GCMemcard: Rework construction logic to better match our knowledge of the format, while providing better error reporting facilities.

This commit is contained in:
Admiral H. Curtiss 2019-04-21 15:18:01 +02:00
parent 24718c1a38
commit b54a49eaaf
5 changed files with 369 additions and 223 deletions

View File

@ -27,196 +27,249 @@ static void ByteSwap(u8* valueA, u8* valueB)
*valueB = tmp;
}
GCMemcard::GCMemcard(const std::string& filename, bool forceCreation, bool shift_jis)
: m_valid(false), m_filename(filename)
static constexpr std::optional<u64> BytesToMegabits(u64 bytes)
{
// Currently there is a string freeze. instead of adding a new message about needing r/w
// open file read only, if write is denied the error will be reported at that point
File::IOFile mcdFile(m_filename, "rb");
if (!mcdFile.IsOpen())
{
if (!forceCreation)
{
if (!AskYesNoT("\"%s\" does not exist.\n Create a new 16MB Memory Card?", filename.c_str()))
return;
shift_jis =
AskYesNoT("Format as Shift JIS (Japanese)?\nChoose no for Windows-1252 (Western)");
const u64 factor = ((1024 * 1024) / 8);
const u64 megabits = bytes / factor;
const u64 remainder = bytes % factor;
if (remainder != 0)
return std::nullopt;
return megabits;
}
Format(shift_jis);
return;
bool GCMemcardErrorCode::HasCriticalErrors() const
{
return Test(GCMemcardValidityIssues::FAILED_TO_OPEN) || Test(GCMemcardValidityIssues::IO_ERROR) ||
Test(GCMemcardValidityIssues::INVALID_CARD_SIZE) ||
Test(GCMemcardValidityIssues::INVALID_CHECKSUM) ||
Test(GCMemcardValidityIssues::MISMATCHED_CARD_SIZE) ||
Test(GCMemcardValidityIssues::FREE_BLOCK_MISMATCH);
}
bool GCMemcardErrorCode::Test(GCMemcardValidityIssues code) const
{
return m_errors.test(static_cast<size_t>(code));
}
void GCMemcardErrorCode::Set(GCMemcardValidityIssues code)
{
m_errors.set(static_cast<size_t>(code));
}
GCMemcardErrorCode& GCMemcardErrorCode::operator|=(const GCMemcardErrorCode& other)
{
this->m_errors |= other.m_errors;
return *this;
}
GCMemcard::GCMemcard()
: m_valid(false), m_size_blocks(0), m_size_mb(0), m_active_directory(0), m_active_bat(0)
{
}
std::optional<GCMemcard> GCMemcard::Create(std::string filename, u16 size_mbits, bool shift_jis)
{
GCMemcard card;
card.m_filename = std::move(filename);
// TODO: Format() not only formats the card but also writes it to disk at m_filename.
// Those tasks should probably be separated.
if (!card.Format(shift_jis, size_mbits))
return std::nullopt;
return std::move(card);
}
std::pair<GCMemcardErrorCode, std::optional<GCMemcard>> GCMemcard::Open(std::string filename)
{
GCMemcardErrorCode error_code;
File::IOFile file(filename, "rb");
if (!file.IsOpen())
{
error_code.Set(GCMemcardValidityIssues::FAILED_TO_OPEN);
return std::make_pair(error_code, std::nullopt);
}
// check if the filesize is a valid memory card size
const u64 filesize = file.GetSize();
const u64 filesize_megabits = BytesToMegabits(filesize).value_or(0);
const std::array<u16, 6> valid_megabits = {{
MemCard59Mb,
MemCard123Mb,
MemCard251Mb,
Memcard507Mb,
MemCard1019Mb,
MemCard2043Mb,
}};
if (!std::any_of(valid_megabits.begin(), valid_megabits.end(),
[filesize_megabits](u64 mbits) { return mbits == filesize_megabits; }))
{
error_code.Set(GCMemcardValidityIssues::INVALID_CARD_SIZE);
return std::make_pair(error_code, std::nullopt);
}
const u16 card_size_mbits = static_cast<u16>(filesize_megabits);
// read the entire card into memory
GCMemcard card;
file.Seek(0, SEEK_SET);
if (!file.ReadBytes(&card.m_header_block, BLOCK_SIZE) ||
!file.ReadBytes(&card.m_directory_blocks[0], BLOCK_SIZE) ||
!file.ReadBytes(&card.m_directory_blocks[1], BLOCK_SIZE) ||
!file.ReadBytes(&card.m_bat_blocks[0], BLOCK_SIZE) ||
!file.ReadBytes(&card.m_bat_blocks[1], BLOCK_SIZE))
{
error_code.Set(GCMemcardValidityIssues::IO_ERROR);
return std::make_pair(error_code, std::nullopt);
}
const u16 card_size_blocks = card_size_mbits * MBIT_TO_BLOCKS;
const u16 user_data_blocks = card_size_blocks - MC_FST_BLOCKS;
card.m_data_blocks.reserve(user_data_blocks);
for (u16 i = 0; i < user_data_blocks; ++i)
{
GCMBlock& block = card.m_data_blocks.emplace_back();
if (!file.ReadArray(block.m_block.data(), BLOCK_SIZE))
{
error_code.Set(GCMemcardValidityIssues::IO_ERROR);
return std::make_pair(error_code, std::nullopt);
}
}
file.Close();
card.m_filename = std::move(filename);
card.m_size_blocks = card_size_blocks;
card.m_size_mb = card_size_mbits;
// can return invalid card size, invalid checksum, data in unused area
// data in unused area is okay, otherwise fail
const GCMemcardErrorCode header_error_code = card.m_header_block.CheckForErrors(card_size_mbits);
error_code |= header_error_code;
if (header_error_code.HasCriticalErrors())
return std::make_pair(error_code, std::nullopt);
// The GC BIOS counts any card as corrupted as long as at least any two of [dir0, dir1, bat0,
// bat1] are corrupted. Yes, even if we have one valid dir and one valid bat, and even if those
// are both supposedly the newer ones.
//
// If both blocks of a single category are non-corrupted the used block depends on the update
// counter. If both blocks have the same update counter, it prefers block 0. Otherwise it prefers
// whichever block has the higher value. Essentially, if (0.update_ctr >= 1.update_ctr) { use 0 }
// else { use 1 }.
//
// If a single block of the four is corrupted, the non-corrupted one of the same category is
// immediately copied over the corrupted block with an incremented update counter. At this point
// both blocks contain the same data, so it's hard to tell which one is used, but presumably it
// uses the one with the now-higher update counter, same as it would have otherwise.
//
// This rule only applies for errors within a single block! That is, invalid checksums for both
// types, and free block mismatch for the BATs. Once two valid blocks have been selected but it
// later turns out they do not match eachother (eg. claimed block count of a file in the directory
// does not match the actual block count arrived at by following BAT), the card will be treated as
// corrupted, even if perhaps a different combination of the two blocks would result in a valid
// memory card.
// can return invalid checksum, data in unused area
GCMemcardErrorCode dir_block_0_error_code = card.m_directory_blocks[0].CheckForErrors();
GCMemcardErrorCode dir_block_1_error_code = card.m_directory_blocks[1].CheckForErrors();
// can return invalid card size, invalid checksum, data in unused area, free block mismatch
GCMemcardErrorCode bat_block_0_error_code = card.m_bat_blocks[0].CheckForErrors(card_size_mbits);
GCMemcardErrorCode bat_block_1_error_code = card.m_bat_blocks[1].CheckForErrors(card_size_mbits);
const bool dir_block_0_valid = !dir_block_0_error_code.HasCriticalErrors();
const bool dir_block_1_valid = !dir_block_1_error_code.HasCriticalErrors();
const bool bat_block_0_valid = !bat_block_0_error_code.HasCriticalErrors();
const bool bat_block_1_valid = !bat_block_1_error_code.HasCriticalErrors();
// if any two (at least) blocks are corrupted return failure
// TODO: Consider allowing a recovery option when there's still a valid one of each type.
int number_of_corrupted_dir_bat_blocks = 0;
if (!dir_block_0_valid)
++number_of_corrupted_dir_bat_blocks;
if (!dir_block_1_valid)
++number_of_corrupted_dir_bat_blocks;
if (!bat_block_0_valid)
++number_of_corrupted_dir_bat_blocks;
if (!bat_block_1_valid)
++number_of_corrupted_dir_bat_blocks;
if (number_of_corrupted_dir_bat_blocks > 1)
{
error_code |= dir_block_0_error_code;
error_code |= dir_block_1_error_code;
error_code |= bat_block_0_error_code;
error_code |= bat_block_1_error_code;
return std::make_pair(error_code, std::nullopt);
}
// if exactly one block is corrupted copy and update it over the non-corrupted block
if (number_of_corrupted_dir_bat_blocks == 1)
{
if (!dir_block_0_valid)
{
card.m_directory_blocks[0] = card.m_directory_blocks[1];
card.m_directory_blocks[0].m_update_counter = card.m_directory_blocks[0].m_update_counter + 1;
card.m_directory_blocks[0].FixChecksums();
dir_block_0_error_code = card.m_directory_blocks[0].CheckForErrors();
}
else if (!dir_block_1_valid)
{
card.m_directory_blocks[1] = card.m_directory_blocks[0];
card.m_directory_blocks[1].m_update_counter = card.m_directory_blocks[1].m_update_counter + 1;
card.m_directory_blocks[1].FixChecksums();
dir_block_1_error_code = card.m_directory_blocks[1].CheckForErrors();
}
else if (!bat_block_0_valid)
{
card.m_bat_blocks[0] = card.m_bat_blocks[1];
card.m_bat_blocks[0].m_update_counter = card.m_bat_blocks[0].m_update_counter + 1;
card.m_bat_blocks[0].FixChecksums();
bat_block_0_error_code = card.m_bat_blocks[0].CheckForErrors(card_size_mbits);
}
else if (!bat_block_1_valid)
{
card.m_bat_blocks[1] = card.m_bat_blocks[0];
card.m_bat_blocks[1].m_update_counter = card.m_bat_blocks[1].m_update_counter + 1;
card.m_bat_blocks[1].FixChecksums();
bat_block_1_error_code = card.m_bat_blocks[1].CheckForErrors(card_size_mbits);
}
else
{
// This function can be removed once more about hdr is known and we can check for a valid header
std::string fileType;
SplitPath(filename, nullptr, nullptr, &fileType);
if (strcasecmp(fileType.c_str(), ".raw") && strcasecmp(fileType.c_str(), ".gcp"))
{
PanicAlertT("File has the extension \"%s\".\nValid extensions are (.raw/.gcp)",
fileType.c_str());
return;
}
auto size = mcdFile.GetSize();
if (size < MC_FST_BLOCKS * BLOCK_SIZE)
{
PanicAlertT("%s failed to load as a memory card.\nFile is not large enough to be a valid "
"memory card file (0x%x bytes)",
filename.c_str(), (unsigned)size);
return;
}
if (size % BLOCK_SIZE)
{
PanicAlertT("%s failed to load as a memory card.\nCard file size is invalid (0x%x bytes)",
filename.c_str(), (unsigned)size);
return;
}
m_size_mb = (u16)((size / BLOCK_SIZE) / MBIT_TO_BLOCKS);
switch (m_size_mb)
{
case MemCard59Mb:
case MemCard123Mb:
case MemCard251Mb:
case Memcard507Mb:
case MemCard1019Mb:
case MemCard2043Mb:
break;
default:
PanicAlertT("%s failed to load as a memory card.\nCard size is invalid (0x%x bytes)",
filename.c_str(), (unsigned)size);
return;
// should never reach here
assert(0);
}
}
mcdFile.Seek(0, SEEK_SET);
if (!mcdFile.ReadBytes(&m_header_block, BLOCK_SIZE))
{
PanicAlertT("Failed to read header correctly\n(0x0000-0x1FFF)");
return;
}
if (m_size_mb != m_header_block.m_size_mb)
{
PanicAlertT("Memory card file size does not match the header size");
return;
}
error_code |= dir_block_0_error_code;
error_code |= dir_block_1_error_code;
error_code |= bat_block_0_error_code;
error_code |= bat_block_1_error_code;
if (!mcdFile.ReadBytes(&m_directory_blocks[0], BLOCK_SIZE))
{
PanicAlertT("Failed to read 1st directory block correctly\n(0x2000-0x3FFF)");
return;
}
// select the in-use Dir and BAT blocks based on update counter
// TODO: Is there a special case for wraparound after 65535 block updates, or is it assumed that
// the hardware fails long before that anyway?
if (!mcdFile.ReadBytes(&m_directory_blocks[1], BLOCK_SIZE))
{
PanicAlertT("Failed to read 2nd directory block correctly\n(0x4000-0x5FFF)");
return;
}
if (!mcdFile.ReadBytes(&m_bat_blocks[0], BLOCK_SIZE))
{
PanicAlertT("Failed to read 1st block allocation table block correctly\n(0x6000-0x7FFF)");
return;
}
if (!mcdFile.ReadBytes(&m_bat_blocks[1], BLOCK_SIZE))
{
PanicAlertT("Failed to read 2nd block allocation table block correctly\n(0x8000-0x9FFF)");
return;
}
u32 csums = TestChecksums();
if (csums & 0x1)
{
// header checksum error!
// invalid files do not always get here
PanicAlertT("Header checksum failed");
return;
}
if (csums & 0x2) // 1st directory block checksum error!
{
if (csums & 0x4)
{
// 2nd block is also wrong!
PanicAlertT("Both directory block checksums are invalid");
return;
}
if (card.m_directory_blocks[0].m_update_counter >= card.m_directory_blocks[1].m_update_counter)
card.m_active_directory = 0;
else
{
// FIXME: This is probably incorrect behavior, confirm what actually happens on hardware here.
// The currently active directory block and currently active BAT block don't necessarily have
// to correlate.
card.m_active_directory = 1;
// 2nd block is correct, restore
m_directory_blocks[0] = m_directory_blocks[1];
m_bat_blocks[0] = m_bat_blocks[1];
// update checksums
csums = TestChecksums();
}
}
if (csums & 0x8) // 1st BAT checksum error!
{
if (csums & 0x10)
{
// 2nd BAT is also wrong!
PanicAlertT("Both Block Allocation Table block checksums are invalid");
return;
}
if (card.m_bat_blocks[0].m_update_counter >= card.m_bat_blocks[1].m_update_counter)
card.m_active_bat = 0;
else
{
// FIXME: Same as above, this feels incorrect.
card.m_active_bat = 1;
// 2nd block is correct, restore
m_directory_blocks[0] = m_directory_blocks[1];
m_bat_blocks[0] = m_bat_blocks[1];
// TODO: Do a card-wide corruption check here, such as cross-checking the active Dir's files with
// the active BAT's allocated sectors. The GC BIOS does at the very least recognize if a file's
// number of used blocks is inconsistent between the two, and will count a card as corrupted if
// that is the case.
// update checksums
csums = TestChecksums();
}
}
card.m_valid = true;
mcdFile.Seek(0xa000, SEEK_SET);
m_size_blocks = (u32)m_size_mb * MBIT_TO_BLOCKS;
m_data_blocks.reserve(m_size_blocks - MC_FST_BLOCKS);
m_valid = true;
for (u32 i = MC_FST_BLOCKS; i < m_size_blocks; ++i)
{
GCMBlock b;
if (mcdFile.ReadBytes(b.m_block.data(), b.m_block.size()))
{
m_data_blocks.push_back(b);
}
else
{
PanicAlertT("Failed to read block %u of the save data\nMemory card may be truncated\nFile "
"position: 0x%" PRIx64,
i, mcdFile.Tell());
m_valid = false;
break;
}
}
mcdFile.Close();
InitActiveDirBat();
}
void GCMemcard::InitActiveDirBat()
{
if (m_directory_blocks[0].m_update_counter > m_directory_blocks[1].m_update_counter)
m_active_directory = 0;
else
m_active_directory = 1;
if (m_bat_blocks[0].m_update_counter > m_bat_blocks[1].m_update_counter)
m_active_bat = 0;
else
m_active_bat = 1;
return std::make_pair(error_code, std::move(card));
}
const Directory& GCMemcard::GetActiveDirectory() const
@ -292,31 +345,6 @@ std::pair<u16, u16> CalculateMemcardChecksums(const u8* data, size_t size)
return std::make_pair(csum, inv_csum);
}
u32 GCMemcard::TestChecksums() const
{
const auto [csum_hdr, cinv_hdr] = m_header_block.CalculateChecksums();
const auto [csum_dir0, cinv_dir0] = m_directory_blocks[0].CalculateChecksums();
const auto [csum_dir1, cinv_dir1] = m_directory_blocks[1].CalculateChecksums();
const auto [csum_bat0, cinv_bat0] = m_bat_blocks[0].CalculateChecksums();
const auto [csum_bat1, cinv_bat1] = m_bat_blocks[1].CalculateChecksums();
u32 results = 0;
if ((m_header_block.m_checksum != csum_hdr) || (m_header_block.m_checksum_inv != cinv_hdr))
results |= 1;
if ((m_directory_blocks[0].m_checksum != csum_dir0) ||
(m_directory_blocks[0].m_checksum_inv != cinv_dir0))
results |= 2;
if ((m_directory_blocks[1].m_checksum != csum_dir1) ||
(m_directory_blocks[1].m_checksum_inv != cinv_dir1))
results |= 4;
if ((m_bat_blocks[0].m_checksum != csum_bat0) || (m_bat_blocks[0].m_checksum_inv != cinv_bat0))
results |= 8;
if ((m_bat_blocks[1].m_checksum != csum_bat1) || (m_bat_blocks[1].m_checksum_inv != cinv_bat1))
results |= 16;
return results;
}
bool GCMemcard::FixChecksums()
{
if (!m_valid)
@ -679,6 +707,50 @@ std::pair<u16, u16> BlockAlloc::CalculateChecksums() const
return CalculateMemcardChecksums(&raw[checksum_area_start], checksum_area_size);
}
GCMemcardErrorCode BlockAlloc::CheckForErrors(u16 size_mbits) const
{
GCMemcardErrorCode error_code;
// verify checksums
const auto [checksum_sum, checksum_inv] = CalculateChecksums();
if (checksum_sum != m_checksum || checksum_inv != m_checksum_inv)
error_code.Set(GCMemcardValidityIssues::INVALID_CHECKSUM);
if (size_mbits > 0 && size_mbits <= 256)
{
// check if free block count matches the actual amount of free blocks in m_map
const u16 total_available_blocks = (size_mbits * MBIT_TO_BLOCKS) - MC_FST_BLOCKS;
assert(total_available_blocks <= m_map.size());
u16 blocks_in_use = 0;
for (size_t i = 0; i < total_available_blocks; ++i)
{
if (m_map[i] != 0)
++blocks_in_use;
}
const u16 free_blocks = total_available_blocks - blocks_in_use;
if (free_blocks != m_free_blocks)
error_code.Set(GCMemcardValidityIssues::FREE_BLOCK_MISMATCH);
// remaining blocks map to nothing on hardware and must be empty
for (size_t i = total_available_blocks; i < m_map.size(); ++i)
{
if (m_map[i] != 0)
{
error_code.Set(GCMemcardValidityIssues::DATA_IN_UNUSED_AREA);
break;
}
}
}
else
{
// card size is outside the range of blocks that can be addressed
error_code.Set(GCMemcardValidityIssues::INVALID_CARD_SIZE);
}
return error_code;
}
GCMemcardGetSaveDataRetVal GCMemcard::GetSaveData(u8 index, std::vector<GCMBlock>& Blocks) const
{
if (!m_valid)
@ -1253,7 +1325,8 @@ bool GCMemcard::Format(bool shift_jis, u16 SizeMb)
m_data_blocks.clear();
m_data_blocks.resize(m_size_blocks - MC_FST_BLOCKS);
InitActiveDirBat();
m_active_directory = 0;
m_active_bat = 0;
m_valid = true;
return Save();
@ -1473,6 +1546,29 @@ std::pair<u16, u16> Header::CalculateChecksums() const
return CalculateMemcardChecksums(&raw[checksum_area_start], checksum_area_size);
}
GCMemcardErrorCode Header::CheckForErrors(u16 card_size_mbits) const
{
GCMemcardErrorCode error_code;
// total card size should match card size in header
if (m_size_mb != card_size_mbits)
error_code.Set(GCMemcardValidityIssues::MISMATCHED_CARD_SIZE);
// unused areas, should always be filled with 0xFF
if (std::any_of(m_unused_1.begin(), m_unused_1.end(), [](u8 val) { return val != 0xFF; }) ||
std::any_of(m_unused_2.begin(), m_unused_2.end(), [](u8 val) { return val != 0xFF; }))
{
error_code.Set(GCMemcardValidityIssues::DATA_IN_UNUSED_AREA);
}
// verify checksums
const auto [checksum_sum, checksum_inv] = CalculateChecksums();
if (checksum_sum != m_checksum || checksum_inv != m_checksum_inv)
error_code.Set(GCMemcardValidityIssues::INVALID_CHECKSUM);
return error_code;
}
Directory::Directory()
{
memset(this, 0xFF, BLOCK_SIZE);
@ -1508,3 +1604,19 @@ std::pair<u16, u16> Directory::CalculateChecksums() const
constexpr size_t checksum_area_size = checksum_area_end - checksum_area_start;
return CalculateMemcardChecksums(&raw[checksum_area_start], checksum_area_size);
}
GCMemcardErrorCode Directory::CheckForErrors() const
{
GCMemcardErrorCode error_code;
// verify checksums
const auto [checksum_sum, checksum_inv] = CalculateChecksums();
if (checksum_sum != m_checksum || checksum_inv != m_checksum_inv)
error_code.Set(GCMemcardValidityIssues::INVALID_CHECKSUM);
// unused area, should always be filled with 0xFF
if (std::any_of(m_padding.begin(), m_padding.end(), [](u8 val) { return val != 0xFF; }))
error_code.Set(GCMemcardValidityIssues::DATA_IN_UNUSED_AREA);
return error_code;
}

View File

@ -6,6 +6,7 @@
#include <algorithm>
#include <array>
#include <bitset>
#include <string>
#include <vector>
@ -79,6 +80,30 @@ enum class GCMemcardRemoveFileRetVal
DELETE_FAIL,
};
enum class GCMemcardValidityIssues
{
FAILED_TO_OPEN,
IO_ERROR,
INVALID_CARD_SIZE,
INVALID_CHECKSUM,
MISMATCHED_CARD_SIZE,
FREE_BLOCK_MISMATCH,
DATA_IN_UNUSED_AREA,
COUNT
};
class GCMemcardErrorCode
{
public:
bool HasCriticalErrors() const;
bool Test(GCMemcardValidityIssues code) const;
void Set(GCMemcardValidityIssues code);
GCMemcardErrorCode& operator|=(const GCMemcardErrorCode& other);
private:
std::bitset<static_cast<size_t>(GCMemcardValidityIssues::COUNT)> m_errors;
};
// size of a single memory card block in bytes
constexpr u32 BLOCK_SIZE = 0x2000;
@ -106,7 +131,7 @@ constexpr u16 BAT_SIZE = 0xFFB;
constexpr u16 MemCard59Mb = 0x04;
constexpr u16 MemCard123Mb = 0x08;
constexpr u16 MemCard251Mb = 0x10;
constexpr u16 Memcard507Mb = 0x20;
constexpr u16 Memcard507Mb = 0x20; // FIXME: case
constexpr u16 MemCard1019Mb = 0x40;
constexpr u16 MemCard2043Mb = 0x80;
@ -192,6 +217,8 @@ struct Header
void FixChecksums();
std::pair<u16, u16> CalculateChecksums() const;
GCMemcardErrorCode CheckForErrors(u16 card_size_mbits) const;
};
static_assert(sizeof(Header) == BLOCK_SIZE);
@ -301,6 +328,8 @@ struct Directory
void FixChecksums();
std::pair<u16, u16> CalculateChecksums() const;
GCMemcardErrorCode CheckForErrors() const;
};
static_assert(sizeof(Directory) == BLOCK_SIZE);
@ -333,6 +362,8 @@ struct BlockAlloc
void FixChecksums();
std::pair<u16, u16> CalculateChecksums() const;
GCMemcardErrorCode CheckForErrors(u16 size_mbits) const;
};
static_assert(sizeof(BlockAlloc) == BLOCK_SIZE);
#pragma pack(pop)
@ -354,8 +385,9 @@ private:
int m_active_directory;
int m_active_bat;
GCMemcard();
GCMemcardImportFileRetVal ImportGciInternal(File::IOFile&& gci, const std::string& inputFile);
void InitActiveDirBat();
const Directory& GetActiveDirectory() const;
const BlockAlloc& GetActiveBat() const;
@ -364,8 +396,9 @@ private:
void UpdateBat(const BlockAlloc& bat);
public:
explicit GCMemcard(const std::string& fileName, bool forceCreation = false,
bool shift_jis = false);
static std::optional<GCMemcard> Create(std::string filename, u16 size_mbits, bool shift_jis);
static std::pair<GCMemcardErrorCode, std::optional<GCMemcard>> Open(std::string filename);
GCMemcard(const GCMemcard&) = delete;
GCMemcard& operator=(const GCMemcard&) = delete;
@ -382,7 +415,6 @@ public:
static s32 PSO_MakeSaveGameValid(const Header& cardheader, const DEntry& direntry,
std::vector<GCMBlock>& FileBuffer);
u32 TestChecksums() const;
bool FixChecksums();
// get number of file entries in the directory

View File

@ -703,12 +703,12 @@ void MigrateFromMemcardFile(const std::string& directory_name, int card_index)
Config::Get(Config::MAIN_MEMCARD_B_PATH);
if (File::Exists(ini_memcard))
{
GCMemcard memcard(ini_memcard.c_str());
if (memcard.IsValid())
auto [error_code, memcard] = GCMemcard::Open(ini_memcard.c_str());
if (!error_code.HasCriticalErrors() && memcard && memcard->IsValid())
{
for (u8 i = 0; i < DIRLEN; i++)
{
memcard.ExportGci(i, "", directory_name);
memcard->ExportGci(i, "", directory_name);
}
}
}

View File

@ -241,13 +241,14 @@ void GCMemcardManager::UpdateActions()
void GCMemcardManager::SetSlotFile(int slot, QString path)
{
auto memcard = std::make_unique<GCMemcard>(path.toStdString());
// TODO: Check error codes and give reasonable error messages.
auto [error_code, memcard] = GCMemcard::Open(path.toStdString());
if (!memcard->IsValid())
if (error_code.HasCriticalErrors() || !memcard || !memcard->IsValid())
return;
m_slot_file_edit[slot]->setText(path);
m_slot_memcard[slot] = std::move(memcard);
m_slot_memcard[slot] = std::make_unique<GCMemcard>(std::move(*memcard));
UpdateSlotTable(slot);
UpdateActions();

View File

@ -212,9 +212,10 @@ void GameCubePane::OnConfigPressed(int slot)
{
if (File::Exists(filename.toStdString()))
{
GCMemcard mc(filename.toStdString());
// TODO: check error codes and give reasonable error messages
auto [error_code, mc] = GCMemcard::Open(filename.toStdString());
if (!mc.IsValid())
if (error_code.HasCriticalErrors() || !mc || !mc->IsValid())
{
ModalMessageBox::critical(this, tr("Error"),
tr("Cannot use that file as a memory card.\n%1\n"