Merge pull request #10872 from shuffle2/timer

Timer improvements
This commit is contained in:
Mai 2022-08-03 14:30:29 -04:00 committed by GitHub
commit a8b2174ce6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
24 changed files with 234 additions and 326 deletions

View File

@ -116,7 +116,7 @@ bool SavePNG(const std::string& path, const u8* input, ImageByteFormat format, u
size_t image_len = 0;
spng_decoded_image_size(ctx.get(), SPNG_FMT_PNG, &image_len);
INFO_LOG_FMT(FRAMEDUMP, "{} byte {} by {} image saved to {} at level {} in {}", image_len, width,
height, path, level, timer.GetTimeElapsedFormatted());
height, path, level, timer.ElapsedMs());
return true;
}

View File

@ -4,6 +4,7 @@
#include "Common/Logging/LogManager.h"
#include <algorithm>
#include <chrono>
#include <cstdarg>
#include <cstring>
#include <locale>
@ -11,6 +12,7 @@
#include <ostream>
#include <string>
#include <fmt/chrono.h>
#include <fmt/format.h>
#include "Common/CommonPaths.h"
@ -19,7 +21,6 @@
#include "Common/Logging/ConsoleListener.h"
#include "Common/Logging/Log.h"
#include "Common/StringUtil.h"
#include "Common/Timer.h"
namespace Common::Log
{
@ -204,11 +205,23 @@ void LogManager::Log(LogLevel level, LogType type, const char* file, int line, c
LogWithFullPath(level, type, file + m_path_cutoff_point, line, message);
}
std::string LogManager::GetTimestamp()
{
// NOTE: the Qt LogWidget hardcodes the expected length of the timestamp portion of the log line,
// so ensure they stay in sync
// We want milliseconds *and not hours*, so can't directly use STL formatters
const auto now = std::chrono::system_clock::now();
const auto now_s = std::chrono::floor<std::chrono::seconds>(now);
const auto now_ms = std::chrono::floor<std::chrono::milliseconds>(now);
return fmt::format("{:%M:%S}:{:03}", now_s, (now_ms - now_s).count());
}
void LogManager::LogWithFullPath(LogLevel level, LogType type, const char* file, int line,
const char* message)
{
const std::string msg =
fmt::format("{} {}:{} {}[{}]: {}\n", Common::Timer::GetTimeFormatted(), file, line,
fmt::format("{} {}:{} {}[{}]: {}\n", GetTimestamp(), file, line,
LOG_LEVEL_TO_CHAR[static_cast<int>(level)], GetShortName(type), message);
for (const auto listener_id : m_listener_ids)

View File

@ -75,6 +75,8 @@ private:
LogManager(LogManager&&) = delete;
LogManager& operator=(LogManager&&) = delete;
static std::string GetTimestamp();
LogLevel m_level;
EnumMap<LogContainer, LAST_LOG_TYPE> m_log{};
std::array<LogListener*, LogListener::NUMBER_OF_LISTENERS> m_listeners{};

View File

@ -32,7 +32,7 @@ Profiler::Profiler(const std::string& name)
: m_name(name), m_usecs(0), m_usecs_min(UINT64_MAX), m_usecs_max(0), m_usecs_quad(0),
m_calls(0), m_depth(0)
{
m_time = Common::Timer::GetTimeUs();
m_time = Common::Timer::NowUs();
s_max_length = std::max<u32>(s_max_length, u32(m_name.length()));
std::lock_guard<std::mutex> lk(s_mutex);
@ -64,7 +64,7 @@ std::string Profiler::ToString()
if (s_all_profilers.empty())
return "";
u64 end = Common::Timer::GetTimeUs();
u64 end = Common::Timer::NowUs();
s_usecs_frame = end - s_frame_time;
s_frame_time = end;
@ -101,7 +101,7 @@ void Profiler::Start()
{
if (!m_depth++)
{
m_time = Common::Timer::GetTimeUs();
m_time = Common::Timer::NowUs();
}
}
@ -109,7 +109,7 @@ void Profiler::Stop()
{
if (!--m_depth)
{
u64 end = Common::Timer::GetTimeUs();
u64 end = Common::Timer::NowUs();
u64 diff = end - m_time;

View File

@ -4,180 +4,75 @@
#include "Common/Timer.h"
#include <chrono>
#include <string>
#ifdef _WIN32
#include <cwchar>
#include <windows.h>
#include <mmsystem.h>
#include <sys/timeb.h>
#include <Windows.h>
#include <timeapi.h>
#else
#include <sys/time.h>
#endif
#include <fmt/format.h>
#include "Common/CommonTypes.h"
#include "Common/StringUtil.h"
namespace Common
{
u32 Timer::GetTimeMs()
template <typename Clock, typename Duration>
static typename Clock::rep time_now()
{
#ifdef _WIN32
return timeGetTime();
#elif defined __APPLE__
struct timeval t;
(void)gettimeofday(&t, nullptr);
return ((u32)(t.tv_sec * 1000 + t.tv_usec / 1000));
#else
struct timespec t;
(void)clock_gettime(CLOCK_MONOTONIC, &t);
return ((u32)(t.tv_sec * 1000 + t.tv_nsec / 1000000));
#endif
return std::chrono::time_point_cast<Duration>(Clock::now()).time_since_epoch().count();
}
#ifdef _WIN32
double GetFreq()
template <typename Duration>
static auto steady_time_now()
{
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
return 1000000.0 / double(freq.QuadPart);
}
#endif
u64 Timer::GetTimeUs()
{
#ifdef _WIN32
LARGE_INTEGER time;
static double freq = GetFreq();
QueryPerformanceCounter(&time);
return u64(double(time.QuadPart) * freq);
#elif defined __APPLE__
struct timeval t;
(void)gettimeofday(&t, nullptr);
return ((u64)(t.tv_sec * 1000000 + t.tv_usec));
#else
struct timespec t;
(void)clock_gettime(CLOCK_MONOTONIC, &t);
return ((u64)(t.tv_sec * 1000000 + t.tv_nsec / 1000));
#endif
return time_now<std::chrono::steady_clock, Duration>();
}
// --------------------------------------------
// Initiate, Start, Stop, and Update the time
// --------------------------------------------
// Set initial values for the class
Timer::Timer() : m_LastTime(0), m_StartTime(0), m_Running(false)
u64 Timer::NowUs()
{
Update();
return steady_time_now<std::chrono::microseconds>();
}
u64 Timer::NowMs()
{
return steady_time_now<std::chrono::milliseconds>();
}
// Write the starting time
void Timer::Start()
{
m_StartTime = GetTimeMs();
m_Running = true;
m_start_ms = NowMs();
m_end_ms = 0;
m_running = true;
}
void Timer::StartWithOffset(u64 offset)
{
Start();
m_start_ms -= offset;
}
// Stop the timer
void Timer::Stop()
{
// Write the final time
m_LastTime = GetTimeMs();
m_Running = false;
m_end_ms = NowMs();
m_running = false;
}
// Update the last time variable
void Timer::Update()
u64 Timer::ElapsedMs() const
{
m_LastTime = GetTimeMs();
// TODO(ector) - QPF
}
// -------------------------------------
// Get time difference and elapsed time
// -------------------------------------
// Get the number of milliseconds since the last Update()
u64 Timer::GetTimeDifference()
{
return GetTimeMs() - m_LastTime;
}
// Add the time difference since the last Update() to the starting time.
// This is used to compensate for a paused game.
void Timer::AddTimeDifference()
{
m_StartTime += GetTimeDifference();
}
// Get the time elapsed since the Start()
u64 Timer::GetTimeElapsed()
{
// If we have not started yet, return zero
if (m_StartTime == 0)
return 0;
// Return the final timer time if the timer is stopped
if (!m_Running)
return (m_LastTime - m_StartTime);
return (GetTimeMs() - m_StartTime);
}
// Get the formatted time elapsed since the Start()
std::string Timer::GetTimeElapsedFormatted() const
{
// If we have not started yet, return zero
if (m_StartTime == 0)
return "00:00:00:000";
// The number of milliseconds since the start.
// Use a different value if the timer is stopped.
u64 Milliseconds;
if (m_Running)
Milliseconds = GetTimeMs() - m_StartTime;
else
Milliseconds = m_LastTime - m_StartTime;
// Seconds
u32 Seconds = (u32)(Milliseconds / 1000);
// Minutes
u32 Minutes = Seconds / 60;
// Hours
u32 Hours = Minutes / 60;
return fmt::format("{:02}:{:02}:{:02}:{:03}", Hours, Minutes % 60, Seconds % 60,
Milliseconds % 1000);
}
// Get current time
void Timer::IncreaseResolution()
{
#ifdef _WIN32
timeBeginPeriod(1);
#endif
}
void Timer::RestoreResolution()
{
#ifdef _WIN32
timeEndPeriod(1);
#endif
}
// Get the number of seconds since January 1 1970
u64 Timer::GetTimeSinceJan1970()
{
time_t ltime;
time(&ltime);
return ((u64)ltime);
const u64 end = m_running ? NowMs() : m_end_ms;
// Can handle up to 1 rollover event (underflow produces correct result)
// If Start() has never been called, will return 0
return end - m_start_ms;
}
u64 Timer::GetLocalTimeSinceJan1970()
{
#ifdef _MSC_VER
std::chrono::zoned_seconds seconds(
std::chrono::current_zone(),
std::chrono::time_point_cast<std::chrono::seconds>(std::chrono::system_clock::now()));
return seconds.get_local_time().time_since_epoch().count();
#else
time_t sysTime, tzDiff, tzDST;
time(&sysTime);
tm* gmTime = localtime(&sysTime);
@ -193,72 +88,36 @@ u64 Timer::GetLocalTimeSinceJan1970()
tzDiff = sysTime - mktime(gmTime);
return static_cast<u64>(sysTime + tzDiff + tzDST);
}
// Return the current time formatted as Minutes:Seconds:Milliseconds
// in the form 00:00:000.
std::string Timer::GetTimeFormatted()
{
time_t sysTime;
time(&sysTime);
struct tm* gmTime = localtime(&sysTime);
#ifdef _WIN32
wchar_t tmp[13];
wcsftime(tmp, 6, L"%M:%S", gmTime);
#else
char tmp[13];
strftime(tmp, 6, "%M:%S", gmTime);
#endif
// Now tack on the milliseconds
#ifdef _WIN32
struct timeb tp;
(void)::ftime(&tp);
return WStringToUTF8(tmp) + fmt::format(":{:03}", tp.millitm);
#elif defined __APPLE__
struct timeval t;
(void)gettimeofday(&t, nullptr);
return fmt::format("{}:{:03}", tmp, t.tv_usec / 1000);
#else
struct timespec t;
(void)clock_gettime(CLOCK_MONOTONIC, &t);
return fmt::format("{}:{:03}", tmp, t.tv_nsec / 1000000);
#endif
}
// Returns a timestamp with decimals for precise time comparisons
double Timer::GetDoubleTime()
void Timer::IncreaseResolution()
{
// FYI: std::chrono::system_clock epoch is not required to be 1970 until c++20.
// We will however assume time_t IS unix time.
using Clock = std::chrono::system_clock;
#ifdef _WIN32
// Disable execution speed and timer resolution throttling process-wide.
// This mainly will keep Dolphin marked as high performance if it's in the background. The OS
// should make it high performance if it's in the foreground anyway (or for some specific
// threads e.g. audio).
// This is best-effort (i.e. the call may fail on older versions of Windows, where such throttling
// doesn't exist, anyway), and we don't bother reverting once set.
// This adjusts behavior on CPUs with "performance" and "efficiency" cores
PROCESS_POWER_THROTTLING_STATE PowerThrottling{};
PowerThrottling.Version = PROCESS_POWER_THROTTLING_CURRENT_VERSION;
PowerThrottling.ControlMask =
PROCESS_POWER_THROTTLING_EXECUTION_SPEED | PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION;
PowerThrottling.StateMask = 0;
SetProcessInformation(GetCurrentProcess(), ProcessPowerThrottling, &PowerThrottling,
sizeof(PowerThrottling));
// TODO: Use this on switch to c++20:
// const auto since_epoch = Clock::now().time_since_epoch();
const auto unix_epoch = Clock::from_time_t({});
const auto since_epoch = Clock::now() - unix_epoch;
const auto since_double_time_epoch = since_epoch - std::chrono::seconds(DOUBLE_TIME_OFFSET);
return std::chrono::duration_cast<std::chrono::duration<double>>(since_double_time_epoch).count();
// Not actually sure how useful this is these days.. :')
timeBeginPeriod(1);
#endif
}
// Formats a timestamp from GetDoubleTime() into a date and time string
std::string Timer::GetDateTimeFormatted(double time)
void Timer::RestoreResolution()
{
// revert adjustments from GetDoubleTime() to get a normal Unix timestamp again
time_t seconds = (time_t)time + DOUBLE_TIME_OFFSET;
tm* localTime = localtime(&seconds);
#ifdef _WIN32
wchar_t tmp[32] = {};
wcsftime(tmp, std::size(tmp), L"%x %X", localTime);
return WStringToUTF8(tmp);
#else
char tmp[32] = {};
strftime(tmp, sizeof(tmp), "%x %X", localTime);
return tmp;
timeEndPeriod(1);
#endif
}

View File

@ -3,7 +3,6 @@
#pragma once
#include <string>
#include "Common/CommonTypes.h"
namespace Common
@ -11,43 +10,26 @@ namespace Common
class Timer
{
public:
Timer();
static u64 NowUs();
static u64 NowMs();
void Start();
// Start(), then decrement start time by the offset.
// Effectively "resumes" a timer
void StartWithOffset(u64 offset);
void Stop();
void Update();
u64 ElapsedMs() const;
// The time difference is always returned in milliseconds, regardless of alternative internal
// representation
u64 GetTimeDifference();
void AddTimeDifference();
bool IsRunning() const { return m_Running; }
// The rest of these functions probably belong somewhere else
static u64 GetLocalTimeSinceJan1970();
static void IncreaseResolution();
static void RestoreResolution();
static u64 GetTimeSinceJan1970();
static u64 GetLocalTimeSinceJan1970();
// Returns a timestamp with decimals for precise time comparisons
static double GetDoubleTime();
static std::string GetTimeFormatted();
// Formats a timestamp from GetDoubleTime() into a date and time string
static std::string GetDateTimeFormatted(double time);
std::string GetTimeElapsedFormatted() const;
u64 GetTimeElapsed();
static u32 GetTimeMs();
static u64 GetTimeUs();
// Arbitrarily chosen value (38 years) that is subtracted in GetDoubleTime()
// to increase sub-second precision of the resulting double timestamp
static constexpr int DOUBLE_TIME_OFFSET = (38 * 365 * 24 * 60 * 60);
private:
u64 m_LastTime;
u64 m_StartTime;
bool m_Running;
u64 m_start_ms{0};
u64 m_end_ms{0};
bool m_running{false};
};
} // Namespace Common

View File

@ -99,6 +99,7 @@ static bool s_wants_determinism;
// Declarations and definitions
static Common::Timer s_timer;
static u64 s_timer_offset;
static std::atomic<u32> s_drawn_frame;
static std::atomic<u32> s_drawn_video;
@ -271,8 +272,6 @@ void Stop() // - Hammertime!
s_is_stopping = true;
s_timer.Stop();
CallOnStateChangedCallbacks(State::Stopping);
// Dump left over jobs
@ -662,21 +661,18 @@ void SetState(State state)
CPU::EnableStepping(true); // Break
Wiimote::Pause();
ResetRumble();
s_timer.Update();
s_timer_offset = s_timer.ElapsedMs();
break;
case State::Running:
{
CPU::EnableStepping(false);
Wiimote::Resume();
if (!s_timer.IsRunning())
{
s_timer.Start();
}
else
{
// Add time difference from the last pause
s_timer.AddTimeDifference();
}
// Restart timer, accounting for time that had elapsed between previous s_timer.Start() and
// emulator pause
s_timer.StartWithOffset(s_timer_offset);
s_timer_offset = 0;
break;
}
default:
PanicAlertFmt("Invalid state");
break;
@ -848,12 +844,12 @@ void RunOnCPUThread(std::function<void()> function, bool wait_for_completion)
void VideoThrottle()
{
// Update info per second
u32 ElapseTime = (u32)s_timer.GetTimeElapsed();
if ((ElapseTime >= 1000 && s_drawn_video.load() > 0) || s_frame_step)
u64 elapsed_ms = s_timer.ElapsedMs();
if ((elapsed_ms >= 1000 && s_drawn_video.load() > 0) || s_frame_step)
{
s_timer.Start();
UpdateTitle(ElapseTime);
UpdateTitle(elapsed_ms);
s_drawn_frame.store(0);
s_drawn_video.store(0);
@ -895,15 +891,15 @@ void Callback_NewField()
}
}
void UpdateTitle(u32 ElapseTime)
void UpdateTitle(u64 elapsed_ms)
{
if (ElapseTime == 0)
ElapseTime = 1;
if (elapsed_ms == 0)
elapsed_ms = 1;
float FPS = (float)(s_drawn_frame.load() * 1000.0 / ElapseTime);
float VPS = (float)(s_drawn_video.load() * 1000.0 / ElapseTime);
float FPS = (float)(s_drawn_frame.load() * 1000.0 / elapsed_ms);
float VPS = (float)(s_drawn_video.load() * 1000.0 / elapsed_ms);
float Speed = (float)(s_drawn_video.load() * (100 * 1000.0) /
(VideoInterface::GetTargetRefreshRate() * ElapseTime));
(VideoInterface::GetTargetRefreshRate() * elapsed_ms));
// Settings are shown the same for both extended and summary info
const std::string SSettings = fmt::format(

View File

@ -126,7 +126,7 @@ void OnFrameEnd();
void VideoThrottle();
void UpdateTitle(u32 ElapseTime);
void UpdateTitle(u64 elapsed_ms);
// Run a function as the CPU thread.
//

View File

@ -231,18 +231,18 @@ void DolphinAnalytics::InitializePerformanceSampling()
u64 wait_us =
PERFORMANCE_SAMPLING_INITIAL_WAIT_TIME_SECS * 1000000 +
Common::Random::GenerateValue<u64>() % (PERFORMANCE_SAMPLING_WAIT_TIME_JITTER_SECS * 1000000);
m_sampling_next_start_us = Common::Timer::GetTimeUs() + wait_us;
m_sampling_next_start_us = Common::Timer::NowUs() + wait_us;
}
bool DolphinAnalytics::ShouldStartPerformanceSampling()
{
if (Common::Timer::GetTimeUs() < m_sampling_next_start_us)
if (Common::Timer::NowUs() < m_sampling_next_start_us)
return false;
u64 wait_us =
PERFORMANCE_SAMPLING_INTERVAL_SECS * 1000000 +
Common::Random::GenerateValue<u64>() % (PERFORMANCE_SAMPLING_WAIT_TIME_JITTER_SECS * 1000000);
m_sampling_next_start_us = Common::Timer::GetTimeUs() + wait_us;
m_sampling_next_start_us = Common::Timer::NowUs() + wait_us;
return true;
}

View File

@ -286,7 +286,7 @@ static void StartReadInternal(bool copy_to_ram, u32 output_address, u64 dvd_offs
request.id = id;
request.time_started_ticks = CoreTiming::GetTicks();
request.realtime_started_us = Common::Timer::GetTimeUs();
request.realtime_started_us = Common::Timer::NowUs();
s_request_queue.Push(std::move(request));
s_request_queue_expanded.Set();
@ -336,7 +336,7 @@ static void FinishRead(u64 id, s64 cycles_late)
"Real time including delay: {} us. "
"Emulated time including delay: {} us.",
request.realtime_done_us - request.realtime_started_us,
Common::Timer::GetTimeUs() - request.realtime_started_us,
Common::Timer::NowUs() - request.realtime_started_us,
(CoreTiming::GetTicks() - request.time_started_ticks) /
(SystemTimers::GetTicksPerSecond() / 1000000));
@ -381,7 +381,7 @@ static void DVDThread()
if (!s_disc->Read(request.dvd_offset, request.length, buffer.data(), request.partition))
buffer.resize(0);
request.realtime_done_us = Common::Timer::GetTimeUs();
request.realtime_done_us = Common::Timer::NowUs();
s_result_queue.Push(ReadResult(std::move(request), std::move(buffer)));
s_result_queue_expanded.Set();

View File

@ -167,16 +167,19 @@ void PatchEngineCallback(u64 userdata, s64 cycles_late)
CoreTiming::ScheduleEvent(next_schedule, et_PatchEngine, cycles_pruned);
}
void ThrottleCallback(u64 last_time, s64 cyclesLate)
void ThrottleCallback(u64 deadline, s64 cyclesLate)
{
// Allow the GPU thread to sleep. Setting this flag here limits the wakeups to 1 kHz.
Fifo::GpuMaySleep();
u64 time = Common::Timer::GetTimeUs();
const u64 time = Common::Timer::NowUs();
s64 diff = last_time - time;
if (deadline == 0)
deadline = time;
const s64 diff = deadline - time;
const float emulation_speed = Config::Get(Config::MAIN_EMULATION_SPEED);
bool frame_limiter = emulation_speed > 0.0f && !Core::GetIsThrottlerTempDisabled();
const bool frame_limiter = emulation_speed > 0.0f && !Core::GetIsThrottlerTempDisabled();
u32 next_event = GetTicksPerSecond() / 1000;
{
@ -193,17 +196,19 @@ void ThrottleCallback(u64 last_time, s64 cyclesLate)
const s64 max_fallback = Config::Get(Config::MAIN_TIMING_VARIANCE) * 1000;
if (std::abs(diff) > max_fallback)
{
DEBUG_LOG_FMT(COMMON, "system too {}, {} ms skipped", diff < 0 ? "slow" : "fast",
DEBUG_LOG_FMT(COMMON, "system too {}, {} us skipped", diff < 0 ? "slow" : "fast",
std::abs(diff) - max_fallback);
last_time = time - max_fallback;
deadline = time - max_fallback;
}
else if (diff > 1000)
{
Common::SleepCurrentThread(diff / 1000);
s_time_spent_sleeping += Common::Timer::GetTimeUs() - time;
s_time_spent_sleeping += Common::Timer::NowUs() - time;
}
}
CoreTiming::ScheduleEvent(next_event - cyclesLate, et_Throttle, last_time + 1000);
// reschedule 1ms (possibly scaled by emulation_speed) into future on ppc
// add 1ms to the deadline
CoreTiming::ScheduleEvent(next_event - cyclesLate, et_Throttle, deadline + 1000);
}
} // namespace
@ -330,7 +335,7 @@ void Init()
CoreTiming::ScheduleEvent(VideoInterface::GetTicksPerHalfLine(), et_VI);
CoreTiming::ScheduleEvent(0, et_DSP);
CoreTiming::ScheduleEvent(GetAudioDMACallbackPeriod(), et_AudioDMA);
CoreTiming::ScheduleEvent(0, et_Throttle, Common::Timer::GetTimeUs());
CoreTiming::ScheduleEvent(0, et_Throttle, 0);
CoreTiming::ScheduleEvent(VideoInterface::GetTicksPerField(), et_PatchEngine);

View File

@ -33,24 +33,6 @@ enum
};
IPCReply GetSystemTime(const IOCtlVRequest& request)
{
if (!request.HasNumberOfValidVectors(0, 1))
{
return IPCReply(IPC_EINVAL);
}
if (request.io_vectors[0].size != 4)
{
return IPCReply(IPC_EINVAL);
}
const u32 milliseconds = Common::Timer::GetTimeMs();
Memory::Write_U32(milliseconds, request.io_vectors[0].address);
return IPCReply(IPC_SUCCESS);
}
IPCReply GetVersion(const IOCtlVRequest& request)
{
if (!request.HasNumberOfValidVectors(0, 1))
@ -159,6 +141,32 @@ IPCReply GetRealProductCode(const IOCtlVRequest& request)
} // namespace
IPCReply DolphinDevice::GetSystemTime(const IOCtlVRequest& request) const
{
if (!request.HasNumberOfValidVectors(0, 1))
{
return IPCReply(IPC_EINVAL);
}
if (request.io_vectors[0].size != 4)
{
return IPCReply(IPC_EINVAL);
}
// This ioctl is used by emulated software to judge if emulation is running too fast or slow.
// By using Common::Timer, the same clock Dolphin uses internally for the same task is exposed.
// Return elapsed time instead of current timestamp to make buggy emulated code less likely to
// have issuses.
const u32 milliseconds = static_cast<u32>(m_timer.ElapsedMs());
Memory::Write_U32(milliseconds, request.io_vectors[0].address);
return IPCReply(IPC_SUCCESS);
}
DolphinDevice::DolphinDevice(Kernel& ios, const std::string& device_name) : Device(ios, device_name)
{
m_timer.Start();
}
std::optional<IPCReply> DolphinDevice::IOCtlV(const IOCtlVRequest& request)
{
if (Core::WantsDeterminism())

View File

@ -3,6 +3,7 @@
#pragma once
#include "Common/Timer.h"
#include "Core/IOS/Device.h"
namespace IOS::HLE
@ -10,8 +11,12 @@ namespace IOS::HLE
class DolphinDevice final : public Device
{
public:
// Inherit the constructor from the Device class, since we don't need to do anything special.
using Device::Device;
DolphinDevice(Kernel& ios, const std::string& device_name);
std::optional<IPCReply> IOCtlV(const IOCtlVRequest& request) override;
private:
IPCReply GetSystemTime(const IOCtlVRequest& request) const;
Common::Timer m_timer;
};
} // namespace IOS::HLE

View File

@ -657,7 +657,7 @@ std::optional<IPCReply> Kernel::HandleIPCCommand(const Request& request)
return IPCReply{IPC_EINVAL, 550_tbticks};
std::optional<IPCReply> ret;
const u64 wall_time_before = Common::Timer::GetTimeUs();
const u64 wall_time_before = Common::Timer::NowUs();
switch (request.command)
{
@ -686,7 +686,7 @@ std::optional<IPCReply> Kernel::HandleIPCCommand(const Request& request)
break;
}
const u64 wall_time_after = Common::Timer::GetTimeUs();
const u64 wall_time_after = Common::Timer::NowUs();
constexpr u64 BLOCKING_IPC_COMMAND_THRESHOLD_US = 2000;
if (wall_time_after - wall_time_before > BLOCKING_IPC_COMMAND_THRESHOLD_US)
{

View File

@ -371,12 +371,12 @@ void BluetoothRealDevice::UpdateSyncButtonState(const bool is_held)
{
if (m_sync_button_state == SyncButtonState::Unpressed && is_held)
{
m_sync_button_held_timer.Update();
m_sync_button_held_timer.Start();
m_sync_button_state = SyncButtonState::Held;
}
if (m_sync_button_state == SyncButtonState::Held && is_held &&
m_sync_button_held_timer.GetTimeDifference() > SYNC_BUTTON_HOLD_MS_TO_RESET)
m_sync_button_held_timer.ElapsedMs() > SYNC_BUTTON_HOLD_MS_TO_RESET)
m_sync_button_state = SyncButtonState::LongPressed;
else if (m_sync_button_state == SyncButtonState::Held && !is_held)
m_sync_button_state = SyncButtonState::Pressed;

View File

@ -62,8 +62,8 @@ private:
// Arbitrarily chosen value that allows emulated software to send commands often enough
// so that the sync button event is triggered at least every 200ms.
// Ideally this should be equal to 0, so we don't trigger unnecessary libusb transfers.
static constexpr int TIMEOUT = 200;
static constexpr int SYNC_BUTTON_HOLD_MS_TO_RESET = 10000;
static constexpr u32 TIMEOUT = 200;
static constexpr u32 SYNC_BUTTON_HOLD_MS_TO_RESET = 10000;
std::atomic<SyncButtonState> m_sync_button_state{SyncButtonState::Unpressed};
Common::Timer m_sync_button_held_timer;

View File

@ -224,7 +224,7 @@ NetPlayClient::NetPlayClient(const std::string& address, const u16 port, NetPlay
break;
}
}
if (connect_timer.GetTimeElapsed() > 5000)
if (connect_timer.ElapsedMs() > 5000)
break;
}
m_dialog->OnConnectionError(_trans("Could not communicate with host."));

View File

@ -240,9 +240,10 @@ void NetPlayServer::ThreadFunc()
while (m_do_loop)
{
// update pings every so many seconds
if ((m_ping_timer.GetTimeElapsed() > 1000) || m_update_pings)
if ((m_ping_timer.ElapsedMs() > 1000) || m_update_pings)
{
m_ping_key = Common::Timer::GetTimeMs();
// only used as an identifier, not time value, so truncation is fine
m_ping_key = static_cast<u32>(Common::Timer::NowMs());
sf::Packet spac;
spac << MessageID::Ping;
@ -951,7 +952,8 @@ unsigned int NetPlayServer::OnData(sf::Packet& packet, Client& player)
case MessageID::Pong:
{
const u32 ping = (u32)m_ping_timer.GetTimeElapsed();
// truncation (> ~49 days elapsed) should never happen here
const u32 ping = static_cast<u32>(m_ping_timer.ElapsedMs());
u32 ping_key = 0;
packet >> ping_key;
@ -1459,7 +1461,8 @@ bool NetPlayServer::StartGame()
m_timebase_by_frame.clear();
m_desync_detected = false;
std::lock_guard lkg(m_crit.game);
m_current_game = Common::Timer::GetTimeMs();
// only used as an identifier, not time value, so truncation is fine
m_current_game = static_cast<u32>(Common::Timer::NowMs());
// no change, just update with clients
if (!m_host_input_authority)

View File

@ -270,6 +270,42 @@ static int GetEmptySlot(std::map<double, int> m)
return -1;
}
// Arbitrarily chosen value (38 years) that is subtracted in GetSystemTimeAsDouble()
// to increase sub-second precision of the resulting double timestamp
static constexpr int DOUBLE_TIME_OFFSET = (38 * 365 * 24 * 60 * 60);
static double GetSystemTimeAsDouble()
{
// FYI: std::chrono::system_clock epoch is not required to be 1970 until c++20.
// We will however assume time_t IS unix time.
using Clock = std::chrono::system_clock;
// TODO: Use this on switch to c++20:
// const auto since_epoch = Clock::now().time_since_epoch();
const auto unix_epoch = Clock::from_time_t({});
const auto since_epoch = Clock::now() - unix_epoch;
const auto since_double_time_epoch = since_epoch - std::chrono::seconds(DOUBLE_TIME_OFFSET);
return std::chrono::duration_cast<std::chrono::duration<double>>(since_double_time_epoch).count();
}
static std::string SystemTimeAsDoubleToString(double time)
{
// revert adjustments from GetSystemTimeAsDouble() to get a normal Unix timestamp again
time_t seconds = (time_t)time + DOUBLE_TIME_OFFSET;
tm* localTime = localtime(&seconds);
#ifdef _WIN32
wchar_t tmp[32] = {};
wcsftime(tmp, std::size(tmp), L"%x %X", localTime);
return WStringToUTF8(tmp);
#else
char tmp[32] = {};
strftime(tmp, sizeof(tmp), "%x %X", localTime);
return tmp;
#endif
}
static std::string MakeStateFilename(int number);
// read state timestamps
@ -284,7 +320,7 @@ static std::map<double, int> GetSavedStates()
{
if (ReadHeader(filename, header))
{
double d = Common::Timer::GetDoubleTime() - header.time;
double d = GetSystemTimeAsDouble() - header.time;
// increase time until unique value is obtained
while (m.find(d) != m.end())
@ -359,7 +395,7 @@ static void CompressAndDumpState(CompressAndDumpState_args save_args)
StateHeader header{};
SConfig::GetInstance().GetGameID().copy(header.gameID, std::size(header.gameID));
header.size = s_use_compression ? (u32)buffer_size : 0;
header.time = Common::Timer::GetDoubleTime();
header.time = GetSystemTimeAsDouble();
f.WriteArray(&header, 1);
@ -471,7 +507,7 @@ std::string GetInfoStringOfSlot(int slot, bool translate)
if (!ReadHeader(filename, header))
return translate ? Common::GetStringT("Unknown") : "Unknown";
return Common::Timer::GetDateTimeFormatted(header.time);
return SystemTimeAsDoubleToString(header.time);
}
u64 GetUnixTimeOfSlot(int slot)
@ -481,8 +517,7 @@ u64 GetUnixTimeOfSlot(int slot)
return 0;
constexpr u64 MS_PER_SEC = 1000;
return static_cast<u64>(header.time * MS_PER_SEC) +
(Common::Timer::DOUBLE_TIME_OFFSET * MS_PER_SEC);
return static_cast<u64>(header.time * MS_PER_SEC) + (DOUBLE_TIME_OFFSET * MS_PER_SEC);
}
static void LoadFileStateData(const std::string& filename, std::vector<u8>& ret_data)

View File

@ -16,7 +16,7 @@ static constexpr u64 FPS_REFRESH_INTERVAL_US = 250000;
FPSCounter::FPSCounter()
{
m_last_time = Common::Timer::GetTimeUs();
m_last_time = Common::Timer::NowUs();
m_on_state_changed_handle = Core::AddOnStateChangedCallback([this](Core::State state) {
if (state == Core::State::Paused)
@ -44,7 +44,7 @@ void FPSCounter::LogRenderTimeToFile(u64 val)
void FPSCounter::Update()
{
const u64 time = Common::Timer::GetTimeUs();
const u64 time = Common::Timer::NowUs();
const u64 diff = time - m_last_time;
m_time_diff_secs = static_cast<double>(diff / 1000000.0);
if (g_ActiveConfig.bLogRenderTimeToFile)
@ -66,11 +66,11 @@ void FPSCounter::SetPaused(bool paused)
{
if (paused)
{
m_last_time_pause = Common::Timer::GetTimeUs();
m_last_time_pause = Common::Timer::NowUs();
}
else
{
const u64 time = Common::Timer::GetTimeUs();
const u64 time = Common::Timer::NowUs();
const u64 diff = time - m_last_time_pause;
m_last_time += diff;
}

View File

@ -159,7 +159,8 @@ void HiresTexture::Prefetch()
const size_t max_mem =
(sys_mem / 2 < recommended_min_mem) ? (sys_mem / 2) : (sys_mem - recommended_min_mem);
const u32 start_time = Common::Timer::GetTimeMs();
Common::Timer timer;
timer.Start();
for (const auto& entry : s_textureMap)
{
const std::string& base_filename = entry.first;
@ -207,9 +208,8 @@ void HiresTexture::Prefetch()
}
}
const u32 stop_time = Common::Timer::GetTimeMs();
OSD::AddMessage(fmt::format("Custom Textures loaded, {:.1f} MB in {:.1f}s",
size_sum / (1024.0 * 1024.0), (stop_time - start_time) / 1000.0),
size_sum / (1024.0 * 1024.0), timer.ElapsedMs() / 1000.0),
10000);
}

View File

@ -32,12 +32,14 @@ static std::atomic<int> s_obscured_pixels_top = 0;
struct Message
{
Message() = default;
Message(std::string text_, u32 timestamp_, u32 duration_, u32 color_)
: text(std::move(text_)), timestamp(timestamp_), duration(duration_), color(color_)
Message(std::string text_, u32 duration_, u32 color_)
: text(std::move(text_)), duration(duration_), color(color_)
{
timer.Start();
}
s64 TimeRemaining() const { return duration - timer.ElapsedMs(); }
std::string text;
u32 timestamp = 0;
Common::Timer timer;
u32 duration = 0;
bool ever_drawn = false;
u32 color = 0;
@ -93,20 +95,18 @@ void AddTypedMessage(MessageType type, std::string message, u32 ms, u32 argb)
{
std::lock_guard lock{s_messages_mutex};
s_messages.erase(type);
s_messages.emplace(type, Message(std::move(message), Common::Timer::GetTimeMs() + ms, ms, argb));
s_messages.emplace(type, Message(std::move(message), ms, argb));
}
void AddMessage(std::string message, u32 ms, u32 argb)
{
std::lock_guard lock{s_messages_mutex};
s_messages.emplace(MessageType::Typeless,
Message(std::move(message), Common::Timer::GetTimeMs() + ms, ms, argb));
s_messages.emplace(MessageType::Typeless, Message(std::move(message), ms, argb));
}
void DrawMessages()
{
const bool draw_messages = Config::Get(Config::MAIN_OSD_MESSAGES);
const u32 now = Common::Timer::GetTimeMs();
const float current_x =
LEFT_MARGIN * ImGui::GetIO().DisplayFramebufferScale.x + s_obscured_pixels_left;
float current_y = TOP_MARGIN * ImGui::GetIO().DisplayFramebufferScale.y + s_obscured_pixels_top;
@ -117,7 +117,7 @@ void DrawMessages()
for (auto it = s_messages.begin(); it != s_messages.end();)
{
Message& msg = it->second;
const int time_left = static_cast<int>(msg.timestamp - now);
const s64 time_left = msg.TimeRemaining();
// Make sure we draw them at least once if they were printed with 0ms,
// unless enough time has expired, in that case, we drop them

View File

@ -640,7 +640,7 @@ void PostProcessing::FillUniformBuffer(const MathUtil::Rectangle<int>& src,
static_cast<float>(src.GetWidth()) * rcp_src_width,
static_cast<float>(src.GetHeight()) * rcp_src_height},
static_cast<s32>(src_layer),
static_cast<u32>(m_timer.GetTimeElapsed()),
static_cast<u32>(m_timer.ElapsedMs()),
};
u8* buf = m_uniform_staging_buffer.data();

View File

@ -1066,7 +1066,7 @@ bool Renderer::InitializeImGui()
if (!RecompileImGuiPipeline())
return false;
m_imgui_last_frame_time = Common::Timer::GetTimeUs();
m_imgui_last_frame_time = Common::Timer::NowUs();
BeginImGuiFrame();
return true;
}
@ -1139,7 +1139,7 @@ void Renderer::BeginImGuiFrame()
{
std::unique_lock<std::mutex> imgui_lock(m_imgui_mutex);
const u64 current_time_us = Common::Timer::GetTimeUs();
const u64 current_time_us = Common::Timer::NowUs();
const u64 time_diff_us = current_time_us - m_imgui_last_frame_time;
const float time_diff_secs = static_cast<float>(time_diff_us / 1000000.0);
m_imgui_last_frame_time = current_time_us;