JitArm64_FloatingPoint: Use ScopedARM64Reg

This commit is contained in:
Sintendo 2024-06-23 23:18:14 +02:00
parent 9805a8ac0a
commit ac3d3de66d

View File

@ -102,154 +102,151 @@ void JitArm64::fp_arith(UGeckoInstruction inst)
const ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG; const ARM64Reg VC = use_c ? reg_encoder(fpr.R(c, type)) : ARM64Reg::INVALID_REG;
const ARM64Reg VD = reg_encoder(fpr.RW(d, type_out)); const ARM64Reg VD = reg_encoder(fpr.RW(d, type_out));
ARM64Reg V0Q = ARM64Reg::INVALID_REG;
ARM64Reg V1Q = ARM64Reg::INVALID_REG;
ARM64Reg rounded_c_reg = VC;
if (round_c)
{ {
ASSERT_MSG(DYNA_REC, !inputs_are_singles, "Tried to apply 25-bit precision to single"); Arm64FPRCache::ScopedARM64Reg V0Q = ARM64Reg::INVALID_REG;
Arm64FPRCache::ScopedARM64Reg V1Q = ARM64Reg::INVALID_REG;
V0Q = fpr.GetReg(); ARM64Reg rounded_c_reg = VC;
rounded_c_reg = reg_encoder(V0Q); if (round_c)
Force25BitPrecision(rounded_c_reg, VC);
}
ARM64Reg inaccurate_fma_reg = VD;
if (fma && inaccurate_fma && VD == VB)
{
if (V0Q == ARM64Reg::INVALID_REG)
V0Q = fpr.GetReg();
inaccurate_fma_reg = reg_encoder(V0Q);
}
ARM64Reg result_reg = VD;
const bool preserve_d =
m_accurate_nans && (VD == VA || (use_b && VD == VB) || (use_c && VD == VC));
if (preserve_d)
{
V1Q = fpr.GetReg();
result_reg = reg_encoder(V1Q);
}
switch (op5)
{
case 18:
m_float_emit.FDIV(result_reg, VA, VB);
break;
case 20:
m_float_emit.FSUB(result_reg, VA, VB);
break;
case 21:
m_float_emit.FADD(result_reg, VA, VB);
break;
case 25:
m_float_emit.FMUL(result_reg, VA, rounded_c_reg);
break;
// While it may seem like PowerPC's nmadd/nmsub map to AArch64's nmadd/msub [sic],
// the subtly different definitions affect how signed zeroes are handled.
// Also, PowerPC's nmadd/nmsub perform rounding before the final negation.
// So, we negate using a separate FNEG instruction instead of using AArch64's nmadd/msub.
case 28: // fmsub: "D = A*C - B" vs "Vd = (-Va) + Vn*Vm"
case 30: // fnmsub: "D = -(A*C - B)" vs "Vd = -((-Va) + Vn*Vm)"
if (inaccurate_fma)
{ {
m_float_emit.FMUL(inaccurate_fma_reg, VA, rounded_c_reg); ASSERT_MSG(DYNA_REC, !inputs_are_singles, "Tried to apply 25-bit precision to single");
m_float_emit.FSUB(result_reg, inaccurate_fma_reg, VB);
}
else
{
m_float_emit.FNMSUB(result_reg, VA, rounded_c_reg, VB);
}
break;
case 29: // fmadd: "D = A*C + B" vs "Vd = Va + Vn*Vm"
case 31: // fnmadd: "D = -(A*C + B)" vs "Vd = -(Va + Vn*Vm)"
if (inaccurate_fma)
{
m_float_emit.FMUL(inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FADD(result_reg, inaccurate_fma_reg, VB);
}
else
{
m_float_emit.FMADD(result_reg, VA, rounded_c_reg, VB);
}
break;
default:
ASSERT_MSG(DYNA_REC, 0, "fp_arith");
break;
}
Common::SmallVector<FixupBranch, 4> nan_fixups; V0Q = fpr.GetScopedReg();
if (m_accurate_nans) rounded_c_reg = reg_encoder(V0Q);
{ Force25BitPrecision(rounded_c_reg, VC);
// Check if we need to handle NaNs
m_float_emit.FCMP(result_reg);
FixupBranch no_nan = B(CCFlags::CC_VC);
FixupBranch nan = B();
SetJumpTarget(no_nan);
SwitchToFarCode();
SetJumpTarget(nan);
Common::SmallVector<ARM64Reg, 3> inputs;
inputs.push_back(VA);
if (use_b && VA != VB)
inputs.push_back(VB);
if (use_c && VA != VC && (!use_b || VB != VC))
inputs.push_back(VC);
// If any inputs are NaNs, pick the first NaN of them and set its quiet bit.
// However, we can skip checking the last input, because if exactly one input is NaN, AArch64
// arithmetic instructions automatically pick that NaN and make it quiet, just like we want.
for (size_t i = 0; i < inputs.size() - 1; ++i)
{
const ARM64Reg input = inputs[i];
m_float_emit.FCMP(input);
FixupBranch skip = B(CCFlags::CC_VC);
// Make the NaN quiet
m_float_emit.FADD(VD, input, input);
nan_fixups.push_back(B());
SetJumpTarget(skip);
} }
std::optional<FixupBranch> nan_early_fixup; ARM64Reg inaccurate_fma_reg = VD;
if (fma && inaccurate_fma && VD == VB)
{
if (V0Q == ARM64Reg::INVALID_REG)
V0Q = fpr.GetScopedReg();
inaccurate_fma_reg = reg_encoder(V0Q);
}
ARM64Reg result_reg = VD;
const bool preserve_d =
m_accurate_nans && (VD == VA || (use_b && VD == VB) || (use_c && VD == VC));
if (preserve_d)
{
V1Q = fpr.GetScopedReg();
result_reg = reg_encoder(V1Q);
}
switch (op5)
{
case 18:
m_float_emit.FDIV(result_reg, VA, VB);
break;
case 20:
m_float_emit.FSUB(result_reg, VA, VB);
break;
case 21:
m_float_emit.FADD(result_reg, VA, VB);
break;
case 25:
m_float_emit.FMUL(result_reg, VA, rounded_c_reg);
break;
// While it may seem like PowerPC's nmadd/nmsub map to AArch64's nmadd/msub [sic],
// the subtly different definitions affect how signed zeroes are handled.
// Also, PowerPC's nmadd/nmsub perform rounding before the final negation.
// So, we negate using a separate FNEG instruction instead of using AArch64's nmadd/msub.
case 28: // fmsub: "D = A*C - B" vs "Vd = (-Va) + Vn*Vm"
case 30: // fnmsub: "D = -(A*C - B)" vs "Vd = -((-Va) + Vn*Vm)"
if (inaccurate_fma)
{
m_float_emit.FMUL(inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FSUB(result_reg, inaccurate_fma_reg, VB);
}
else
{
m_float_emit.FNMSUB(result_reg, VA, rounded_c_reg, VB);
}
break;
case 29: // fmadd: "D = A*C + B" vs "Vd = Va + Vn*Vm"
case 31: // fnmadd: "D = -(A*C + B)" vs "Vd = -(Va + Vn*Vm)"
if (inaccurate_fma)
{
m_float_emit.FMUL(inaccurate_fma_reg, VA, rounded_c_reg);
m_float_emit.FADD(result_reg, inaccurate_fma_reg, VB);
}
else
{
m_float_emit.FMADD(result_reg, VA, rounded_c_reg, VB);
}
break;
default:
ASSERT_MSG(DYNA_REC, 0, "fp_arith");
break;
}
Common::SmallVector<FixupBranch, 4> nan_fixups;
if (m_accurate_nans)
{
// Check if we need to handle NaNs
m_float_emit.FCMP(result_reg);
FixupBranch no_nan = B(CCFlags::CC_VC);
FixupBranch nan = B();
SetJumpTarget(no_nan);
SwitchToFarCode();
SetJumpTarget(nan);
Common::SmallVector<ARM64Reg, 3> inputs;
inputs.push_back(VA);
if (use_b && VA != VB)
inputs.push_back(VB);
if (use_c && VA != VC && (!use_b || VB != VC))
inputs.push_back(VC);
// If any inputs are NaNs, pick the first NaN of them and set its quiet bit.
// However, we can skip checking the last input, because if exactly one input is NaN, AArch64
// arithmetic instructions automatically pick that NaN and make it quiet, just like we want.
for (size_t i = 0; i < inputs.size() - 1; ++i)
{
const ARM64Reg input = inputs[i];
m_float_emit.FCMP(input);
FixupBranch skip = B(CCFlags::CC_VC);
// Make the NaN quiet
m_float_emit.FADD(VD, input, input);
nan_fixups.push_back(B());
SetJumpTarget(skip);
}
std::optional<FixupBranch> nan_early_fixup;
if (negate_result)
{
// If we have a NaN, we must not execute FNEG.
if (result_reg != VD)
m_float_emit.MOV(EncodeRegToDouble(VD), EncodeRegToDouble(result_reg));
nan_fixups.push_back(B());
}
else
{
nan_early_fixup = B();
}
SwitchToNearCode();
if (nan_early_fixup)
SetJumpTarget(*nan_early_fixup);
}
// PowerPC's nmadd/nmsub perform rounding before the final negation, which is not the case
// for any of AArch64's FMA instructions, so we negate using a separate instruction.
if (negate_result) if (negate_result)
{ m_float_emit.FNEG(VD, result_reg);
// If we have a NaN, we must not execute FNEG. else if (result_reg != VD)
if (result_reg != VD) m_float_emit.MOV(EncodeRegToDouble(VD), EncodeRegToDouble(result_reg));
m_float_emit.MOV(EncodeRegToDouble(VD), EncodeRegToDouble(result_reg));
nan_fixups.push_back(B());
}
else
{
nan_early_fixup = B();
}
SwitchToNearCode(); for (FixupBranch fixup : nan_fixups)
SetJumpTarget(fixup);
if (nan_early_fixup)
SetJumpTarget(*nan_early_fixup);
} }
// PowerPC's nmadd/nmsub perform rounding before the final negation, which is not the case
// for any of AArch64's FMA instructions, so we negate using a separate instruction.
if (negate_result)
m_float_emit.FNEG(VD, result_reg);
else if (result_reg != VD)
m_float_emit.MOV(EncodeRegToDouble(VD), EncodeRegToDouble(result_reg));
for (FixupBranch fixup : nan_fixups)
SetJumpTarget(fixup);
if (V0Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V0Q);
if (V1Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V1Q);
if (output_is_single) if (output_is_single)
{ {
ASSERT_MSG(DYNA_REC, inputs_are_singles == inputs_are_singles_func(), ASSERT_MSG(DYNA_REC, inputs_are_singles == inputs_are_singles_func(),
@ -449,43 +446,40 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
gpr.BindCRToRegister(crf, false); gpr.BindCRToRegister(crf, false);
const ARM64Reg XA = gpr.CR(crf); const ARM64Reg XA = gpr.CR(crf);
ARM64Reg fpscr_reg = ARM64Reg::INVALID_REG; Arm64GPRCache::ScopedARM64Reg fpscr_reg = ARM64Reg::INVALID_REG;
if (fprf) if (fprf)
{ {
fpscr_reg = gpr.GetReg(); fpscr_reg = gpr.GetScopedReg();
LDR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr)); LDR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr));
AND(fpscr_reg, fpscr_reg, LogicalImm(~FPCC_MASK, GPRSize::B32)); AND(fpscr_reg, fpscr_reg, LogicalImm(~FPCC_MASK, GPRSize::B32));
} }
ARM64Reg V0Q = ARM64Reg::INVALID_REG;
ARM64Reg V1Q = ARM64Reg::INVALID_REG;
if (upper_a)
{ {
V0Q = fpr.GetReg(); Arm64FPRCache::ScopedARM64Reg V0Q;
m_float_emit.DUP(singles ? 32 : 64, paired_reg_encoder(V0Q), paired_reg_encoder(VA), 1); Arm64FPRCache::ScopedARM64Reg V1Q;
VA = reg_encoder(V0Q); if (upper_a)
}
if (upper_b)
{
if (a == b)
{ {
VB = VA; V0Q = fpr.GetScopedReg();
m_float_emit.DUP(singles ? 32 : 64, paired_reg_encoder(V0Q), paired_reg_encoder(VA), 1);
VA = reg_encoder(V0Q);
} }
else if (upper_b)
{ {
V1Q = fpr.GetReg(); if (a == b)
m_float_emit.DUP(singles ? 32 : 64, paired_reg_encoder(V1Q), paired_reg_encoder(VB), 1); {
VB = reg_encoder(V1Q); VB = VA;
}
else
{
V1Q = fpr.GetScopedReg();
m_float_emit.DUP(singles ? 32 : 64, paired_reg_encoder(V1Q), paired_reg_encoder(VB), 1);
VB = reg_encoder(V1Q);
}
} }
m_float_emit.FCMP(VA, VB);
} }
m_float_emit.FCMP(VA, VB);
if (V0Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V0Q);
if (V1Q != ARM64Reg::INVALID_REG)
fpr.Unlock(V1Q);
FixupBranch pNaN, pLesser, pGreater; FixupBranch pNaN, pLesser, pGreater;
FixupBranch continue1, continue2, continue3; FixupBranch continue1, continue2, continue3;
@ -538,7 +532,6 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
if (fprf) if (fprf)
{ {
STR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr)); STR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr));
gpr.Unlock(fpscr_reg);
} }
} }
@ -572,7 +565,7 @@ void JitArm64::fctiwx(UGeckoInstruction inst)
if (single) if (single)
{ {
const ARM64Reg V0 = fpr.GetReg(); const auto V0 = fpr.GetScopedReg();
if (is_fctiwzx) if (is_fctiwzx)
{ {
@ -589,12 +582,10 @@ void JitArm64::fctiwx(UGeckoInstruction inst)
m_float_emit.BIC(16, EncodeRegToDouble(V0), 0x7); m_float_emit.BIC(16, EncodeRegToDouble(V0), 0x7);
m_float_emit.ORR(EncodeRegToDouble(VD), EncodeRegToDouble(VD), EncodeRegToDouble(V0)); m_float_emit.ORR(EncodeRegToDouble(VD), EncodeRegToDouble(VD), EncodeRegToDouble(V0));
fpr.Unlock(V0);
} }
else else
{ {
const ARM64Reg WA = gpr.GetReg(); const auto WA = gpr.GetScopedReg();
if (is_fctiwzx) if (is_fctiwzx)
{ {
@ -608,8 +599,6 @@ void JitArm64::fctiwx(UGeckoInstruction inst)
ORR(EncodeRegTo64(WA), EncodeRegTo64(WA), LogicalImm(0xFFF8'0000'0000'0000ULL, GPRSize::B64)); ORR(EncodeRegTo64(WA), EncodeRegTo64(WA), LogicalImm(0xFFF8'0000'0000'0000ULL, GPRSize::B64));
m_float_emit.FMOV(EncodeRegToDouble(VD), EncodeRegTo64(WA)); m_float_emit.FMOV(EncodeRegToDouble(VD), EncodeRegTo64(WA));
gpr.Unlock(WA);
} }
ASSERT_MSG(DYNA_REC, b == d || single == fpr.IsSingle(b, true), ASSERT_MSG(DYNA_REC, b == d || single == fpr.IsSingle(b, true),