auto abound = bound--;
// 'bound' now points at the first range in the map that
// could possibly be affected.
// If 'bound' overlaps with given range, update bounds object.
if (get_to(bound) >= from) {
maybe_expand_to(bound, to);
auto inserted = bound;
++bound;
merge_from_iterator_to_value(inserted, bound, to);
return;
}
// 'bound' *doesn't* overlap with given range, check next range.
// If this range overlaps with given range,
if (get_from(abound) <= to) {
// insert new range
auto inserted = insert_range(from, to >= get_to(abound) ? to : get_to(abound));
// and delete overlaps
abound = erase_range(abound);
merge_from_iterator_to_value(inserted, abound, to);
return;
}
// Otherwise, if we come here, then this new range overlaps nothing
// and must be inserted as a new range.
insert_range(from, to);
}
void erase(T from, T to) {
if (from >= to)
return;
// Like insert(), we use upper_bound to find the closest range.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
if (Map.empty()) {
// nothing to do
return;
}
--bound;
// 'bound' now points at the last range.
if (from >= get_to(bound)) {
// Given range is larger than any range that exists, nothing to do.
return;
}
if (to >= get_to(bound)) {
if (from == get_from(bound)) {
// Given range fully overlaps last range, erase it.
erase_range(bound);
return;
} else {
// Given range overlaps end of last range, reduce it.
reduce_to(bound, from);
return;
}
}
if (from == get_from(bound)) {
// Given range overlaps begin of last range, reduce it.
reduce_from(bound, to);
return;
} else {
// Given range overlaps middle of last range, bisect it.
bisect_range(bound, from, to);
return;
}
}
if (bound == Map.begin()) {
// If we found the first range that means 'from' is before any stored range.
// This means we can just erase from start until 'to' and be done with it.
erase_from_iterator_to_value(bound, to);
return;
}
// check previous range
auto abound = bound--;
if (from == get_from(bound)) {
// Similarly, if the previous range starts with the given one, just erase until 'to'.
erase_from_iterator_to_value(bound, to);
return;
}
// If we come here, the given range may or may not overlap part of the current 'bound'
// (but never the full range), which means we may need to update the end position of it,
// or possibly even split it into two.
if (from < get_to(bound)) {
if (to < get_to(bound)) {
// need to split in two
bisect_range(bound, from, to);
return;
} else {
// just update end
reduce_to(bound, from);
}
}
// and then just erase until 'to'
erase_from_iterator_to_value(abound, to);
return;
}
const_iterator erase(const_iterator it) {
return const_iterator(erase_range(it.It));
}
by_size_const_iterator erase(by_size_const_iterator it) {
return by_size_const_iterator(erase_range_by_size(it.It));
}
void clear() {
Map.clear();
Sizes.clear();
}
bool contains(T value) const {
auto it = Map.upper_bound(value);
if (it == Map.begin())
return false;
--it;
return get_from(it) <= value && value < get_to(it);
}
size_t size() const {
return Map.size();
}
bool empty() const {
return Map.empty();
}
size_t by_size_count(const SizeT& key) const {
return Sizes.count(key);
}
by_size_const_iterator by_size_find(const SizeT& key) const {
return Sizes.find(key);
}
std::pair<by_size_const_iterator, by_size_const_iterator> by_size_equal_range(const SizeT& key) const {
auto p = Sizes.equal_range(key);
return std::pair<by_size_const_iterator, by_size_const_iterator>(by_size_const_iterator(p.first),
by_size_const_iterator(p.second));
}
by_size_const_iterator by_size_lower_bound(const SizeT& key) const {
return Sizes.lower_bound(key);
}
by_size_const_iterator by_size_upper_bound(const SizeT& key) const {
return Sizes.upper_bound(key);
}
void swap(RangeSizeSet<T>& other) {
Map.swap(other.Map);
Sizes.swap(other.Sizes);
}
const_iterator begin() const {
return const_iterator(Map.begin());
}
const_iterator end() const {
return const_iterator(Map.end());
}
const_iterator cbegin() const {
return const_iterator(Map.cbegin());
}
const_iterator cend() const {
return const_iterator(Map.cend());
}
by_size_const_iterator by_size_begin() const {
return by_size_const_iterator(Sizes.begin());
}
by_size_const_iterator by_size_end() const {
return by_size_const_iterator(Sizes.end());
}
by_size_const_iterator by_size_cbegin() const {
return by_size_const_iterator(Sizes.cbegin());
}
by_size_const_iterator by_size_cend() const {
return by_size_const_iterator(Sizes.cend());
}
bool operator==(const RangeSizeSet<T>& other) const {
return this->Map == other.Map;
}
bool operator!=(const RangeSizeSet<T>& other) const {
return !(*this == other);
}
private:
static SizeT calc_size(T from, T to) {
if constexpr (std::is_pointer_v<T>) {
// For pointers we don't want pointer arithmetic here, else void* breaks.
static_assert(sizeof(T) <= sizeof(SizeT));
return reinterpret_cast<SizeT>(to) - reinterpret_cast<SizeT>(from);
} else {
return static_cast<SizeT>(to - from);
}
}
// Assumptions that can be made about the data:
// - Range are stored in the form [from, to[
// That is, the starting value is inclusive, and the end value is exclusive.
// - 'from' is the map key, 'to' is the map value
// - 'from' is always smaller than 'to'
// - Stored ranges never touch.
// - Stored ranges never overlap.
MapT Map;
// The by-size multimap.
// Key is the size of the range.
// Value is a pointer to the range in the regular range map.
// We use std::greater so that Sizes.begin() gives us the largest range.
SizeMapT Sizes;
T get_from(typename MapT::iterator it) const {
return it->first;
}
T get_to(typename MapT::iterator it) const {
return it->second.To;
}
T get_from(typename MapT::const_iterator it) const {
return it->first;
}
T get_to(typename MapT::const_iterator it) const {
return it->second.To;
}
typename MapT::iterator insert_range(T from, T to) {
auto m = Map.emplace(from, to).first;
m->second.SizeIt = Sizes.emplace(calc_size(from, to), m);
return m;
}
typename MapT::iterator erase_range(typename MapT::iterator it) {
Sizes.erase(it->second.SizeIt);
return Map.erase(it);
}
typename MapT::const_iterator erase_range(typename MapT::const_iterator it) {
Sizes.erase(it->second.SizeIt);
return Map.erase(it);
}
typename SizeMapT::const_iterator erase_range_by_size(typename SizeMapT::const_iterator it) {
Map.erase(it->second);
return Sizes.erase(it);
}
void bisect_range(typename MapT::iterator it, T from, T to) {
assert(get_from(it) < from);
assert(get_from(it) < to);
assert(get_to(it) > from);
assert(get_to(it) > to);
assert(from < to);
T itto = get_to(it);
reduce_to(it, from);
insert_range(to, itto);
}
typename MapT::iterator reduce_from(typename MapT::iterator it, T from) {
assert(get_from(it) < from);
T itto = get_to(it);
erase_range(it);
return insert_range(from, itto);
}
void maybe_expand_to(typename MapT::iterator it, T to) {
if (to <= get_to(it))
return;
expand_to(it, to);
}
void expand_to(typename MapT::iterator it, T to) {
assert(get_to(it) < to);
it->second.To = to;
Sizes.erase(it->second.SizeIt);
it->second.SizeIt = Sizes.emplace(calc_size(get_from(it), to), it);
}
void reduce_to(typename MapT::iterator it, T to) {
assert(get_to(it) > to);
it->second.To = to;
Sizes.erase(it->second.SizeIt);
it->second.SizeIt = Sizes.emplace(calc_size(get_from(it), to), it);
}
void merge_from_iterator_to_value(typename MapT::iterator inserted, typename MapT::iterator bound, T to) {
// Erase all ranges that overlap the inserted while updating the upper end.
while (bound != Map.end() && get_from(bound) <= to) {
maybe_expand_to(inserted, get_to(bound));
bound = erase_range(bound);
}
}
void erase_from_iterator_to_value(typename MapT::iterator bound, T to) {
// Assumption: Given bound starts at or after the 'from' value of the range to erase.
while (true) {
// Given range starts before stored range.
if (to <= get_from(bound)) {
// Range ends before this range too, nothing to do.
return;
}
if (to < get_to(bound)) {
// Range ends in the middle of current range, reduce current.
reduce_from(bound, to);
return;
}
if (to == get_to(bound)) {
// Range ends exactly with current range, erase current.
erase_range(bound);
return;
}
// Range ends later than current range.
// First erase current, then loop to check the range(s) after this one too.
bound = erase_range(bound);
if (bound == Map.end()) {
// Unless that was the last range, in which case there's nothing else to do.
return;
}
}
}
};
} // namespace HyoutaUtilities

View File

@ -310,7 +310,7 @@ void ARM64XEmitter::SetCodePtrUnsafe(u8* ptr)
m_code = ptr; m_code = ptr;
} }
void ARM64XEmitter::SetCodePtr(u8* ptr) void ARM64XEmitter::SetCodePtr(u8* ptr, u8* end, bool write_failed)
{ {
SetCodePtrUnsafe(ptr); SetCodePtrUnsafe(ptr);
m_lastCacheFlushEnd = ptr; m_lastCacheFlushEnd = ptr;

View File

@ -540,7 +540,11 @@ public:
} }
virtual ~ARM64XEmitter() {} virtual ~ARM64XEmitter() {}
void SetCodePtr(u8* ptr);
// 'end' and 'write_failed' are unused in the ARM code emitter at the moment.
// They're just here for interface compatibility with the x64 code emitter.
void SetCodePtr(u8* ptr, u8* end, bool write_failed = false);
void SetCodePtrUnsafe(u8* ptr); void SetCodePtrUnsafe(u8* ptr);
void ReserveCodeSpace(u32 bytes); void ReserveCodeSpace(u32 bytes);
u8* AlignCode16(); u8* AlignCode16();

View File

@ -55,7 +55,7 @@ public:
region_size = size; region_size = size;
total_region_size = size; total_region_size = size;
region = static_cast<u8*>(Common::AllocateExecutableMemory(total_region_size)); region = static_cast<u8*>(Common::AllocateExecutableMemory(total_region_size));
T::SetCodePtr(region); T::SetCodePtr(region, region + size);
} }
// Always clear code space with breakpoints, so that if someone accidentally executes // Always clear code space with breakpoints, so that if someone accidentally executes
@ -86,7 +86,7 @@ public:
// Cannot currently be undone. Will write protect the entire code region. // Cannot currently be undone. Will write protect the entire code region.
// Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()). // Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
void WriteProtect() { Common::WriteProtectMemory(region, region_size, true); } void WriteProtect() { Common::WriteProtectMemory(region, region_size, true); }
void ResetCodePtr() { T::SetCodePtr(region); } void ResetCodePtr() { T::SetCodePtr(region, region + region_size); }
size_t GetSpaceLeft() const size_t GetSpaceLeft() const
{ {
ASSERT(static_cast<size_t>(T::GetCodePtr() - region) < region_size); ASSERT(static_cast<size_t>(T::GetCodePtr() - region) < region_size);

View File

@ -101,9 +101,11 @@ enum class FloatOp
Invalid = -1, Invalid = -1,
}; };
void XEmitter::SetCodePtr(u8* ptr) void XEmitter::SetCodePtr(u8* ptr, u8* end, bool write_failed)
{ {
code = ptr; code = ptr;
m_code_end = end;
m_write_failed = write_failed;
} }
const u8* XEmitter::GetCodePtr() const const u8* XEmitter::GetCodePtr() const
@ -116,31 +118,76 @@ u8* XEmitter::GetWritableCodePtr()
return code; return code;
} }
const u8* XEmitter::GetCodeEnd() const
{
return m_code_end;
}
u8* XEmitter::GetWritableCodeEnd()
{
return m_code_end;
}
void XEmitter::Write8(u8 value) void XEmitter::Write8(u8 value)
{ {
if (code >= m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
*code++ = value; *code++ = value;
} }
void XEmitter::Write16(u16 value) void XEmitter::Write16(u16 value)
{ {
if (code + sizeof(u16) > m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
std::memcpy(code, &value, sizeof(u16)); std::memcpy(code, &value, sizeof(u16));
code += sizeof(u16); code += sizeof(u16);
} }
void XEmitter::Write32(u32 value) void XEmitter::Write32(u32 value)
{ {
if (code + sizeof(u32) > m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
std::memcpy(code, &value, sizeof(u32)); std::memcpy(code, &value, sizeof(u32));
code += sizeof(u32); code += sizeof(u32);
} }
void XEmitter::Write64(u64 value) void XEmitter::Write64(u64 value)
{ {
if (code + sizeof(u64) > m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
std::memcpy(code, &value, sizeof(u64)); std::memcpy(code, &value, sizeof(u64));
code += sizeof(u64); code += sizeof(u64);
} }
void XEmitter::ReserveCodeSpace(int bytes) void XEmitter::ReserveCodeSpace(int bytes)
{ {
if (code + bytes > m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
for (int i = 0; i < bytes; i++) for (int i = 0; i < bytes; i++)
*code++ = 0xCC; *code++ = 0xCC;
} }
@ -454,6 +501,13 @@ FixupBranch XEmitter::CALL()
branch.ptr = code + 5; branch.ptr = code + 5;
Write8(0xE8); Write8(0xE8);
Write32(0); Write32(0);
// If we couldn't write the full call instruction, indicate that in the returned FixupBranch by
// setting the branch's address to null. This will prevent a later SetJumpTarget() from writing to
// invalid memory.
if (HasWriteFailed())
branch.ptr = nullptr;
return branch; return branch;
} }
@ -473,6 +527,13 @@ FixupBranch XEmitter::J(bool force5bytes)
Write8(0xE9); Write8(0xE9);
Write32(0); Write32(0);
} }
// If we couldn't write the full jump instruction, indicate that in the returned FixupBranch by
// setting the branch's address to null. This will prevent a later SetJumpTarget() from writing to
// invalid memory.
if (HasWriteFailed())
branch.ptr = nullptr;
return branch; return branch;
} }
@ -493,6 +554,13 @@ FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
Write8(0x80 + conditionCode); Write8(0x80 + conditionCode);
Write32(0); Write32(0);
} }
// If we couldn't write the full jump instruction, indicate that in the returned FixupBranch by
// setting the branch's address to null. This will prevent a later SetJumpTarget() from writing to
// invalid memory.
if (HasWriteFailed())
branch.ptr = nullptr;
return branch; return branch;
} }
@ -518,6 +586,9 @@ void XEmitter::J_CC(CCFlags conditionCode, const u8* addr)
void XEmitter::SetJumpTarget(const FixupBranch& branch) void XEmitter::SetJumpTarget(const FixupBranch& branch)
{ {
if (!branch.ptr)
return;
if (branch.type == FixupBranch::Type::Branch8Bit) if (branch.type == FixupBranch::Type::Branch8Bit)
{ {
s64 distance = (s64)(code - branch.ptr); s64 distance = (s64)(code - branch.ptr);

View File

@ -329,9 +329,19 @@ class XEmitter
{ {
friend struct OpArg; // for Write8 etc friend struct OpArg; // for Write8 etc
private: private:
// Pointer to memory where code will be emitted to.
u8* code = nullptr; u8* code = nullptr;
// Pointer past the end of the memory region we're allowed to emit to.
// Writes that would reach this memory are refused and will set the m_write_failed flag instead.
u8* m_code_end = nullptr;
bool flags_locked = false; bool flags_locked = false;
// Set to true when a write request happens that would write past m_code_end.
// Must be cleared with SetCodePtr() afterwards.
bool m_write_failed = false;
void CheckFlags(); void CheckFlags();
void Rex(int w, int r, int x, int b); void Rex(int w, int r, int x, int b);
@ -378,9 +388,9 @@ protected:
public: public:
XEmitter() = default; XEmitter() = default;
explicit XEmitter(u8* code_ptr) : code{code_ptr} {} explicit XEmitter(u8* code_ptr, u8* code_end) : code(code_ptr), m_code_end(code_end) {}
virtual ~XEmitter() = default; virtual ~XEmitter() = default;
void SetCodePtr(u8* ptr); void SetCodePtr(u8* ptr, u8* end, bool write_failed = false);
void ReserveCodeSpace(int bytes); void ReserveCodeSpace(int bytes);
u8* AlignCodeTo(size_t alignment); u8* AlignCodeTo(size_t alignment);
u8* AlignCode4(); u8* AlignCode4();
@ -388,9 +398,16 @@ public:
u8* AlignCodePage(); u8* AlignCodePage();
const u8* GetCodePtr() const; const u8* GetCodePtr() const;
u8* GetWritableCodePtr(); u8* GetWritableCodePtr();
const u8* GetCodeEnd() const;
u8* GetWritableCodeEnd();
void LockFlags() { flags_locked = true; } void LockFlags() { flags_locked = true; }
void UnlockFlags() { flags_locked = false; } void UnlockFlags() { flags_locked = false; }
// Should be checked after a block of code has been generated to see if the code has been
// successfully written to memory. Do not call the generated code when this returns true!
bool HasWriteFailed() const { return m_write_failed; }
// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other
// string instr., // string instr.,

View File

@ -555,6 +555,7 @@ PUBLIC
inputcommon inputcommon
${MBEDTLS_LIBRARIES} ${MBEDTLS_LIBRARIES}
pugixml pugixml
RangeSet::RangeSet
sfml-network sfml-network
sfml-system sfml-system
videonull videonull

View File

@ -281,7 +281,7 @@ bool Jit64::BackPatch(u32 emAddress, SContext* ctx)
u8* start = info.start; u8* start = info.start;
// Patch the original memory operation. // Patch the original memory operation.
XEmitter emitter(start); XEmitter emitter(start, start + info.len);
emitter.JMP(trampoline, true); emitter.JMP(trampoline, true);
// NOPs become dead code // NOPs become dead code
const u8* end = info.start + info.len; const u8* end = info.start + info.len;
@ -351,6 +351,7 @@ void Jit64::Init()
AddChildCodeSpace(&trampolines, trampolines_size); AddChildCodeSpace(&trampolines, trampolines_size);
AddChildCodeSpace(&m_far_code, farcode_size); AddChildCodeSpace(&m_far_code, farcode_size);
m_const_pool.Init(AllocChildCodeSpace(constpool_size), constpool_size); m_const_pool.Init(AllocChildCodeSpace(constpool_size), constpool_size);
ResetCodePtr();
// BLR optimization has the same consequences as block linking, as well as // BLR optimization has the same consequences as block linking, as well as
// depending on the fault handler to be safe in the event of excessive BL. // depending on the fault handler to be safe in the event of excessive BL.
@ -375,17 +376,30 @@ void Jit64::Init()
code_block.m_gpa = &js.gpa; code_block.m_gpa = &js.gpa;
code_block.m_fpa = &js.fpa; code_block.m_fpa = &js.fpa;
EnableOptimization(); EnableOptimization();
ResetFreeMemoryRanges();
} }
void Jit64::ClearCache() void Jit64::ClearCache()
{ {
blocks.Clear(); blocks.Clear();
blocks.ClearRangesToFree();
trampolines.ClearCodeSpace(); trampolines.ClearCodeSpace();
m_far_code.ClearCodeSpace(); m_far_code.ClearCodeSpace();
m_const_pool.Clear(); m_const_pool.Clear();
ClearCodeSpace(); ClearCodeSpace();
Clear(); Clear();
UpdateMemoryOptions(); UpdateMemoryOptions();
ResetFreeMemoryRanges();
}
void Jit64::ResetFreeMemoryRanges()
{
// Set the entire near and far code regions as unused.
m_free_ranges_near.clear();
m_free_ranges_near.insert(region, region + region_size);
m_free_ranges_far.clear();
m_free_ranges_far.insert(m_far_code.GetWritableCodePtr(), m_far_code.GetWritableCodeEnd());
} }
void Jit64::Shutdown() void Jit64::Shutdown()
@ -720,6 +734,11 @@ void Jit64::Trace()
} }
void Jit64::Jit(u32 em_address) void Jit64::Jit(u32 em_address)
{
Jit(em_address, true);
}
void Jit64::Jit(u32 em_address, bool clear_cache_and_retry_on_failure)
{ {
if (m_cleanup_after_stackfault) if (m_cleanup_after_stackfault)
{ {
@ -731,18 +750,23 @@ void Jit64::Jit(u32 em_address)
#endif #endif
} }
if (IsAlmostFull() || m_far_code.IsAlmostFull() || trampolines.IsAlmostFull() || if (trampolines.IsAlmostFull() || SConfig::GetInstance().bJITNoBlockCache)
SConfig::GetInstance().bJITNoBlockCache)
{ {
if (!SConfig::GetInstance().bJITNoBlockCache) if (!SConfig::GetInstance().bJITNoBlockCache)
{ {
const auto reason = WARN_LOG(POWERPC, "flushing trampoline code cache, please report if this happens a lot");
IsAlmostFull() ? "main" : m_far_code.IsAlmostFull() ? "far" : "trampoline";
WARN_LOG(POWERPC, "flushing %s code cache, please report if this happens a lot", reason);
} }
ClearCache(); ClearCache();
} }
// Check if any code blocks have been freed in the block cache and transfer this information to
// the local rangesets to allow overwriting them with new code.
for (auto range : blocks.GetRangesToFreeNear())
m_free_ranges_near.insert(range.first, range.second);
for (auto range : blocks.GetRangesToFreeFar())
m_free_ranges_far.insert(range.first, range.second);
blocks.ClearRangesToFree();
std::size_t block_size = m_code_buffer.size(); std::size_t block_size = m_code_buffer.size();
if (SConfig::GetInstance().bEnableDebugging) if (SConfig::GetInstance().bEnableDebugging)
@ -785,12 +809,75 @@ void Jit64::Jit(u32 em_address)
return; return;
} }
JitBlock* b = blocks.AllocateBlock(em_address); if (SetEmitterStateToFreeCodeRegion())
DoJit(em_address, b, nextPC); {
blocks.FinalizeBlock(*b, jo.enableBlocklink, code_block.m_physical_addresses); u8* near_start = GetWritableCodePtr();
u8* far_start = m_far_code.GetWritableCodePtr();
JitBlock* b = blocks.AllocateBlock(em_address);
if (DoJit(em_address, b, nextPC))
{
// Code generation succeeded.
// Mark the memory regions that this code block uses as used in the local rangesets.
u8* near_end = GetWritableCodePtr();
if (near_start != near_end)
m_free_ranges_near.erase(near_start, near_end);
u8* far_end = m_far_code.GetWritableCodePtr();
if (far_start != far_end)
m_free_ranges_far.erase(far_start, far_end);
// Store the used memory regions in the block so we know what to mark as unused when the
// block gets invalidated.
b->near_begin = near_start;
b->near_end = near_end;
b->far_begin = far_start;
b->far_end = far_end;
blocks.FinalizeBlock(*b, jo.enableBlocklink, code_block.m_physical_addresses);
return;
}
}
if (clear_cache_and_retry_on_failure)
{
// Code generation failed due to not enough free space in either the near or far code regions.
// Clear the entire JIT cache and retry.
WARN_LOG(POWERPC, "flushing code caches, please report if this happens a lot");
ClearCache();
Jit(em_address, false);
return;
}
PanicAlertT("JIT failed to find code space after a cache clear. This should never happen. Please "
"report this incident on the bug tracker. Dolphin will now exit.");
exit(-1);
} }
u8* Jit64::DoJit(u32 em_address, JitBlock* b, u32 nextPC) bool Jit64::SetEmitterStateToFreeCodeRegion()
{
// Find the largest free memory blocks and set code emitters to point at them.
// If we can't find a free block return false instead, which will trigger a JIT cache clear.
auto free_near = m_free_ranges_near.by_size_begin();
if (free_near == m_free_ranges_near.by_size_end())
{
WARN_LOG(POWERPC, "Failed to find free memory region in near code region.");
return false;
}
SetCodePtr(free_near.from(), free_near.to());
auto free_far = m_free_ranges_far.by_size_begin();
if (free_far == m_free_ranges_far.by_size_end())
{
WARN_LOG(POWERPC, "Failed to find free memory region in far code region.");
return false;
}
m_far_code.SetCodePtr(free_far.from(), free_far.to());
return true;
}
bool Jit64::DoJit(u32 em_address, JitBlock* b, u32 nextPC)
{ {
js.firstFPInstructionFound = false; js.firstFPInstructionFound = false;
js.isLastInstruction = false; js.isLastInstruction = false;
@ -1091,6 +1178,16 @@ u8* Jit64::DoJit(u32 em_address, JitBlock* b, u32 nextPC)
WriteExit(nextPC); WriteExit(nextPC);
} }
if (HasWriteFailed() || m_far_code.HasWriteFailed())
{
if (HasWriteFailed())
WARN_LOG(POWERPC, "JIT ran out of space in near code region during code generation.");
if (m_far_code.HasWriteFailed())
WARN_LOG(POWERPC, "JIT ran out of space in far code region during code generation.");
return false;
}
b->codeSize = (u32)(GetCodePtr() - start); b->codeSize = (u32)(GetCodePtr() - start);
b->originalSize = code_block.m_num_instructions; b->originalSize = code_block.m_num_instructions;
@ -1098,7 +1195,7 @@ u8* Jit64::DoJit(u32 em_address, JitBlock* b, u32 nextPC)
LogGeneratedX86(code_block.m_num_instructions, m_code_buffer, start, b); LogGeneratedX86(code_block.m_num_instructions, m_code_buffer, start, b);
#endif #endif
return start; return true;
} }
BitSet8 Jit64::ComputeStaticGQRs(const PPCAnalyst::CodeBlock& cb) const BitSet8 Jit64::ComputeStaticGQRs(const PPCAnalyst::CodeBlock& cb) const

View File

@ -18,6 +18,8 @@
// ---------- // ----------
#pragma once #pragma once
#include <rangeset/rangesizeset.h>
#include "Common/CommonTypes.h" #include "Common/CommonTypes.h"
#include "Common/x64ABI.h" #include "Common/x64ABI.h"
#include "Common/x64Emitter.h" #include "Common/x64Emitter.h"
@ -56,7 +58,12 @@ public:
// Jit! // Jit!
void Jit(u32 em_address) override; void Jit(u32 em_address) override;
u8* DoJit(u32 em_address, JitBlock* b, u32 nextPC); void Jit(u32 em_address, bool clear_cache_and_retry_on_failure);
bool DoJit(u32 em_address, JitBlock* b, u32 nextPC);
// Finds a free memory region and sets the near and far code emitters to point at that region.
// Returns false if no free memory region can be found for either of the two.
bool SetEmitterStateToFreeCodeRegion();
BitSet32 CallerSavedRegistersInUse() const; BitSet32 CallerSavedRegistersInUse() const;
BitSet8 ComputeStaticGQRs(const PPCAnalyst::CodeBlock&) const; BitSet8 ComputeStaticGQRs(const PPCAnalyst::CodeBlock&) const;
@ -243,6 +250,8 @@ private:
void AllocStack(); void AllocStack();
void FreeStack(); void FreeStack();
void ResetFreeMemoryRanges();
JitBlockCache blocks{*this}; JitBlockCache blocks{*this};
TrampolineCache trampolines{*this}; TrampolineCache trampolines{*this};
@ -254,6 +263,9 @@ private:
bool m_enable_blr_optimization; bool m_enable_blr_optimization;
bool m_cleanup_after_stackfault; bool m_cleanup_after_stackfault;
u8* m_stack; u8* m_stack;
HyoutaUtilities::RangeSizeSet<u8*> m_free_ranges_near;
HyoutaUtilities::RangeSizeSet<u8*> m_free_ranges_far;
}; };
void LogGeneratedX86(size_t size, const PPCAnalyst::CodeBuffer& code_buffer, const u8* normalEntry, void LogGeneratedX86(size_t size, const PPCAnalyst::CodeBuffer& code_buffer, const u8* normalEntry,

View File

@ -21,9 +21,9 @@ void JitBlockCache::WriteLinkBlock(const JitBlock::LinkData& source, const JitBl
u8* location = source.exitPtrs; u8* location = source.exitPtrs;
const u8* address = dest ? dest->checkedEntry : dispatcher; const u8* address = dest ? dest->checkedEntry : dispatcher;
Gen::XEmitter emit(location);
if (source.call) if (source.call)
{ {
Gen::XEmitter emit(location, location + 5);
emit.CALL(address); emit.CALL(address);
} }
else else
@ -31,19 +31,57 @@ void JitBlockCache::WriteLinkBlock(const JitBlock::LinkData& source, const JitBl
// If we're going to link with the next block, there is no need // If we're going to link with the next block, there is no need
// to emit JMP. So just NOP out the gap to the next block. // to emit JMP. So just NOP out the gap to the next block.
// Support up to 3 additional bytes because of alignment. // Support up to 3 additional bytes because of alignment.
s64 offset = address - emit.GetCodePtr(); s64 offset = address - location;
if (offset > 0 && offset <= 5 + 3) if (offset > 0 && offset <= 5 + 3)
{
Gen::XEmitter emit(location, location + offset);
emit.NOP(offset); emit.NOP(offset);
}
else else
{
Gen::XEmitter emit(location, location + 5);
emit.JMP(address, true); emit.JMP(address, true);
}
} }
} }
void JitBlockCache::WriteDestroyBlock(const JitBlock& block) void JitBlockCache::WriteDestroyBlock(const JitBlock& block)
{ {
// Only clear the entry points as we might still be within this block. // Only clear the entry points as we might still be within this block.
Gen::XEmitter emit(block.checkedEntry); Gen::XEmitter emit(block.checkedEntry, block.checkedEntry + 1);
emit.INT3(); emit.INT3();
Gen::XEmitter emit2(block.normalEntry); Gen::XEmitter emit2(block.normalEntry, block.normalEntry + 1);
emit2.INT3(); emit2.INT3();
} }
void JitBlockCache::Init()
{
JitBaseBlockCache::Init();
ClearRangesToFree();
}
void JitBlockCache::DestroyBlock(JitBlock& block)
{
JitBaseBlockCache::DestroyBlock(block);
if (block.near_begin != block.near_end)
m_ranges_to_free_on_next_codegen_near.emplace_back(block.near_begin, block.near_end);
if (block.far_begin != block.far_end)
m_ranges_to_free_on_next_codegen_far.emplace_back(block.far_begin, block.far_end);
}
const std::vector<std::pair<u8*, u8*>>& JitBlockCache::GetRangesToFreeNear() const
{
return m_ranges_to_free_on_next_codegen_near;
}
const std::vector<std::pair<u8*, u8*>>& JitBlockCache::GetRangesToFreeFar() const
{
return m_ranges_to_free_on_next_codegen_far;
}
void JitBlockCache::ClearRangesToFree()
{
m_ranges_to_free_on_next_codegen_near.clear();
m_ranges_to_free_on_next_codegen_far.clear();
}

View File

@ -4,6 +4,8 @@
#pragma once #pragma once
#include <vector>
#include "Core/PowerPC/JitCommon/JitCache.h" #include "Core/PowerPC/JitCommon/JitCache.h"
class JitBase; class JitBase;
@ -13,7 +15,19 @@ class JitBlockCache : public JitBaseBlockCache
public: public:
explicit JitBlockCache(JitBase& jit); explicit JitBlockCache(JitBase& jit);
void Init() override;
void DestroyBlock(JitBlock& block) override;
const std::vector<std::pair<u8*, u8*>>& GetRangesToFreeNear() const;
const std::vector<std::pair<u8*, u8*>>& GetRangesToFreeFar() const;
void ClearRangesToFree();
private: private:
void WriteLinkBlock(const JitBlock::LinkData& source, const JitBlock* dest) override; void WriteLinkBlock(const JitBlock::LinkData& source, const JitBlock* dest) override;
void WriteDestroyBlock(const JitBlock& block) override; void WriteDestroyBlock(const JitBlock& block) override;
std::vector<std::pair<u8*, u8*>> m_ranges_to_free_on_next_codegen_near;
std::vector<std::pair<u8*, u8*>> m_ranges_to_free_on_next_codegen_far;
}; };

View File

@ -80,13 +80,16 @@ void EmuCodeBlock::MemoryExceptionCheck()
void EmuCodeBlock::SwitchToFarCode() void EmuCodeBlock::SwitchToFarCode()
{ {
m_near_code = GetWritableCodePtr(); m_near_code = GetWritableCodePtr();
SetCodePtr(m_far_code.GetWritableCodePtr()); m_near_code_end = GetWritableCodeEnd();
m_near_code_write_failed = HasWriteFailed();
SetCodePtr(m_far_code.GetWritableCodePtr(), m_far_code.GetWritableCodeEnd(),
m_far_code.HasWriteFailed());
} }
void EmuCodeBlock::SwitchToNearCode() void EmuCodeBlock::SwitchToNearCode()
{ {
m_far_code.SetCodePtr(GetWritableCodePtr()); m_far_code.SetCodePtr(GetWritableCodePtr(), GetWritableCodeEnd(), HasWriteFailed());
SetCodePtr(m_near_code); SetCodePtr(m_near_code, m_near_code_end, m_near_code_write_failed);
} }
FixupBranch EmuCodeBlock::CheckIfSafeAddress(const OpArg& reg_value, X64Reg reg_addr, FixupBranch EmuCodeBlock::CheckIfSafeAddress(const OpArg& reg_value, X64Reg reg_addr,

View File

@ -131,7 +131,11 @@ protected:
Jit64& m_jit; Jit64& m_jit;
ConstantPool m_const_pool; ConstantPool m_const_pool;
FarCodeCache m_far_code; FarCodeCache m_far_code;
u8* m_near_code; // Backed up when we switch to far code.
// Backed up when we switch to far code.
u8* m_near_code;
u8* m_near_code_end;
bool m_near_code_write_failed;
std::unordered_map<u8*, TrampolineInfo> m_back_patch_info; std::unordered_map<u8*, TrampolineInfo> m_back_patch_info;
std::unordered_map<u8*, u8*> m_exception_handler_at_loc; std::unordered_map<u8*, u8*> m_exception_handler_at_loc;

View File

@ -22,6 +22,12 @@ class JitBase;
// so this struct needs to have a standard layout. // so this struct needs to have a standard layout.
struct JitBlockData struct JitBlockData
{ {
// Memory range this code block takes up in near and far code caches.
u8* near_begin;
u8* near_end;
u8* far_begin;
u8* far_end;
// A special entry point for block linking; usually used to check the // A special entry point for block linking; usually used to check the
// downcount. // downcount.
u8* checkedEntry; u8* checkedEntry;
@ -130,7 +136,7 @@ public:
explicit JitBaseBlockCache(JitBase& jit); explicit JitBaseBlockCache(JitBase& jit);
virtual ~JitBaseBlockCache(); virtual ~JitBaseBlockCache();
void Init(); virtual void Init();
void Shutdown(); void Shutdown();
void Clear(); void Clear();
void Reset(); void Reset();
@ -159,6 +165,8 @@ public:
u32* GetBlockBitSet() const; u32* GetBlockBitSet() const;
protected: protected:
virtual void DestroyBlock(JitBlock& block);
JitBase& m_jit; JitBase& m_jit;
private: private:
@ -168,7 +176,6 @@ private:
void LinkBlockExits(JitBlock& block); void LinkBlockExits(JitBlock& block);
void LinkBlock(JitBlock& block); void LinkBlock(JitBlock& block);
void UnlinkBlock(const JitBlock& block); void UnlinkBlock(const JitBlock& block);
void DestroyBlock(JitBlock& block);
JitBlock* MoveBlockIntoFastCache(u32 em_address, u32 msr); JitBlock* MoveBlockIntoFastCache(u32 em_address, u32 msr);

View File

@ -93,6 +93,7 @@ protected:
emitter.reset(new X64CodeBlock()); emitter.reset(new X64CodeBlock());
emitter->AllocCodeSpace(4096); emitter->AllocCodeSpace(4096);
code_buffer = emitter->GetWritableCodePtr(); code_buffer = emitter->GetWritableCodePtr();
code_buffer_end = emitter->GetWritableCodeEnd();
disasm.reset(new disassembler); disasm.reset(new disassembler);
disasm->set_syntax_intel(); disasm->set_syntax_intel();
@ -158,12 +159,13 @@ protected:
EXPECT_EQ(expected_norm, disasmed_norm); EXPECT_EQ(expected_norm, disasmed_norm);
// Reset code buffer afterwards. // Reset code buffer afterwards.
emitter->SetCodePtr(code_buffer); emitter->SetCodePtr(code_buffer, code_buffer_end);
} }
std::unique_ptr<X64CodeBlock> emitter; std::unique_ptr<X64CodeBlock> emitter;
std::unique_ptr<disassembler> disasm; std::unique_ptr<disassembler> disasm;
u8* code_buffer; u8* code_buffer;
u8* code_buffer_end;
}; };
#define TEST_INSTR_NO_OPERANDS(Name, ExpectedDisasm) \ #define TEST_INSTR_NO_OPERANDS(Name, ExpectedDisasm) \

View File

@ -41,6 +41,7 @@
<AdditionalIncludeDirectories>$(ExternalsDir)OpenAL\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)OpenAL\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)picojson;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)picojson;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)pugixml;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)pugixml;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)rangeset\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)SFML\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)SFML\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)soundtouch;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)soundtouch;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)Vulkan\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)Vulkan\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>