Add BitSet and, as a test, convert some JitRegCache stuff to it.

This is a higher level, more concise wrapper for bitsets which supports
efficiently counting and iterating over set bits.  It's similar to
std::bitset, but the latter does not support efficient iteration (and at
least in libc++, the count algorithm is subpar, not that it really
matters).  The converted uses include both bitsets and, notably,
considerably less efficient regular arrays (for in/out registers in
PPCAnalyst).

Unfortunately, this may slightly pessimize unoptimized builds.
This commit is contained in:
comex 2014-10-16 21:49:48 -04:00
parent e51676fdf1
commit b6a7438053
8 changed files with 236 additions and 109 deletions

156
Source/Core/Common/BitSet.h Normal file
View File

@ -0,0 +1,156 @@
// This file is under the public domain.
#pragma once
#include <initializer_list>
#include <type_traits>
#include "CommonTypes.h"
// Helper functions:
#ifdef _WIN32
template <typename T>
static inline int CountSetBits(T v)
{
// from https://graphics.stanford.edu/~seander/bithacks.html
// GCC has this built in, but MSVC's intrinsic will only emit the actual
// POPCNT instruction, which we're not depending on
v = v - ((v >> 1) & (T)~(T)0/3);
v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3);
v = (v + (v >> 4)) & (T)~(T)0/255*15;
return (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * 8;
}
static inline int LeastSignificantSetBit(u32 val)
{
unsigned long index;
_BitScanForward(&index, val);
return (int)index;
}
static inline int LeastSignificantSetBit(u64 val)
{
unsigned long index;
_BitScanForward64(&index, val);
return (int)index;
}
#else
static inline int CountSetBits(u32 val) { return __builtin_popcount(val); }
static inline int CountSetBits(u64 val) { return __builtin_popcountll(val); }
static inline int LeastSignificantSetBit(u32 val) { return __builtin_ctz(val); }
static inline int LeastSignificantSetBit(u64 val) { return __builtin_ctzll(val); }
#endif
// Similar to std::bitset, this is a class which encapsulates a bitset, i.e.
// using the set bits of an integer to represent a set of integers. Like that
// class, it acts like an array of bools:
// BitSet32 bs; // use BitSet{32,64} instead of the template directly
// bs[1] = true;
// but also like the underlying integer ([0] = least significant bit):
// BitSet32 bs2 = ...;
// bs = (bs ^ bs2) & BitSet32(0xffff);
// The following additional functionality is provided:
// - Construction using an initializer list.
// BitSet bs { 1, 2, 4, 8 };
// - Efficiently iterating through the set bits:
// for (int i : bs)
// [i is the *index* of a set bit]
// (This uses the appropriate CPU instruction to find the next set bit in one
// operation.)
// - Counting set bits using .Count() - see comment on that method.
// TODO: use constexpr when MSVC gets out of the Dark Ages
template <typename IntTy>
class BitSet
{
static_assert(!std::is_signed<IntTy>::value, "BitSet should not be used with signed types");
public:
// A reference to a particular bit, returned from operator[].
class Ref
{
public:
Ref(Ref&& other) : m_bs(other.m_bs), m_mask(other.m_mask) {}
Ref(BitSet* bs, IntTy mask) : m_bs(bs), m_mask(mask) {}
operator bool() const { return (m_bs->m_val & m_mask) != 0; }
bool operator=(bool set)
{
m_bs->m_val = (m_bs->m_val & ~m_mask) | (set ? m_mask : 0);
return set;
}
private:
BitSet* m_bs;
IntTy m_mask;
};
// A STL-like iterator is required to be able to use range-based for loops.
class Iterator
{
public:
Iterator(const Iterator& other) : m_val(other.m_val), m_bit(other.m_bit) {}
Iterator(IntTy val, int bit) : m_val(val), m_bit(bit) {}
Iterator& operator=(Iterator other) { new (this) Iterator(other); return *this; }
int operator*() { return m_bit; }
Iterator& operator++()
{
if (m_val == 0)
{
m_bit = -1;
}
else
{
int bit = LeastSignificantSetBit(m_val);
m_val &= ~(1 << bit);
m_bit = bit;
}
return *this;
}
Iterator operator++(int _)
{
Iterator other(*this);
++*this;
return other;
}
bool operator==(Iterator other) const { return m_bit == other.m_bit; }
bool operator!=(Iterator other) const { return m_bit != other.m_bit; }
private:
IntTy m_val;
int m_bit;
};
BitSet() : m_val(0) {}
explicit BitSet(IntTy val) : m_val(val) {}
BitSet(std::initializer_list<int> init)
{
m_val = 0;
for (int bit : init)
m_val |= (IntTy)1 << bit;
}
Ref operator[](size_t bit) { return Ref(this, (IntTy)1 << bit); }
const Ref operator[](size_t bit) const { return (*const_cast<BitSet*>(this))[bit]; }
bool operator==(BitSet other) const { return m_val == other.m_val; }
bool operator!=(BitSet other) const { return m_val != other.m_val; }
BitSet operator|(BitSet other) const { return BitSet(m_val | other.m_val); }
BitSet operator&(BitSet other) const { return BitSet(m_val & other.m_val); }
BitSet operator^(BitSet other) const { return BitSet(m_val ^ other.m_val); }
BitSet operator~() const { return BitSet(~m_val); }
BitSet& operator|=(BitSet other) { return *this = *this | other; }
BitSet& operator&=(BitSet other) { return *this = *this & other; }
BitSet& operator^=(BitSet other) { return *this = *this ^ other; }
operator u32() = delete;
operator bool() { return m_val != 0; }
// Warning: Even though on modern CPUs this is a single fast instruction,
// Dolphin's official builds do not currently assume POPCNT support on x86,
// so slower explicit bit twiddling is generated. Still should generally
// be faster than a loop.
unsigned int Count() const { return CountSetBits(m_val); }
Iterator begin() const { Iterator it(m_val, 0); return ++it; }
Iterator end() const { return Iterator(m_val, -1); }
IntTy m_val;
};
typedef BitSet<u32> BitSet32;
typedef BitSet<u64> BitSet64;

View File

@ -39,6 +39,7 @@
<ClInclude Include="Atomic_GCC.h" /> <ClInclude Include="Atomic_GCC.h" />
<ClInclude Include="Atomic_Win32.h" /> <ClInclude Include="Atomic_Win32.h" />
<ClInclude Include="BitField.h" /> <ClInclude Include="BitField.h" />
<ClInclude Include="BitSet.h" />
<ClInclude Include="BreakPoints.h" /> <ClInclude Include="BreakPoints.h" />
<ClInclude Include="CDUtils.h" /> <ClInclude Include="CDUtils.h" />
<ClInclude Include="ChunkFile.h" /> <ClInclude Include="ChunkFile.h" />

View File

@ -13,6 +13,7 @@
<ClInclude Include="Atomic_GCC.h" /> <ClInclude Include="Atomic_GCC.h" />
<ClInclude Include="Atomic_Win32.h" /> <ClInclude Include="Atomic_Win32.h" />
<ClInclude Include="BitField.h" /> <ClInclude Include="BitField.h" />
<ClInclude Include="BitSet.h" />
<ClInclude Include="BreakPoints.h" /> <ClInclude Include="BreakPoints.h" />
<ClInclude Include="CDUtils.h" /> <ClInclude Include="CDUtils.h" />
<ClInclude Include="ChunkFile.h" /> <ClInclude Include="ChunkFile.h" />

View File

@ -736,29 +736,28 @@ const u8* Jit64::DoJit(u32 em_address, PPCAnalyst::CodeBuffer *code_buf, JitBloc
// output, which needs to be bound in the actual instruction compilation. // output, which needs to be bound in the actual instruction compilation.
// TODO: make this smarter in the case that we're actually register-starved, i.e. // TODO: make this smarter in the case that we're actually register-starved, i.e.
// prioritize the more important registers. // prioritize the more important registers.
for (int k = 0; k < 3 && gpr.NumFreeRegisters() >= 2; k++) for (int reg : ops[i].regsIn)
{ {
int reg = ops[i].regsIn[k]; if (gpr.NumFreeRegisters() < 2)
if (reg >= 0 && (ops[i].gprInReg & (1 << reg)) && !gpr.R(reg).IsImm()) break;
if (ops[i].gprInReg[reg] && !gpr.R(reg).IsImm())
gpr.BindToRegister(reg, true, false); gpr.BindToRegister(reg, true, false);
} }
for (int k = 0; k < 4 && fpr.NumFreeRegisters() >= 2; k++) for (int reg : ops[i].regsOut)
{ {
int reg = ops[i].fregsIn[k]; if (fpr.NumFreeRegisters() < 2)
if (reg >= 0 && (ops[i].fprInXmm & (1 << reg))) break;
fpr.BindToRegister(reg, true, false); if (ops[i].fprInXmm[reg])
gpr.BindToRegister(reg, true, false);
} }
Jit64Tables::CompileInstruction(ops[i]); Jit64Tables::CompileInstruction(ops[i]);
// If we have a register that will never be used again, flush it. // If we have a register that will never be used again, flush it.
for (int j = 0; j < 32; j++) for (int j : ~ops[i].gprInUse)
{ gpr.StoreFromRegister(j);
if (!(ops[i].gprInUse & (1 << j))) for (int j : ~ops[i].fprInUse)
gpr.StoreFromRegister(j); fpr.StoreFromRegister(j);
if (!(ops[i].fprInUse & (1 << j)))
fpr.StoreFromRegister(j);
}
if (js.memcheck && (opinfo->flags & FL_LOADSTORE)) if (js.memcheck && (opinfo->flags & FL_LOADSTORE))
{ {

View File

@ -95,42 +95,38 @@ void RegCache::UnlockAllX()
xreg.locked = false; xreg.locked = false;
} }
u32 GPRRegCache::GetRegUtilization() BitSet32 GPRRegCache::GetRegUtilization()
{ {
return jit->js.op->gprInReg; return jit->js.op->gprInReg;
} }
u32 FPURegCache::GetRegUtilization() BitSet32 FPURegCache::GetRegUtilization()
{ {
return jit->js.op->gprInReg; return jit->js.op->gprInReg;
} }
u32 GPRRegCache::CountRegsIn(size_t preg, u32 lookahead) BitSet32 GPRRegCache::CountRegsIn(size_t preg, u32 lookahead)
{ {
u32 regsUsed = 0; BitSet32 regsUsed;
for (u32 i = 1; i < lookahead; i++) for (u32 i = 1; i < lookahead; i++)
{ {
for (int j = 0; j < 3; j++) BitSet32 regsIn = jit->js.op[i].regsIn;
if (jit->js.op[i].regsIn[j] >= 0) regsUsed |= regsIn;
regsUsed |= 1 << jit->js.op[i].regsIn[j]; if (regsIn[preg])
for (int j = 0; j < 3; j++) return regsUsed;
if ((size_t)jit->js.op[i].regsIn[j] == preg)
return regsUsed;
} }
return regsUsed; return regsUsed;
} }
u32 FPURegCache::CountRegsIn(size_t preg, u32 lookahead) BitSet32 FPURegCache::CountRegsIn(size_t preg, u32 lookahead)
{ {
u32 regsUsed = 0; BitSet32 regsUsed;
for (u32 i = 1; i < lookahead; i++) for (u32 i = 1; i < lookahead; i++)
{ {
for (int j = 0; j < 4; j++) BitSet32 regsIn = jit->js.op[i].fregsIn;
if (jit->js.op[i].fregsIn[j] >= 0) regsUsed |= regsIn;
regsUsed |= 1 << jit->js.op[i].fregsIn[j]; if (regsIn[preg])
for (int j = 0; j < 4; j++) return regsUsed;
if ((size_t)jit->js.op[i].fregsIn[j] == preg)
return regsUsed;
} }
return regsUsed; return regsUsed;
} }
@ -151,17 +147,14 @@ float RegCache::ScoreRegister(X64Reg xr)
// If the register isn't actually needed in a physical register for a later instruction, // If the register isn't actually needed in a physical register for a later instruction,
// writing it back to the register file isn't quite as bad. // writing it back to the register file isn't quite as bad.
if (GetRegUtilization() & (1 << preg)) if (GetRegUtilization()[preg])
{ {
// Don't look too far ahead; we don't want to have quadratic compilation times for // Don't look too far ahead; we don't want to have quadratic compilation times for
// enormous block sizes! // enormous block sizes!
// This actually improves register allocation a tiny bit; I'm not sure why. // This actually improves register allocation a tiny bit; I'm not sure why.
u32 lookahead = std::min(jit->js.instructionsLeft, 64); u32 lookahead = std::min(jit->js.instructionsLeft, 64);
// Count how many other registers are going to be used before we need this one again. // Count how many other registers are going to be used before we need this one again.
u32 regs_in = CountRegsIn(preg, lookahead); u32 regs_in_count = CountRegsIn(preg, lookahead).Count();
u32 regs_in_count = 0;
for (int i = 0; i < 32; i++)
regs_in_count += !!(regs_in & (1 << i));
// Totally ad-hoc heuristic to bias based on how many other registers we'll need // Totally ad-hoc heuristic to bias based on how many other registers we'll need
// before this one gets used again. // before this one gets used again.
score += 1 + 2 * (5 - log2f(1 + (float)regs_in_count)); score += 1 + 2 * (5 - log2f(1 + (float)regs_in_count));

View File

@ -44,8 +44,8 @@ protected:
virtual const int *GetAllocationOrder(size_t& count) = 0; virtual const int *GetAllocationOrder(size_t& count) = 0;
virtual u32 GetRegUtilization() = 0; virtual BitSet32 GetRegUtilization() = 0;
virtual u32 CountRegsIn(size_t preg, u32 lookahead) = 0; virtual BitSet32 CountRegsIn(size_t preg, u32 lookahead) = 0;
Gen::XEmitter *emit; Gen::XEmitter *emit;
@ -137,8 +137,8 @@ public:
Gen::OpArg GetDefaultLocation(size_t reg) const override; Gen::OpArg GetDefaultLocation(size_t reg) const override;
const int* GetAllocationOrder(size_t& count) override; const int* GetAllocationOrder(size_t& count) override;
void SetImmediate32(size_t preg, u32 immValue); void SetImmediate32(size_t preg, u32 immValue);
u32 GetRegUtilization(); BitSet32 GetRegUtilization() override;
u32 CountRegsIn(size_t preg, u32 lookahead); BitSet32 CountRegsIn(size_t preg, u32 lookahead) override;
}; };
@ -149,6 +149,6 @@ public:
void LoadRegister(size_t preg, Gen::X64Reg newLoc) override; void LoadRegister(size_t preg, Gen::X64Reg newLoc) override;
const int* GetAllocationOrder(size_t& count) override; const int* GetAllocationOrder(size_t& count) override;
Gen::OpArg GetDefaultLocation(size_t reg) const override; Gen::OpArg GetDefaultLocation(size_t reg) const override;
u32 GetRegUtilization(); BitSet32 GetRegUtilization() override;
u32 CountRegsIn(size_t preg, u32 lookahead); BitSet32 CountRegsIn(size_t preg, u32 lookahead) override;
}; };

View File

@ -249,21 +249,15 @@ static bool CanSwapAdjacentOps(const CodeOp &a, const CodeOp &b)
// That is, check that none of b's outputs matches any of a's inputs, // That is, check that none of b's outputs matches any of a's inputs,
// and that none of a's outputs matches any of b's inputs. // and that none of a's outputs matches any of b's inputs.
// The latter does not apply if a is a cmp, of course, but doesn't hurt to check. // The latter does not apply if a is a cmp, of course, but doesn't hurt to check.
for (int j = 0; j < 3; j++) // register collision: b outputs to one of a's inputs
{ if (b.regsOut & a.regsIn)
int regInA = a.regsIn[j]; return false;
int regInB = b.regsIn[j]; // register collision: a outputs to one of b's inputs
// register collision: b outputs to one of a's inputs if (a.regsOut & b.regsIn)
if (regInA >= 0 && (b.regsOut[0] == regInA || b.regsOut[1] == regInA)) return false;
return false; // register collision: b outputs to one of a's outputs (overwriting it)
// register collision: a outputs to one of b's inputs if (b.regsOut & a.regsOut)
if (regInB >= 0 && (a.regsOut[0] == regInB || a.regsOut[1] == regInB)) return false;
return false;
// register collision: b outputs to one of a's outputs (overwriting it)
for (int k = 0; k < 2; k++)
if (b.regsOut[k] >= 0 && (b.regsOut[k] == a.regsOut[0] || b.regsOut[k] == a.regsOut[1]))
return false;
}
return true; return true;
} }
@ -520,42 +514,41 @@ void PPCAnalyzer::SetInstructionStats(CodeBlock *block, CodeOp *code, GekkoOPInf
if (code->inst.OPCD == 31 && code->inst.SUBOP10 == 467) // mtspr if (code->inst.OPCD == 31 && code->inst.SUBOP10 == 467) // mtspr
code->outputCA = ((code->inst.SPRU << 5) | (code->inst.SPRL & 0x1F)) == SPR_XER; code->outputCA = ((code->inst.SPRU << 5) | (code->inst.SPRL & 0x1F)) == SPR_XER;
int numOut = 0; code->regsIn = BitSet32(0);
int numIn = 0; code->regsOut = BitSet32(0);
int numFloatIn = 0;
if (opinfo->flags & FL_OUT_A) if (opinfo->flags & FL_OUT_A)
{ {
code->regsOut[numOut++] = code->inst.RA; code->regsOut[code->inst.RA] = true;
block->m_gpa->SetOutputRegister(code->inst.RA, index); block->m_gpa->SetOutputRegister(code->inst.RA, index);
} }
if (opinfo->flags & FL_OUT_D) if (opinfo->flags & FL_OUT_D)
{ {
code->regsOut[numOut++] = code->inst.RD; code->regsOut[code->inst.RD] = true;
block->m_gpa->SetOutputRegister(code->inst.RD, index); block->m_gpa->SetOutputRegister(code->inst.RD, index);
} }
if (opinfo->flags & FL_OUT_S) if (opinfo->flags & FL_OUT_S)
{ {
code->regsOut[numOut++] = code->inst.RS; code->regsOut[code->inst.RS] = true;
block->m_gpa->SetOutputRegister(code->inst.RS, index); block->m_gpa->SetOutputRegister(code->inst.RS, index);
} }
if ((opinfo->flags & FL_IN_A) || ((opinfo->flags & FL_IN_A0) && code->inst.RA != 0)) if ((opinfo->flags & FL_IN_A) || ((opinfo->flags & FL_IN_A0) && code->inst.RA != 0))
{ {
code->regsIn[numIn++] = code->inst.RA; code->regsIn[code->inst.RA] = true;
block->m_gpa->SetInputRegister(code->inst.RA, index); block->m_gpa->SetInputRegister(code->inst.RA, index);
} }
if (opinfo->flags & FL_IN_B) if (opinfo->flags & FL_IN_B)
{ {
code->regsIn[numIn++] = code->inst.RB; code->regsIn[code->inst.RB] = true;
block->m_gpa->SetInputRegister(code->inst.RB, index); block->m_gpa->SetInputRegister(code->inst.RB, index);
} }
if (opinfo->flags & FL_IN_C) if (opinfo->flags & FL_IN_C)
{ {
code->regsIn[numIn++] = code->inst.RC; code->regsIn[code->inst.RC] = true;
block->m_gpa->SetInputRegister(code->inst.RC, index); block->m_gpa->SetInputRegister(code->inst.RC, index);
} }
if (opinfo->flags & FL_IN_S) if (opinfo->flags & FL_IN_S)
{ {
code->regsIn[numIn++] = code->inst.RS; code->regsIn[code->inst.RS] = true;
block->m_gpa->SetInputRegister(code->inst.RS, index); block->m_gpa->SetInputRegister(code->inst.RS, index);
} }
@ -564,24 +557,17 @@ void PPCAnalyzer::SetInstructionStats(CodeBlock *block, CodeOp *code, GekkoOPInf
code->fregOut = code->inst.FD; code->fregOut = code->inst.FD;
else if (opinfo->flags & FL_OUT_FLOAT_S) else if (opinfo->flags & FL_OUT_FLOAT_S)
code->fregOut = code->inst.FS; code->fregOut = code->inst.FS;
code->fregsIn = BitSet32(0);
if (opinfo->flags & FL_IN_FLOAT_A) if (opinfo->flags & FL_IN_FLOAT_A)
code->fregsIn[numFloatIn++] = code->inst.FA; code->fregsIn[code->inst.FA] = true;
if (opinfo->flags & FL_IN_FLOAT_B) if (opinfo->flags & FL_IN_FLOAT_B)
code->fregsIn[numFloatIn++] = code->inst.FB; code->fregsIn[code->inst.FB] = true;
if (opinfo->flags & FL_IN_FLOAT_C) if (opinfo->flags & FL_IN_FLOAT_C)
code->fregsIn[numFloatIn++] = code->inst.FC; code->fregsIn[code->inst.FC] = true;
if (opinfo->flags & FL_IN_FLOAT_D) if (opinfo->flags & FL_IN_FLOAT_D)
code->fregsIn[numFloatIn++] = code->inst.FD; code->fregsIn[code->inst.FD] = true;
if (opinfo->flags & FL_IN_FLOAT_S) if (opinfo->flags & FL_IN_FLOAT_S)
code->fregsIn[numFloatIn++] = code->inst.FS; code->fregsIn[code->inst.FS] = true;
// Set remaining register slots as unused (-1)
for (int j = numIn; j < 3; j++)
code->regsIn[j] = -1;
for (int j = numOut; j < 2; j++)
code->regsOut[j] = -1;
for (int j = numFloatIn; j < 4; j++)
code->fregsIn[j] = -1;
switch (opinfo->type) switch (opinfo->type)
{ {
@ -797,7 +783,7 @@ u32 PPCAnalyzer::Analyze(u32 address, CodeBlock *block, CodeBuffer *buffer, u32
// Scan for flag dependencies; assume the next block (or any branch that can leave the block) // Scan for flag dependencies; assume the next block (or any branch that can leave the block)
// wants flags, to be safe. // wants flags, to be safe.
bool wantsCR0 = true, wantsCR1 = true, wantsFPRF = true, wantsCA = true; bool wantsCR0 = true, wantsCR1 = true, wantsFPRF = true, wantsCA = true;
u32 fprInUse = 0, gprInUse = 0, gprInReg = 0, fprInXmm = 0; BitSet32 fprInUse, gprInUse, gprInReg, fprInXmm;
for (int i = block->m_num_instructions - 1; i >= 0; i--) for (int i = block->m_num_instructions - 1; i >= 0; i--)
{ {
bool opWantsCR0 = code[i].wantsCR0; bool opWantsCR0 = code[i].wantsCR0;
@ -822,30 +808,20 @@ u32 PPCAnalyzer::Analyze(u32 address, CodeBlock *block, CodeBuffer *buffer, u32
code[i].fprInXmm = fprInXmm; code[i].fprInXmm = fprInXmm;
// TODO: if there's no possible endblocks or exceptions in between, tell the regcache // TODO: if there's no possible endblocks or exceptions in between, tell the regcache
// we can throw away a register if it's going to be overwritten later. // we can throw away a register if it's going to be overwritten later.
for (int j = 0; j < 3; j++) gprInUse |= code[i].regsIn;
if (code[i].regsIn[j] >= 0) gprInReg |= code[i].regsIn;
{ fprInUse |= code[i].fregsIn;
gprInUse |= 1 << code[i].regsIn[j]; if (strncmp(code[i].opinfo->opname, "stfd", 4))
gprInReg |= 1 << code[i].regsIn[j]; fprInXmm |= code[i].fregsIn;
}
for (int j = 0; j < 4; j++)
if (code[i].fregsIn[j] >= 0)
{
fprInUse |= 1 << code[i].fregsIn[j];
if (strncmp(code[i].opinfo->opname, "stfd", 4))
fprInXmm |= 1 << code[i].fregsIn[j];
}
// For now, we need to count output registers as "used" though; otherwise the flush // For now, we need to count output registers as "used" though; otherwise the flush
// will result in a redundant store (e.g. store to regcache, then store again to // will result in a redundant store (e.g. store to regcache, then store again to
// the same location later). // the same location later).
for (int j = 0; j < 2; j++) gprInUse |= code[i].regsOut;
if (code[i].regsOut[j] >= 0)
gprInUse |= 1 << code[i].regsOut[j];
if (code[i].fregOut >= 0) if (code[i].fregOut >= 0)
{ {
fprInUse |= 1 << code[i].fregOut; fprInUse[code[i].fregOut] = true;
if (strncmp(code[i].opinfo->opname, "stfd", 4)) if (strncmp(code[i].opinfo->opname, "stfd", 4))
fprInXmm |= 1 << code[i].fregOut; fprInXmm[code[i].fregOut] = true;
} }
} }
return address; return address;

View File

@ -10,6 +10,7 @@
#include <string> #include <string>
#include <vector> #include <vector>
#include "Common/BitSet.h"
#include "Common/CommonTypes.h" #include "Common/CommonTypes.h"
#include "Core/PowerPC/PPCTables.h" #include "Core/PowerPC/PPCTables.h"
@ -26,10 +27,10 @@ struct CodeOp //16B
u32 address; u32 address;
u32 branchTo; //if 0, not a branch u32 branchTo; //if 0, not a branch
int branchToIndex; //index of target block int branchToIndex; //index of target block
s8 regsOut[2]; BitSet32 regsOut;
s8 regsIn[3]; BitSet32 regsIn;
BitSet32 fregsIn;
s8 fregOut; s8 fregOut;
s8 fregsIn[4];
bool isBranchTarget; bool isBranchTarget;
bool wantsCR0; bool wantsCR0;
bool wantsCR1; bool wantsCR1;
@ -43,13 +44,13 @@ struct CodeOp //16B
bool canEndBlock; bool canEndBlock;
bool skip; // followed BL-s for example bool skip; // followed BL-s for example
// which registers are still needed after this instruction in this block // which registers are still needed after this instruction in this block
u32 fprInUse; BitSet32 fprInUse;
u32 gprInUse; BitSet32 gprInUse;
// just because a register is in use doesn't mean we actually need or want it in an x86 register. // just because a register is in use doesn't mean we actually need or want it in an x86 register.
u32 gprInReg; BitSet32 gprInReg;
// we do double stores from GPRs, so we don't want to load a PowerPC floating point register into // we do double stores from GPRs, so we don't want to load a PowerPC floating point register into
// an XMM only to move it again to a GPR afterwards. // an XMM only to move it again to a GPR afterwards.
u32 fprInXmm; BitSet32 fprInXmm;
}; };
struct BlockStats struct BlockStats