Implement EFB Peeks for compressed z16 formats

This fixes an issue in RS3 where engine lens flares would shine
though ships during cutscenes
This commit is contained in:
Scott Mansell 2021-04-26 21:55:38 +12:00
parent 0f563ffd59
commit a4796e512a
2 changed files with 87 additions and 8 deletions

View File

@ -230,18 +230,24 @@ u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
depth = 1.0f - depth;
u32 ret = 0;
// Convert to 24bit depth
u32 z24depth = std::clamp<u32>(static_cast<u32>(depth * 16777216.0f), 0, 0xFFFFFF);
if (bpmem.zcontrol.pixel_format == PixelFormat::RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
ret = std::clamp<u32>(static_cast<u32>(depth * 65536.0f), 0, 0xFFFF);
}
else
{
ret = std::clamp<u32>(static_cast<u32>(depth * 16777216.0f), 0, 0xFFFFFF);
// When in RGB565_Z16 mode, EFB Z peeks return a 16bit value, which is presumably a
// resolved sample from the MSAA buffer.
// Dolphin doesn't currently emulate the 3 sample MSAA mode (and potentially never will)
// it just transparently upgrades the framebuffer to 24bit depth and color and whatever
// level of MSAA and higher Internal Resolution the user has configured.
// This is mostly transparent, unless the game does an EFB read.
// But we can simply convert the 24bit depth on the fly to the 16bit depth the game expects.
return CompressZ16(z24depth, bpmem.zcontrol.zformat);
}
return ret;
return z24depth;
}
}

View File

@ -4,8 +4,13 @@
#pragma once
#include <algorithm>
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "VideoCommon/BPMemory.h"
// These are accurate (disregarding AA modes).
constexpr u32 EFB_WIDTH = 640;
constexpr u32 EFB_HEIGHT = 528;
@ -59,3 +64,71 @@ inline u32 Z24ToZ16ToZ24(u32 src)
{
return (src & 0xFFFF00) | (src >> 16);
}
inline u32 CompressZ16(u32 z24depth, DepthFormat format)
{
// Flipper offers a number of choices for 16bit Z formats that adjust
// where the bulk of the precision lies.
if (format == DepthFormat::ZLINEAR)
{
// This is just a linear depth buffer with 16 bits of precision
return z24depth >> 8;
}
// ZNEAR/ZMID/ZFAR are custom floating point formats with 2/3/4 bits of exponent
// The exponent is simply the number of leading ones that have been removed
// The first zero bit is skipped and not stored. The mantissa contains the next 14/13/12 bits
// If exponent is at the MAX (3, 7, or 12) then the next bit might still be a one, and can't
// be skipped, so the mantissa simply contains the next 14/13/12 bits
u32 leading_ones = Common::CountLeadingZeros((~z24depth) << 8);
bool next_bit_is_one = false; // AKA: Did we clamp leading_ones?
u32 exp_bits;
switch (format)
{
case DepthFormat::ZNEAR:
exp_bits = 2;
if (leading_ones >= 3u)
{
leading_ones = 3u;
next_bit_is_one = true;
}
break;
case DepthFormat::ZMID:
exp_bits = 3;
if (leading_ones >= 7u)
{
leading_ones = 7u;
next_bit_is_one = true;
}
break;
case DepthFormat::ZFAR:
exp_bits = 4;
if (leading_ones >= 12u)
{
// The hardware implementation only uses values 0 to 12 in the exponent
leading_ones = 12u;
next_bit_is_one = true;
}
break;
default:
return z24depth >> 8;
}
u32 mantissa_bits = 16 - exp_bits;
// Calculate which bits we need to extract from z24depth for our mantissa
u32 top = std::max<u32>(24 - leading_ones, mantissa_bits);
if (!next_bit_is_one)
{
top -= 1; // We know the next bit is zero, so we don't need to include it.
}
u32 bottom = top - mantissa_bits;
u32 exponent = leading_ones << mantissa_bits; // Upper bits contain exponent
u32 mantissa = Common::ExtractBits(z24depth, bottom, top - 1);
return exponent | mantissa;
}