Merge pull request #2223 from phire/imm

Cleanup OpArg, make immediates more explicit.
This commit is contained in:
comex 2015-04-23 01:53:18 -04:00
commit ad95454d04
11 changed files with 91 additions and 77 deletions

View File

@ -223,7 +223,7 @@ void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
// Oh, no memory, Just a reg. // Oh, no memory, Just a reg.
mod = 3; //11 mod = 3; //11
} }
else if (scale >= 1) else
{ {
//Ah good, no scaling. //Ah good, no scaling.
if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5)) if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5))
@ -249,7 +249,7 @@ void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
mod = 0; mod = 0;
_offsetOrBaseReg = 5; _offsetOrBaseReg = 5;
} }
else //if (scale != SCALE_ATREG) else
{ {
if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :( if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
{ {
@ -288,10 +288,6 @@ void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
if (SIB) if (SIB)
oreg = 4; oreg = 4;
// TODO(ector): WTF is this if about? I don't remember writing it :-)
//if (RIP)
// oreg = 5;
emit->WriteModRM(mod, _operandReg&7, oreg&7); emit->WriteModRM(mod, _operandReg&7, oreg&7);
if (SIB) if (SIB)

View File

@ -128,6 +128,8 @@ class XEmitter;
// RIP addressing does not benefit from micro op fusion on Core arch // RIP addressing does not benefit from micro op fusion on Core arch
struct OpArg struct OpArg
{ {
friend class XEmitter; // For accessing offset and operandReg
OpArg() {} // dummy op arg, used for storage OpArg() {} // dummy op arg, used for storage
OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX) OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
{ {
@ -148,9 +150,16 @@ struct OpArg
void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const; void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const;
void WriteFloatModRM(XEmitter *emit, FloatOp op); void WriteFloatModRM(XEmitter *emit, FloatOp op);
void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits); void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
// This one is public - must be written to
u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available. u64 Imm64() const { _dbg_assert_(DYNA_REC, scale == SCALE_IMM64); return (u64)offset; }
u16 operandReg; u32 Imm32() const { _dbg_assert_(DYNA_REC, scale == SCALE_IMM32); return (u32)offset; }
u16 Imm16() const { _dbg_assert_(DYNA_REC, scale == SCALE_IMM16); return (u16)offset; }
u8 Imm8() const { _dbg_assert_(DYNA_REC, scale == SCALE_IMM8); return (u8)offset; }
s64 SImm64() const { _dbg_assert_(DYNA_REC, scale == SCALE_IMM64); return (s64)offset; }
s32 SImm32() const { _dbg_assert_(DYNA_REC, scale == SCALE_IMM32); return (s32)offset; }
s16 SImm16() const { _dbg_assert_(DYNA_REC, scale == SCALE_IMM16); return (s16)offset; }
s8 SImm8() const { _dbg_assert_(DYNA_REC, scale == SCALE_IMM8); return (s8)offset; }
void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const; void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;} bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
@ -188,10 +197,20 @@ struct OpArg
else else
return INVALID_REG; return INVALID_REG;
} }
void AddMemOffset(int val)
{
_dbg_assert_msg_(DYNA_REC, scale == SCALE_RIP || (scale <= SCALE_ATREG && scale > SCALE_NONE),
"Tried to increment an OpArg which doesn't have an offset");
offset += val;
}
private: private:
u8 scale; u8 scale;
u16 offsetOrBaseReg; u16 offsetOrBaseReg;
u16 indexReg; u16 indexReg;
u64 offset; // Also used to store immediates.
u16 operandReg;
}; };
template <typename T> template <typename T>

View File

@ -903,19 +903,19 @@ void DSPJitRegCache::writeReg(int dreg, OpArg arg)
switch (regs[dreg].size) switch (regs[dreg].size)
{ {
case 2: case 2:
emitter.MOV(16, reg, Imm16((u16) arg.offset)); emitter.MOV(16, reg, Imm16(arg.Imm16()));
break; break;
case 4: case 4:
emitter.MOV(32, reg, Imm32((u32) arg.offset)); emitter.MOV(32, reg, Imm32(arg.Imm32()));
break; break;
case 8: case 8:
if ((u32) arg.offset == arg.offset) if ((u32)arg.Imm64() == arg.Imm64())
{ {
emitter.MOV(64, reg, Imm32((u32) arg.offset)); emitter.MOV(64, reg, Imm32((u32) arg.Imm64()));
} }
else else
{ {
emitter.MOV(64, reg, Imm64(arg.offset)); emitter.MOV(64, reg, Imm64(arg.Imm64()));
} }
break; break;
default: default:

View File

@ -354,10 +354,6 @@ void GPRRegCache::StoreRegister(size_t preg, OpArg newLoc)
void FPURegCache::LoadRegister(size_t preg, X64Reg newLoc) void FPURegCache::LoadRegister(size_t preg, X64Reg newLoc)
{ {
if (!regs[preg].location.IsImm() && (regs[preg].location.offset & 0xF))
{
PanicAlert("WARNING - misaligned fp register location %u", (unsigned int) preg);
}
emit->MOVAPD(newLoc, regs[preg].location); emit->MOVAPD(newLoc, regs[preg].location);
} }

View File

@ -133,7 +133,7 @@ void Jit64::ComputeRC(const Gen::OpArg & arg, bool needs_test, bool needs_sext)
_assert_msg_(DYNA_REC, arg.IsSimpleReg() || arg.IsImm(), "Invalid ComputeRC operand"); _assert_msg_(DYNA_REC, arg.IsSimpleReg() || arg.IsImm(), "Invalid ComputeRC operand");
if (arg.IsImm()) if (arg.IsImm())
{ {
MOV(64, PPCSTATE(cr_val[0]), Imm32((s32)arg.offset)); MOV(64, PPCSTATE(cr_val[0]), Imm32(arg.SImm32()));
} }
else if (needs_sext) else if (needs_sext)
{ {
@ -148,7 +148,7 @@ void Jit64::ComputeRC(const Gen::OpArg & arg, bool needs_test, bool needs_sext)
{ {
if (arg.IsImm()) if (arg.IsImm())
{ {
DoMergedBranchImmediate((s32)arg.offset); DoMergedBranchImmediate(arg.SImm32());
} }
else else
{ {
@ -178,7 +178,7 @@ OpArg Jit64::ExtractFromReg(int reg, int offset)
{ {
gpr.StoreFromRegister(reg, FLUSH_MAINTAIN_STATE); gpr.StoreFromRegister(reg, FLUSH_MAINTAIN_STATE);
src = gpr.GetDefaultLocation(reg); src = gpr.GetDefaultLocation(reg);
src.offset += offset; src.AddMemOffset(offset);
} }
return src; return src;
} }
@ -225,7 +225,7 @@ void Jit64::regimmop(int d, int a, bool binary, u32 value, Operation doop, void
carry &= js.op->wantsCA; carry &= js.op->wantsCA;
if (gpr.R(a).IsImm() && !carry) if (gpr.R(a).IsImm() && !carry)
{ {
gpr.SetImmediate32(d, doop((u32)gpr.R(a).offset, value)); gpr.SetImmediate32(d, doop(gpr.R(a).Imm32(), value));
} }
else if (a == d) else if (a == d)
{ {
@ -274,7 +274,7 @@ void Jit64::reg_imm(UGeckoInstruction inst)
// occasionally used as MOV - emulate, with immediate propagation // occasionally used as MOV - emulate, with immediate propagation
if (gpr.R(a).IsImm() && d != a && a != 0) if (gpr.R(a).IsImm() && d != a && a != 0)
{ {
gpr.SetImmediate32(d, (u32)gpr.R(a).offset + (u32)(s32)(s16)inst.SIMM_16); gpr.SetImmediate32(d, gpr.R(a).Imm32() + (u32)(s32)inst.SIMM_16);
} }
else if (inst.SIMM_16 == 0 && d != a && a != 0) else if (inst.SIMM_16 == 0 && d != a && a != 0)
{ {
@ -498,8 +498,8 @@ void Jit64::cmpXX(UGeckoInstruction inst)
if (gpr.R(a).IsImm() && comparand.IsImm()) if (gpr.R(a).IsImm() && comparand.IsImm())
{ {
// Both registers contain immediate values, so we can pre-compile the compare result // Both registers contain immediate values, so we can pre-compile the compare result
s64 compareResult = signedCompare ? (s64)(s32)gpr.R(a).offset - (s64)(s32)comparand.offset : s64 compareResult = signedCompare ? (s64)gpr.R(a).SImm32() - (s64)comparand.SImm32() :
(u64)(u32)gpr.R(a).offset - (u64)(u32)comparand.offset; (u64)gpr.R(a).Imm32() - (u64)comparand.Imm32();
if (compareResult == (s32)compareResult) if (compareResult == (s32)compareResult)
{ {
MOV(64, PPCSTATE(cr_val[crf]), Imm32((u32)compareResult)); MOV(64, PPCSTATE(cr_val[crf]), Imm32((u32)compareResult));
@ -519,7 +519,7 @@ void Jit64::cmpXX(UGeckoInstruction inst)
if (signedCompare) if (signedCompare)
{ {
if (gpr.R(a).IsImm()) if (gpr.R(a).IsImm())
MOV(64, R(input), Imm32((s32)gpr.R(a).offset)); MOV(64, R(input), Imm32(gpr.R(a).SImm32()));
else else
MOVSX(64, 32, input, gpr.R(a)); MOVSX(64, 32, input, gpr.R(a));
@ -533,9 +533,9 @@ void Jit64::cmpXX(UGeckoInstruction inst)
{ {
if (gpr.R(a).IsImm()) if (gpr.R(a).IsImm())
{ {
MOV(32, R(input), Imm32((u32)gpr.R(a).offset)); MOV(32, R(input), Imm32(gpr.R(a).Imm32()));
} }
else if (comparand.IsImm() && !comparand.offset) else if (comparand.IsImm() && !comparand.Imm32())
{ {
gpr.BindToRegister(a, true, false); gpr.BindToRegister(a, true, false);
input = gpr.RX(a); input = gpr.RX(a);
@ -548,7 +548,7 @@ void Jit64::cmpXX(UGeckoInstruction inst)
if (comparand.IsImm()) if (comparand.IsImm())
{ {
// sign extension will ruin this, so store it in a register // sign extension will ruin this, so store it in a register
if (comparand.offset & 0x80000000U) if (comparand.Imm32() & 0x80000000U)
{ {
MOV(32, R(RSCRATCH2), comparand); MOV(32, R(RSCRATCH2), comparand);
comparand = R(RSCRATCH2); comparand = R(RSCRATCH2);
@ -560,7 +560,7 @@ void Jit64::cmpXX(UGeckoInstruction inst)
comparand = gpr.R(b); comparand = gpr.R(b);
} }
} }
if (comparand.IsImm() && !comparand.offset) if (comparand.IsImm() && !comparand.Imm32())
{ {
MOV(64, PPCSTATE(cr_val[crf]), R(input)); MOV(64, PPCSTATE(cr_val[crf]), R(input));
// Place the comparison next to the branch for macro-op fusion // Place the comparison next to the branch for macro-op fusion
@ -590,8 +590,8 @@ void Jit64::boolX(UGeckoInstruction inst)
if (gpr.R(s).IsImm() && gpr.R(b).IsImm()) if (gpr.R(s).IsImm() && gpr.R(b).IsImm())
{ {
const u32 rs_offset = static_cast<u32>(gpr.R(s).offset); const u32 rs_offset = gpr.R(s).Imm32();
const u32 rb_offset = static_cast<u32>(gpr.R(b).offset); const u32 rb_offset = gpr.R(b).Imm32();
if (inst.SUBOP10 == 28) // andx if (inst.SUBOP10 == 28) // andx
gpr.SetImmediate32(a, rs_offset & rb_offset); gpr.SetImmediate32(a, rs_offset & rb_offset);
@ -797,7 +797,7 @@ void Jit64::extsXx(UGeckoInstruction inst)
if (gpr.R(s).IsImm()) if (gpr.R(s).IsImm())
{ {
gpr.SetImmediate32(a, (u32)(s32)(size == 16 ? (s16)gpr.R(s).offset : (s8)gpr.R(s).offset)); gpr.SetImmediate32(a, (u32)(s32)(size == 16 ? (s16)gpr.R(s).Imm32() : (s8)gpr.R(s).Imm32()));
} }
else else
{ {
@ -860,7 +860,7 @@ void Jit64::subfx(UGeckoInstruction inst)
if (gpr.R(a).IsImm() && gpr.R(b).IsImm()) if (gpr.R(a).IsImm() && gpr.R(b).IsImm())
{ {
s32 i = (s32)gpr.R(b).offset, j = (s32)gpr.R(a).offset; s32 i = gpr.R(b).SImm32(), j = gpr.R(a).SImm32();
gpr.SetImmediate32(d, i - j); gpr.SetImmediate32(d, i - j);
if (inst.OE) if (inst.OE)
GenerateConstantOverflow((s64)i - (s64)j); GenerateConstantOverflow((s64)i - (s64)j);
@ -959,7 +959,7 @@ void Jit64::mulli(UGeckoInstruction inst)
if (gpr.R(a).IsImm()) if (gpr.R(a).IsImm())
{ {
gpr.SetImmediate32(d, (u32)gpr.R(a).offset * imm); gpr.SetImmediate32(d, gpr.R(a).Imm32() * imm);
} }
else else
{ {
@ -978,7 +978,7 @@ void Jit64::mullwx(UGeckoInstruction inst)
if (gpr.R(a).IsImm() && gpr.R(b).IsImm()) if (gpr.R(a).IsImm() && gpr.R(b).IsImm())
{ {
s32 i = (s32)gpr.R(a).offset, j = (s32)gpr.R(b).offset; s32 i = gpr.R(a).SImm32(), j = gpr.R(b).SImm32();
gpr.SetImmediate32(d, i * j); gpr.SetImmediate32(d, i * j);
if (inst.OE) if (inst.OE)
GenerateConstantOverflow((s64)i * (s64)j); GenerateConstantOverflow((s64)i * (s64)j);
@ -989,7 +989,7 @@ void Jit64::mullwx(UGeckoInstruction inst)
gpr.BindToRegister(d, (d == a || d == b), true); gpr.BindToRegister(d, (d == a || d == b), true);
if (gpr.R(a).IsImm() || gpr.R(b).IsImm()) if (gpr.R(a).IsImm() || gpr.R(b).IsImm())
{ {
u32 imm = gpr.R(a).IsImm() ? (u32)gpr.R(a).offset : (u32)gpr.R(b).offset; u32 imm = gpr.R(a).IsImm() ? gpr.R(a).Imm32() : gpr.R(b).Imm32();
int src = gpr.R(a).IsImm() ? b : a; int src = gpr.R(a).IsImm() ? b : a;
MultiplyImmediate(imm, src, d, inst.OE); MultiplyImmediate(imm, src, d, inst.OE);
} }
@ -1024,9 +1024,9 @@ void Jit64::mulhwXx(UGeckoInstruction inst)
if (gpr.R(a).IsImm() && gpr.R(b).IsImm()) if (gpr.R(a).IsImm() && gpr.R(b).IsImm())
{ {
if (sign) if (sign)
gpr.SetImmediate32(d, (u32)((u64)(((s64)(s32)gpr.R(a).offset * (s64)(s32)gpr.R(b).offset)) >> 32)); gpr.SetImmediate32(d, (u32)((u64)(((s64)gpr.R(a).SImm32() * (s64)gpr.R(b).SImm32())) >> 32));
else else
gpr.SetImmediate32(d, (u32)((gpr.R(a).offset * gpr.R(b).offset) >> 32)); gpr.SetImmediate32(d, (u32)(((u64)gpr.R(a).Imm32() * (u64)gpr.R(b).Imm32()) >> 32));
} }
else if (sign) else if (sign)
{ {
@ -1066,7 +1066,7 @@ void Jit64::divwux(UGeckoInstruction inst)
if (gpr.R(a).IsImm() && gpr.R(b).IsImm()) if (gpr.R(a).IsImm() && gpr.R(b).IsImm())
{ {
if (gpr.R(b).offset == 0) if (gpr.R(b).Imm32() == 0)
{ {
gpr.SetImmediate32(d, 0); gpr.SetImmediate32(d, 0);
if (inst.OE) if (inst.OE)
@ -1074,14 +1074,14 @@ void Jit64::divwux(UGeckoInstruction inst)
} }
else else
{ {
gpr.SetImmediate32(d, (u32)gpr.R(a).offset / (u32)gpr.R(b).offset); gpr.SetImmediate32(d, gpr.R(a).Imm32() / gpr.R(b).Imm32());
if (inst.OE) if (inst.OE)
GenerateConstantOverflow(false); GenerateConstantOverflow(false);
} }
} }
else if (gpr.R(b).IsImm()) else if (gpr.R(b).IsImm())
{ {
u32 divisor = (u32)gpr.R(b).offset; u32 divisor = gpr.R(b).Imm32();
if (divisor == 0) if (divisor == 0)
{ {
gpr.SetImmediate32(d, 0); gpr.SetImmediate32(d, 0);
@ -1186,7 +1186,7 @@ void Jit64::divwx(UGeckoInstruction inst)
if (gpr.R(a).IsImm() && gpr.R(b).IsImm()) if (gpr.R(a).IsImm() && gpr.R(b).IsImm())
{ {
s32 i = (s32)gpr.R(a).offset, j = (s32)gpr.R(b).offset; s32 i = gpr.R(a).SImm32(), j = gpr.R(b).SImm32();
if (j == 0 || (i == (s32)0x80000000 && j == -1)) if (j == 0 || (i == (s32)0x80000000 && j == -1))
{ {
gpr.SetImmediate32(d, (i >> 31) ^ j); gpr.SetImmediate32(d, (i >> 31) ^ j);
@ -1255,7 +1255,7 @@ void Jit64::addx(UGeckoInstruction inst)
if (gpr.R(a).IsImm() && gpr.R(b).IsImm()) if (gpr.R(a).IsImm() && gpr.R(b).IsImm())
{ {
s32 i = (s32)gpr.R(a).offset, j = (s32)gpr.R(b).offset; s32 i = gpr.R(a).SImm32(), j = gpr.R(b).SImm32();
gpr.SetImmediate32(d, i + j); gpr.SetImmediate32(d, i + j);
if (inst.OE) if (inst.OE)
GenerateConstantOverflow((s64)i + (s64)j); GenerateConstantOverflow((s64)i + (s64)j);
@ -1338,7 +1338,7 @@ void Jit64::arithXex(UGeckoInstruction inst)
// if the source is an immediate, we can invert carry by going from add -> sub and doing src = -1 - src // if the source is an immediate, we can invert carry by going from add -> sub and doing src = -1 - src
if (js.carryFlagInverted && source.IsImm()) if (js.carryFlagInverted && source.IsImm())
{ {
source.offset = -1 - (s32)source.offset; source = Imm32(-1 - source.SImm32());
SBB(32, gpr.R(d), source); SBB(32, gpr.R(d), source);
invertedCarry = true; invertedCarry = true;
} }
@ -1403,7 +1403,7 @@ void Jit64::rlwinmx(UGeckoInstruction inst)
if (gpr.R(s).IsImm()) if (gpr.R(s).IsImm())
{ {
u32 result = (int)gpr.R(s).offset; u32 result = gpr.R(s).Imm32();
if (inst.SH != 0) if (inst.SH != 0)
result = _rotl(result, inst.SH); result = _rotl(result, inst.SH);
result &= Helper_Mask(inst.MB, inst.ME); result &= Helper_Mask(inst.MB, inst.ME);
@ -1491,7 +1491,7 @@ void Jit64::rlwimix(UGeckoInstruction inst)
if (gpr.R(a).IsImm() && gpr.R(s).IsImm()) if (gpr.R(a).IsImm() && gpr.R(s).IsImm())
{ {
u32 mask = Helper_Mask(inst.MB,inst.ME); u32 mask = Helper_Mask(inst.MB,inst.ME);
gpr.SetImmediate32(a, ((u32)gpr.R(a).offset & ~mask) | (_rotl((u32)gpr.R(s).offset,inst.SH) & mask)); gpr.SetImmediate32(a, (gpr.R(a).Imm32() & ~mask) | (_rotl(gpr.R(s).Imm32(),inst.SH) & mask));
if (inst.Rc) if (inst.Rc)
ComputeRC(gpr.R(a)); ComputeRC(gpr.R(a));
} }
@ -1517,7 +1517,7 @@ void Jit64::rlwimix(UGeckoInstruction inst)
{ {
gpr.BindToRegister(a, true, true); gpr.BindToRegister(a, true, true);
AndWithMask(gpr.RX(a), ~mask); AndWithMask(gpr.RX(a), ~mask);
OR(32, gpr.R(a), Imm32(_rotl((u32)gpr.R(s).offset, inst.SH) & mask)); OR(32, gpr.R(a), Imm32(_rotl(gpr.R(s).Imm32(), inst.SH) & mask));
} }
else if (inst.SH) else if (inst.SH)
{ {
@ -1525,7 +1525,7 @@ void Jit64::rlwimix(UGeckoInstruction inst)
bool isRightShift = mask == (1U << inst.SH) - 1; bool isRightShift = mask == (1U << inst.SH) - 1;
if (gpr.R(a).IsImm()) if (gpr.R(a).IsImm())
{ {
u32 maskA = (u32)gpr.R(a).offset & ~mask; u32 maskA = gpr.R(a).Imm32() & ~mask;
gpr.BindToRegister(a, false, true); gpr.BindToRegister(a, false, true);
MOV(32, gpr.R(a), gpr.R(s)); MOV(32, gpr.R(a), gpr.R(s));
if (isLeftShift) if (isLeftShift)
@ -1591,7 +1591,7 @@ void Jit64::rlwnmx(UGeckoInstruction inst)
u32 mask = Helper_Mask(inst.MB, inst.ME); u32 mask = Helper_Mask(inst.MB, inst.ME);
if (gpr.R(b).IsImm() && gpr.R(s).IsImm()) if (gpr.R(b).IsImm() && gpr.R(s).IsImm())
{ {
gpr.SetImmediate32(a, _rotl((u32)gpr.R(s).offset, (u32)gpr.R(b).offset & 0x1F) & mask); gpr.SetImmediate32(a, _rotl(gpr.R(s).Imm32(), gpr.R(b).Imm32() & 0x1F) & mask);
} }
else else
{ {
@ -1626,9 +1626,9 @@ void Jit64::negx(UGeckoInstruction inst)
if (gpr.R(a).IsImm()) if (gpr.R(a).IsImm())
{ {
gpr.SetImmediate32(d, ~((u32)gpr.R(a).offset) + 1); gpr.SetImmediate32(d, ~(gpr.R(a).Imm32()) + 1);
if (inst.OE) if (inst.OE)
GenerateConstantOverflow(gpr.R(d).offset == 0x80000000); GenerateConstantOverflow(gpr.R(d).Imm32() == 0x80000000);
} }
else else
{ {
@ -1655,8 +1655,8 @@ void Jit64::srwx(UGeckoInstruction inst)
if (gpr.R(b).IsImm() && gpr.R(s).IsImm()) if (gpr.R(b).IsImm() && gpr.R(s).IsImm())
{ {
u32 amount = (u32)gpr.R(b).offset; u32 amount = gpr.R(b).Imm32();
gpr.SetImmediate32(a, (amount & 0x20) ? 0 : ((u32)gpr.R(s).offset >> (amount & 0x1f))); gpr.SetImmediate32(a, (amount & 0x20) ? 0 : (gpr.R(s).Imm32() >> (amount & 0x1f)));
} }
else else
{ {
@ -1688,8 +1688,8 @@ void Jit64::slwx(UGeckoInstruction inst)
if (gpr.R(b).IsImm() && gpr.R(s).IsImm()) if (gpr.R(b).IsImm() && gpr.R(s).IsImm())
{ {
u32 amount = (u32)gpr.R(b).offset; u32 amount = gpr.R(b).Imm32();
gpr.SetImmediate32(a, (amount & 0x20) ? 0 : (u32)gpr.R(s).offset << (amount & 0x1f)); gpr.SetImmediate32(a, (amount & 0x20) ? 0 : gpr.R(s).Imm32() << (amount & 0x1f));
if (inst.Rc) if (inst.Rc)
ComputeRC(gpr.R(a)); ComputeRC(gpr.R(a));
} }
@ -1820,7 +1820,7 @@ void Jit64::cntlzwx(UGeckoInstruction inst)
u32 i = 0; u32 i = 0;
for (; i < 32; i++, mask >>= 1) for (; i < 32; i++, mask >>= 1)
{ {
if ((u32)gpr.R(s).offset & mask) if (gpr.R(s).Imm32() & mask)
break; break;
} }
gpr.SetImmediate32(a, i); gpr.SetImmediate32(a, i);

View File

@ -154,7 +154,7 @@ void Jit64::lXXx(UGeckoInstruction inst)
// Determine whether this instruction updates inst.RA // Determine whether this instruction updates inst.RA
bool update; bool update;
if (inst.OPCD == 31) if (inst.OPCD == 31)
update = ((inst.SUBOP10 & 0x20) != 0) && (!gpr.R(b).IsImm() || gpr.R(b).offset != 0); update = ((inst.SUBOP10 & 0x20) != 0) && (!gpr.R(b).IsImm() || gpr.R(b).Imm32() != 0);
else else
update = ((inst.OPCD & 1) != 0) && inst.SIMM_16 != 0; update = ((inst.OPCD & 1) != 0) && inst.SIMM_16 != 0;
@ -184,14 +184,14 @@ void Jit64::lXXx(UGeckoInstruction inst)
{ {
if ((inst.OPCD != 31) && gpr.R(a).IsImm() && !js.memcheck) if ((inst.OPCD != 31) && gpr.R(a).IsImm() && !js.memcheck)
{ {
u32 val = (u32)gpr.R(a).offset + (s32)inst.SIMM_16; u32 val = gpr.R(a).Imm32() + inst.SIMM_16;
opAddress = Imm32(val); opAddress = Imm32(val);
if (update) if (update)
gpr.SetImmediate32(a, val); gpr.SetImmediate32(a, val);
} }
else if ((inst.OPCD == 31) && gpr.R(a).IsImm() && gpr.R(b).IsImm() && !js.memcheck) else if ((inst.OPCD == 31) && gpr.R(a).IsImm() && gpr.R(b).IsImm() && !js.memcheck)
{ {
u32 val = (u32)gpr.R(a).offset + (u32)gpr.R(b).offset; u32 val = gpr.R(a).Imm32() + gpr.R(b).Imm32();
opAddress = Imm32(val); opAddress = Imm32(val);
if (update) if (update)
gpr.SetImmediate32(a, val); gpr.SetImmediate32(a, val);
@ -200,7 +200,10 @@ void Jit64::lXXx(UGeckoInstruction inst)
{ {
// If we're using reg+reg mode and b is an immediate, pretend we're using constant offset mode // If we're using reg+reg mode and b is an immediate, pretend we're using constant offset mode
bool use_constant_offset = inst.OPCD != 31 || gpr.R(b).IsImm(); bool use_constant_offset = inst.OPCD != 31 || gpr.R(b).IsImm();
s32 offset = inst.OPCD == 31 ? (s32)gpr.R(b).offset : (s32)inst.SIMM_16;
s32 offset;
if (use_constant_offset)
offset = inst.OPCD == 31 ? gpr.R(b).SImm32() : (s32)inst.SIMM_16;
// Depending on whether we have an immediate and/or update, find the optimum way to calculate // Depending on whether we have an immediate and/or update, find the optimum way to calculate
// the load address. // the load address.
if ((update || use_constant_offset) && !js.memcheck) if ((update || use_constant_offset) && !js.memcheck)
@ -385,7 +388,7 @@ void Jit64::stX(UGeckoInstruction inst)
// If we already know the address of the write // If we already know the address of the write
if (!a || gpr.R(a).IsImm()) if (!a || gpr.R(a).IsImm())
{ {
u32 addr = (a ? (u32)gpr.R(a).offset : 0) + offset; u32 addr = (a ? gpr.R(a).Imm32() : 0) + offset;
bool exception = WriteToConstAddress(accessSize, gpr.R(s), addr, CallerSavedRegistersInUse()); bool exception = WriteToConstAddress(accessSize, gpr.R(s), addr, CallerSavedRegistersInUse());
if (update) if (update)
{ {

View File

@ -133,7 +133,7 @@ void Jit64::stfXXX(UGeckoInstruction inst)
if (!indexed && (!a || gpr.R(a).IsImm())) if (!indexed && (!a || gpr.R(a).IsImm()))
{ {
u32 addr = (a ? (u32)gpr.R(a).offset : 0) + imm; u32 addr = (a ? gpr.R(a).Imm32() : 0) + imm;
bool exception = WriteToConstAddress(accessSize, R(RSCRATCH), addr, CallerSavedRegistersInUse()); bool exception = WriteToConstAddress(accessSize, R(RSCRATCH), addr, CallerSavedRegistersInUse());
if (update) if (update)

View File

@ -301,7 +301,7 @@ void Jit64::psq_lXX(UGeckoInstruction inst)
// Get the high part of the GQR register // Get the high part of the GQR register
OpArg gqr = PPCSTATE(spr[SPR_GQR0 + i]); OpArg gqr = PPCSTATE(spr[SPR_GQR0 + i]);
gqr.offset += 2; gqr.AddMemOffset(2);
AND(32, R(RSCRATCH2), gqr); AND(32, R(RSCRATCH2), gqr);
MOVZX(32, 8, RSCRATCH, R(RSCRATCH2)); MOVZX(32, 8, RSCRATCH, R(RSCRATCH2));

View File

@ -431,7 +431,7 @@ void Jit64::mtcrf(UGeckoInstruction inst)
{ {
if ((crm & (0x80 >> i)) != 0) if ((crm & (0x80 >> i)) != 0)
{ {
u8 newcr = (gpr.R(inst.RS).offset >> (28 - (i * 4))) & 0xF; u8 newcr = (gpr.R(inst.RS).Imm32() >> (28 - (i * 4))) & 0xF;
u64 newcrval = PPCCRToInternal(newcr); u64 newcrval = PPCCRToInternal(newcr);
if ((s64)newcrval == (s32)newcrval) if ((s64)newcrval == (s32)newcrval)
{ {

View File

@ -74,7 +74,7 @@ u8 *EmuCodeBlock::UnsafeLoadToReg(X64Reg reg_value, OpArg opAddress, int accessS
} }
else if (opAddress.IsImm()) else if (opAddress.IsImm())
{ {
MOV(32, R(reg_value), Imm32((u32)(opAddress.offset + offset))); MOV(32, R(reg_value), Imm32((u32)(opAddress.Imm32() + offset)));
memOperand = MRegSum(RMEM, reg_value); memOperand = MRegSum(RMEM, reg_value);
} }
else else
@ -298,7 +298,7 @@ void EmuCodeBlock::SafeLoadToReg(X64Reg reg_value, const Gen::OpArg & opAddress,
if (opAddress.IsImm()) if (opAddress.IsImm())
{ {
u32 address = (u32)opAddress.offset + offset; u32 address = opAddress.Imm32() + offset;
// If the address is known to be RAM, just load it directly. // If the address is known to be RAM, just load it directly.
if (PowerPC::IsOptimizableRAMAddress(address)) if (PowerPC::IsOptimizableRAMAddress(address))
@ -398,11 +398,11 @@ void EmuCodeBlock::SafeLoadToReg(X64Reg reg_value, const Gen::OpArg & opAddress,
static OpArg SwapImmediate(int accessSize, OpArg reg_value) static OpArg SwapImmediate(int accessSize, OpArg reg_value)
{ {
if (accessSize == 32) if (accessSize == 32)
return Imm32(Common::swap32((u32)reg_value.offset)); return Imm32(Common::swap32(reg_value.Imm32()));
else if (accessSize == 16) else if (accessSize == 16)
return Imm16(Common::swap16((u16)reg_value.offset)); return Imm16(Common::swap16(reg_value.Imm16()));
else else
return Imm8((u8)reg_value.offset); return Imm8(reg_value.Imm8());
} }
u8 *EmuCodeBlock::UnsafeWriteRegToReg(OpArg reg_value, X64Reg reg_addr, int accessSize, s32 offset, bool swap) u8 *EmuCodeBlock::UnsafeWriteRegToReg(OpArg reg_value, X64Reg reg_addr, int accessSize, s32 offset, bool swap)
@ -441,9 +441,9 @@ static OpArg FixImmediate(int accessSize, OpArg arg)
{ {
if (arg.IsImm()) if (arg.IsImm())
{ {
arg = accessSize == 8 ? Imm8((u8)arg.offset) : arg = accessSize == 8 ? Imm8((u8)arg.Imm32()) :
accessSize == 16 ? Imm16((u16)arg.offset) : accessSize == 16 ? Imm16((u16)arg.Imm32()) :
Imm32((u32)arg.offset); Imm32((u32)arg.Imm32());
} }
return arg; return arg;
} }

View File

@ -302,7 +302,7 @@ void VertexLoaderX64::ReadColor(OpArg data, u64 attribute, int format)
case FORMAT_24B_6666: case FORMAT_24B_6666:
// RRRRRRGG GGGGBBBB BBAAAAAA // RRRRRRGG GGGGBBBB BBAAAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
data.offset -= 1; data.AddMemOffset(-1); // subtract one from address so we can use a 32bit load and bswap
LoadAndSwap(32, scratch1, data); LoadAndSwap(32, scratch1, data);
if (cpu_info.bBMI2) if (cpu_info.bBMI2)
{ {
@ -408,10 +408,10 @@ void VertexLoaderX64::GenerateVertexLoader()
{ {
data = GetVertexAddr(ARRAY_NORMAL, m_VtxDesc.Normal); data = GetVertexAddr(ARRAY_NORMAL, m_VtxDesc.Normal);
int elem_size = 1 << (m_VtxAttr.NormalFormat / 2); int elem_size = 1 << (m_VtxAttr.NormalFormat / 2);
data.offset += i * elem_size * 3; data.AddMemOffset(i * elem_size * 3);
} }
data.offset += ReadVertex(data, m_VtxDesc.Normal, m_VtxAttr.NormalFormat, 3, 3, data.AddMemOffset(ReadVertex(data, m_VtxDesc.Normal, m_VtxAttr.NormalFormat, 3, 3,
true, scaling_exponent, &m_native_vtx_decl.normals[i]); true, scaling_exponent, &m_native_vtx_decl.normals[i]));
} }
m_native_components |= VB_HAS_NRM0; m_native_components |= VB_HAS_NRM0;