CoreTiming: Refactor to class.

This commit is contained in:
Admiral H. Curtiss 2022-11-26 09:29:46 +01:00
parent ed84917eb3
commit c9558ecb4c
No known key found for this signature in database
GPG Key ID: F051B4C4044F33FB
47 changed files with 718 additions and 566 deletions

View File

@ -926,8 +926,9 @@ void UpdateTitle(u64 elapsed_ms)
// interested. // interested.
static u64 ticks = 0; static u64 ticks = 0;
static u64 idleTicks = 0; static u64 idleTicks = 0;
u64 newTicks = CoreTiming::GetTicks(); auto& core_timing = Core::System::GetInstance().GetCoreTiming();
u64 newIdleTicks = CoreTiming::GetIdleTicks(); u64 newTicks = core_timing.GetTicks();
u64 newIdleTicks = core_timing.GetIdleTicks();
u64 diff = (newTicks - ticks) / 1000000; u64 diff = (newTicks - ticks) / 1000000;
u64 idleDiff = (newIdleTicks - idleTicks) / 1000000; u64 idleDiff = (newIdleTicks - idleTicks) / 1000000;

View File

@ -26,20 +26,6 @@
namespace CoreTiming namespace CoreTiming
{ {
struct EventType
{
TimedCallback callback;
const std::string* name;
};
struct Event
{
s64 time;
u64 fifo_order;
u64 userdata;
EventType* type;
};
// Sort by time, unless the times are the same, in which case sort by the order added to the queue // Sort by time, unless the times are the same, in which case sort by the order added to the queue
static bool operator>(const Event& left, const Event& right) static bool operator>(const Event& left, const Event& right)
{ {
@ -52,45 +38,6 @@ static bool operator<(const Event& left, const Event& right)
static constexpr int MAX_SLICE_LENGTH = 20000; static constexpr int MAX_SLICE_LENGTH = 20000;
struct CoreTimingState::Data
{
// unordered_map stores each element separately as a linked list node so pointers to elements
// remain stable regardless of rehashes/resizing.
std::unordered_map<std::string, EventType> event_types;
// STATE_TO_SAVE
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
// by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id;
std::mutex ts_write_lock;
Common::SPSCQueue<Event, false> ts_queue;
float last_oc_factor;
s64 idled_cycles;
u32 fake_dec_start_value;
u64 fake_dec_start_ticks;
// Are we in a function that has been called from Advance()
bool is_global_timer_sane;
EventType* ev_lost = nullptr;
size_t registered_config_callback_id;
float config_oc_factor;
float config_oc_inv_factor;
bool config_sync_on_skip_idle;
};
CoreTimingState::CoreTimingState() : m_data(std::make_unique<Data>())
{
}
CoreTimingState::~CoreTimingState() = default;
static void EmptyTimedCallback(Core::System& system, u64 userdata, s64 cyclesLate) static void EmptyTimedCallback(Core::System& system, u64 userdata, s64 cyclesLate)
{ {
} }
@ -107,104 +54,96 @@ static int DowncountToCycles(CoreTiming::Globals& g, int downcount)
return static_cast<int>(downcount * g.last_OC_factor_inverted); return static_cast<int>(downcount * g.last_OC_factor_inverted);
} }
static int CyclesToDowncount(CoreTiming::CoreTimingState::Data& state, int cycles) int CoreTimingManager::CyclesToDowncount(int cycles) const
{ {
return static_cast<int>(cycles * state.last_oc_factor); return static_cast<int>(cycles * m_last_oc_factor);
} }
EventType* RegisterEvent(const std::string& name, TimedCallback callback) EventType* CoreTimingManager::RegisterEvent(const std::string& name, TimedCallback callback)
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
// check for existing type with same name. // check for existing type with same name.
// we want event type names to remain unique so that we can use them for serialization. // we want event type names to remain unique so that we can use them for serialization.
ASSERT_MSG(POWERPC, state.event_types.find(name) == state.event_types.end(), ASSERT_MSG(POWERPC, m_event_types.find(name) == m_event_types.end(),
"CoreTiming Event \"{}\" is already registered. Events should only be registered " "CoreTiming Event \"{}\" is already registered. Events should only be registered "
"during Init to avoid breaking save states.", "during Init to avoid breaking save states.",
name); name);
auto info = state.event_types.emplace(name, EventType{callback, nullptr}); auto info = m_event_types.emplace(name, EventType{callback, nullptr});
EventType* event_type = &info.first->second; EventType* event_type = &info.first->second;
event_type->name = &info.first->first; event_type->name = &info.first->first;
return event_type; return event_type;
} }
void UnregisterAllEvents() void CoreTimingManager::UnregisterAllEvents()
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); ASSERT_MSG(POWERPC, m_event_queue.empty(), "Cannot unregister events with events pending");
m_event_types.clear();
ASSERT_MSG(POWERPC, state.event_queue.empty(), "Cannot unregister events with events pending");
state.event_types.clear();
} }
void Init() void CoreTimingManager::Init()
{ {
auto& system = Core::System::GetInstance(); auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals(); auto& g = system.GetCoreTimingGlobals();
state.registered_config_callback_id = m_registered_config_callback_id = Config::AddConfigChangedCallback(
Config::AddConfigChangedCallback([]() { Core::RunAsCPUThread([]() { RefreshConfig(); }); }); [this]() { Core::RunAsCPUThread([this]() { RefreshConfig(); }); });
RefreshConfig(); RefreshConfig();
state.last_oc_factor = state.config_oc_factor; m_last_oc_factor = m_config_oc_factor;
g.last_OC_factor_inverted = state.config_oc_inv_factor; g.last_OC_factor_inverted = m_config_oc_inv_factor;
PowerPC::ppcState.downcount = CyclesToDowncount(state, MAX_SLICE_LENGTH); PowerPC::ppcState.downcount = CyclesToDowncount(MAX_SLICE_LENGTH);
g.slice_length = MAX_SLICE_LENGTH; g.slice_length = MAX_SLICE_LENGTH;
g.global_timer = 0; g.global_timer = 0;
state.idled_cycles = 0; m_idled_cycles = 0;
// The time between CoreTiming being intialized and the first call to Advance() is considered // The time between CoreTiming being intialized and the first call to Advance() is considered
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
// executing the first PPC cycle of each slice to prepare the slice length and downcount for // executing the first PPC cycle of each slice to prepare the slice length and downcount for
// that slice. // that slice.
state.is_global_timer_sane = true; m_is_global_timer_sane = true;
state.event_fifo_id = 0; m_event_fifo_id = 0;
state.ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback); m_ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback);
} }
void Shutdown() void CoreTimingManager::Shutdown()
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); std::lock_guard lk(m_ts_write_lock);
std::lock_guard lk(state.ts_write_lock);
MoveEvents(); MoveEvents();
ClearPendingEvents(); ClearPendingEvents();
UnregisterAllEvents(); UnregisterAllEvents();
Config::RemoveConfigChangedCallback(state.registered_config_callback_id); Config::RemoveConfigChangedCallback(m_registered_config_callback_id);
} }
void RefreshConfig() void CoreTimingManager::RefreshConfig()
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); m_config_oc_factor =
state.config_oc_factor =
Config::Get(Config::MAIN_OVERCLOCK_ENABLE) ? Config::Get(Config::MAIN_OVERCLOCK) : 1.0f; Config::Get(Config::MAIN_OVERCLOCK_ENABLE) ? Config::Get(Config::MAIN_OVERCLOCK) : 1.0f;
state.config_oc_inv_factor = 1.0f / state.config_oc_factor; m_config_oc_inv_factor = 1.0f / m_config_oc_factor;
state.config_sync_on_skip_idle = Config::Get(Config::MAIN_SYNC_ON_SKIP_IDLE); m_config_sync_on_skip_idle = Config::Get(Config::MAIN_SYNC_ON_SKIP_IDLE);
} }
void DoState(PointerWrap& p) void CoreTimingManager::DoState(PointerWrap& p)
{ {
auto& system = Core::System::GetInstance(); auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals(); auto& g = system.GetCoreTimingGlobals();
std::lock_guard lk(state.ts_write_lock); std::lock_guard lk(m_ts_write_lock);
p.Do(g.slice_length); p.Do(g.slice_length);
p.Do(g.global_timer); p.Do(g.global_timer);
p.Do(state.idled_cycles); p.Do(m_idled_cycles);
p.Do(state.fake_dec_start_value); p.Do(m_fake_dec_start_value);
p.Do(state.fake_dec_start_ticks); p.Do(m_fake_dec_start_ticks);
p.Do(g.fake_TB_start_value); p.Do(g.fake_TB_start_value);
p.Do(g.fake_TB_start_ticks); p.Do(g.fake_TB_start_ticks);
p.Do(state.last_oc_factor); p.Do(m_last_oc_factor);
g.last_OC_factor_inverted = 1.0f / state.last_oc_factor; g.last_OC_factor_inverted = 1.0f / m_last_oc_factor;
p.Do(state.event_fifo_id); p.Do(m_event_fifo_id);
p.DoMarker("CoreTimingData"); p.DoMarker("CoreTimingData");
MoveEvents(); MoveEvents();
p.DoEachElement(state.event_queue, [&state](PointerWrap& pw, Event& ev) { p.DoEachElement(m_event_queue, [this](PointerWrap& pw, Event& ev) {
pw.Do(ev.time); pw.Do(ev.time);
pw.Do(ev.fifo_order); pw.Do(ev.fifo_order);
@ -221,8 +160,8 @@ void DoState(PointerWrap& p)
pw.Do(name); pw.Do(name);
if (pw.IsReadMode()) if (pw.IsReadMode())
{ {
auto itr = state.event_types.find(name); auto itr = m_event_types.find(name);
if (itr != state.event_types.end()) if (itr != m_event_types.end())
{ {
ev.type = &itr->second; ev.type = &itr->second;
} }
@ -231,7 +170,7 @@ void DoState(PointerWrap& p)
WARN_LOG_FMT(POWERPC, WARN_LOG_FMT(POWERPC,
"Lost event from savestate because its type, \"{}\", has not been registered.", "Lost event from savestate because its type, \"{}\", has not been registered.",
name); name);
ev.type = state.ev_lost; ev.type = m_ev_lost;
} }
} }
}); });
@ -241,19 +180,18 @@ void DoState(PointerWrap& p)
// The exact layout of the heap in memory is implementation defined, therefore it is platform // The exact layout of the heap in memory is implementation defined, therefore it is platform
// and library version specific. // and library version specific.
if (p.IsReadMode()) if (p.IsReadMode())
std::make_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>()); std::make_heap(m_event_queue.begin(), m_event_queue.end(), std::greater<Event>());
} }
// This should only be called from the CPU thread. If you are calling // This should only be called from the CPU thread. If you are calling
// it from any other thread, you are doing something evil // it from any other thread, you are doing something evil
u64 GetTicks() u64 CoreTimingManager::GetTicks() const
{ {
auto& system = Core::System::GetInstance(); auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals(); auto& g = system.GetCoreTimingGlobals();
u64 ticks = static_cast<u64>(g.global_timer); u64 ticks = static_cast<u64>(g.global_timer);
if (!state.is_global_timer_sane) if (!m_is_global_timer_sane)
{ {
int downcount = DowncountToCycles(g, PowerPC::ppcState.downcount); int downcount = DowncountToCycles(g, PowerPC::ppcState.downcount);
ticks += g.slice_length - downcount; ticks += g.slice_length - downcount;
@ -261,24 +199,22 @@ u64 GetTicks()
return ticks; return ticks;
} }
u64 GetIdleTicks() u64 CoreTimingManager::GetIdleTicks() const
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); return static_cast<u64>(m_idled_cycles);
return static_cast<u64>(state.idled_cycles);
} }
void ClearPendingEvents() void CoreTimingManager::ClearPendingEvents()
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); m_event_queue.clear();
state.event_queue.clear();
} }
void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata, FromThread from) void CoreTimingManager::ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata,
FromThread from)
{ {
ASSERT_MSG(POWERPC, event_type, "Event type is nullptr, will crash now."); ASSERT_MSG(POWERPC, event_type, "Event type is nullptr, will crash now.");
auto& system = Core::System::GetInstance(); auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals(); auto& g = system.GetCoreTimingGlobals();
bool from_cpu_thread; bool from_cpu_thread;
@ -299,11 +235,11 @@ void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata,
s64 timeout = GetTicks() + cycles_into_future; s64 timeout = GetTicks() + cycles_into_future;
// If this event needs to be scheduled before the next advance(), force one early // If this event needs to be scheduled before the next advance(), force one early
if (!state.is_global_timer_sane) if (!m_is_global_timer_sane)
ForceExceptionCheck(cycles_into_future); ForceExceptionCheck(cycles_into_future);
state.event_queue.emplace_back(Event{timeout, state.event_fifo_id++, userdata, event_type}); m_event_queue.emplace_back(Event{timeout, m_event_fifo_id++, userdata, event_type});
std::push_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>()); std::push_heap(m_event_queue.begin(), m_event_queue.end(), std::greater<Event>());
} }
else else
{ {
@ -315,36 +251,33 @@ void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata,
*event_type->name); *event_type->name);
} }
std::lock_guard lk(state.ts_write_lock); std::lock_guard lk(m_ts_write_lock);
state.ts_queue.Push(Event{g.global_timer + cycles_into_future, 0, userdata, event_type}); m_ts_queue.Push(Event{g.global_timer + cycles_into_future, 0, userdata, event_type});
} }
} }
void RemoveEvent(EventType* event_type) void CoreTimingManager::RemoveEvent(EventType* event_type)
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); auto itr = std::remove_if(m_event_queue.begin(), m_event_queue.end(),
auto itr = std::remove_if(state.event_queue.begin(), state.event_queue.end(),
[&](const Event& e) { return e.type == event_type; }); [&](const Event& e) { return e.type == event_type; });
// Removing random items breaks the invariant so we have to re-establish it. // Removing random items breaks the invariant so we have to re-establish it.
if (itr != state.event_queue.end()) if (itr != m_event_queue.end())
{ {
state.event_queue.erase(itr, state.event_queue.end()); m_event_queue.erase(itr, m_event_queue.end());
std::make_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>()); std::make_heap(m_event_queue.begin(), m_event_queue.end(), std::greater<Event>());
} }
} }
void RemoveAllEvents(EventType* event_type) void CoreTimingManager::RemoveAllEvents(EventType* event_type)
{ {
MoveEvents(); MoveEvents();
RemoveEvent(event_type); RemoveEvent(event_type);
} }
void ForceExceptionCheck(s64 cycles) void CoreTimingManager::ForceExceptionCheck(s64 cycles)
{ {
auto& system = Core::System::GetInstance(); auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals(); auto& g = system.GetCoreTimingGlobals();
cycles = std::max<s64>(0, cycles); cycles = std::max<s64>(0, cycles);
@ -353,55 +286,53 @@ void ForceExceptionCheck(s64 cycles)
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int here. // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int here.
// Account for cycles already executed by adjusting the g.slice_length // Account for cycles already executed by adjusting the g.slice_length
g.slice_length -= DowncountToCycles(g, PowerPC::ppcState.downcount) - static_cast<int>(cycles); g.slice_length -= DowncountToCycles(g, PowerPC::ppcState.downcount) - static_cast<int>(cycles);
PowerPC::ppcState.downcount = CyclesToDowncount(state, static_cast<int>(cycles)); PowerPC::ppcState.downcount = CyclesToDowncount(static_cast<int>(cycles));
} }
} }
void MoveEvents() void CoreTimingManager::MoveEvents()
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); for (Event ev; m_ts_queue.Pop(ev);)
for (Event ev; state.ts_queue.Pop(ev);)
{ {
ev.fifo_order = state.event_fifo_id++; ev.fifo_order = m_event_fifo_id++;
state.event_queue.emplace_back(std::move(ev)); m_event_queue.emplace_back(std::move(ev));
std::push_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>()); std::push_heap(m_event_queue.begin(), m_event_queue.end(), std::greater<Event>());
} }
} }
void Advance() void CoreTimingManager::Advance()
{ {
auto& system = Core::System::GetInstance(); auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals(); auto& g = system.GetCoreTimingGlobals();
MoveEvents(); MoveEvents();
int cyclesExecuted = g.slice_length - DowncountToCycles(g, PowerPC::ppcState.downcount); int cyclesExecuted = g.slice_length - DowncountToCycles(g, PowerPC::ppcState.downcount);
g.global_timer += cyclesExecuted; g.global_timer += cyclesExecuted;
state.last_oc_factor = state.config_oc_factor; m_last_oc_factor = m_config_oc_factor;
g.last_OC_factor_inverted = state.config_oc_inv_factor; g.last_OC_factor_inverted = m_config_oc_inv_factor;
g.slice_length = MAX_SLICE_LENGTH; g.slice_length = MAX_SLICE_LENGTH;
state.is_global_timer_sane = true; m_is_global_timer_sane = true;
while (!state.event_queue.empty() && state.event_queue.front().time <= g.global_timer) while (!m_event_queue.empty() && m_event_queue.front().time <= g.global_timer)
{ {
Event evt = std::move(state.event_queue.front()); Event evt = std::move(m_event_queue.front());
std::pop_heap(state.event_queue.begin(), state.event_queue.end(), std::greater<Event>()); std::pop_heap(m_event_queue.begin(), m_event_queue.end(), std::greater<Event>());
state.event_queue.pop_back(); m_event_queue.pop_back();
evt.type->callback(system, evt.userdata, g.global_timer - evt.time); evt.type->callback(system, evt.userdata, g.global_timer - evt.time);
} }
state.is_global_timer_sane = false; m_is_global_timer_sane = false;
// Still events left (scheduled in the future) // Still events left (scheduled in the future)
if (!state.event_queue.empty()) if (!m_event_queue.empty())
{ {
g.slice_length = static_cast<int>( g.slice_length = static_cast<int>(
std::min<s64>(state.event_queue.front().time - g.global_timer, MAX_SLICE_LENGTH)); std::min<s64>(m_event_queue.front().time - g.global_timer, MAX_SLICE_LENGTH));
} }
PowerPC::ppcState.downcount = CyclesToDowncount(state, g.slice_length); PowerPC::ppcState.downcount = CyclesToDowncount(g.slice_length);
// Check for any external exceptions. // Check for any external exceptions.
// It's important to do this after processing events otherwise any exceptions will be delayed // It's important to do this after processing events otherwise any exceptions will be delayed
@ -410,13 +341,12 @@ void Advance()
PowerPC::CheckExternalExceptions(); PowerPC::CheckExternalExceptions();
} }
void LogPendingEvents() void CoreTimingManager::LogPendingEvents() const
{ {
auto& system = Core::System::GetInstance(); auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals(); auto& g = system.GetCoreTimingGlobals();
auto clone = state.event_queue; auto clone = m_event_queue;
std::sort(clone.begin(), clone.end()); std::sort(clone.begin(), clone.end());
for (const Event& ev : clone) for (const Event& ev : clone)
{ {
@ -426,26 +356,24 @@ void LogPendingEvents()
} }
// Should only be called from the CPU thread after the PPC clock has changed // Should only be called from the CPU thread after the PPC clock has changed
void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock) void CoreTimingManager::AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock)
{ {
auto& system = Core::System::GetInstance(); auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals(); auto& g = system.GetCoreTimingGlobals();
for (Event& ev : state.event_queue) for (Event& ev : m_event_queue)
{ {
const s64 ticks = (ev.time - g.global_timer) * new_ppc_clock / old_ppc_clock; const s64 ticks = (ev.time - g.global_timer) * new_ppc_clock / old_ppc_clock;
ev.time = g.global_timer + ticks; ev.time = g.global_timer + ticks;
} }
} }
void Idle() void CoreTimingManager::Idle()
{ {
auto& system = Core::System::GetInstance(); auto& system = Core::System::GetInstance();
auto& state = system.GetCoreTimingState().GetData();
auto& g = system.GetCoreTimingGlobals(); auto& g = system.GetCoreTimingGlobals();
if (state.config_sync_on_skip_idle) if (m_config_sync_on_skip_idle)
{ {
// When the FIFO is processing data we must not advance because in this way // When the FIFO is processing data we must not advance because in this way
// the VI will be desynchronized. So, We are waiting until the FIFO finish and // the VI will be desynchronized. So, We are waiting until the FIFO finish and
@ -454,18 +382,16 @@ void Idle()
} }
PowerPC::UpdatePerformanceMonitor(PowerPC::ppcState.downcount, 0, 0); PowerPC::UpdatePerformanceMonitor(PowerPC::ppcState.downcount, 0, 0);
state.idled_cycles += DowncountToCycles(g, PowerPC::ppcState.downcount); m_idled_cycles += DowncountToCycles(g, PowerPC::ppcState.downcount);
PowerPC::ppcState.downcount = 0; PowerPC::ppcState.downcount = 0;
} }
std::string GetScheduledEventsSummary() std::string CoreTimingManager::GetScheduledEventsSummary() const
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData();
std::string text = "Scheduled events\n"; std::string text = "Scheduled events\n";
text.reserve(1000); text.reserve(1000);
auto clone = state.event_queue; auto clone = m_event_queue;
std::sort(clone.begin(), clone.end()); std::sort(clone.begin(), clone.end());
for (const Event& ev : clone) for (const Event& ev : clone)
{ {
@ -474,52 +400,58 @@ std::string GetScheduledEventsSummary()
return text; return text;
} }
u32 GetFakeDecStartValue() u32 CoreTimingManager::GetFakeDecStartValue() const
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); return m_fake_dec_start_value;
return state.fake_dec_start_value;
} }
void SetFakeDecStartValue(u32 val) void CoreTimingManager::SetFakeDecStartValue(u32 val)
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); m_fake_dec_start_value = val;
state.fake_dec_start_value = val;
} }
u64 GetFakeDecStartTicks() u64 CoreTimingManager::GetFakeDecStartTicks() const
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); return m_fake_dec_start_ticks;
return state.fake_dec_start_ticks;
} }
void SetFakeDecStartTicks(u64 val) void CoreTimingManager::SetFakeDecStartTicks(u64 val)
{ {
auto& state = Core::System::GetInstance().GetCoreTimingState().GetData(); m_fake_dec_start_ticks = val;
state.fake_dec_start_ticks = val;
} }
u64 GetFakeTBStartValue() u64 CoreTimingManager::GetFakeTBStartValue() const
{ {
auto& g = Core::System::GetInstance().GetCoreTimingGlobals(); auto& g = Core::System::GetInstance().GetCoreTimingGlobals();
return g.fake_TB_start_value; return g.fake_TB_start_value;
} }
void SetFakeTBStartValue(u64 val) void CoreTimingManager::SetFakeTBStartValue(u64 val)
{ {
auto& g = Core::System::GetInstance().GetCoreTimingGlobals(); auto& g = Core::System::GetInstance().GetCoreTimingGlobals();
g.fake_TB_start_value = val; g.fake_TB_start_value = val;
} }
u64 GetFakeTBStartTicks() u64 CoreTimingManager::GetFakeTBStartTicks() const
{ {
auto& g = Core::System::GetInstance().GetCoreTimingGlobals(); auto& g = Core::System::GetInstance().GetCoreTimingGlobals();
return g.fake_TB_start_ticks; return g.fake_TB_start_ticks;
} }
void SetFakeTBStartTicks(u64 val) void CoreTimingManager::SetFakeTBStartTicks(u64 val)
{ {
auto& g = Core::System::GetInstance().GetCoreTimingGlobals(); auto& g = Core::System::GetInstance().GetCoreTimingGlobals();
g.fake_TB_start_ticks = val; g.fake_TB_start_ticks = val;
} }
void GlobalAdvance()
{
Core::System::GetInstance().GetCoreTiming().Advance();
}
void GlobalIdle()
{
Core::System::GetInstance().GetCoreTiming().Idle();
}
} // namespace CoreTiming } // namespace CoreTiming

View File

@ -16,10 +16,13 @@
// inside callback: // inside callback:
// ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever") // ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
#include <memory> #include <mutex>
#include <string> #include <string>
#include <unordered_map>
#include <vector>
#include "Common/CommonTypes.h" #include "Common/CommonTypes.h"
#include "Common/SPSCQueue.h"
class PointerWrap; class PointerWrap;
@ -30,55 +33,31 @@ class System;
namespace CoreTiming namespace CoreTiming
{ {
class CoreTimingState
{
public:
CoreTimingState();
CoreTimingState(const CoreTimingState&) = delete;
CoreTimingState(CoreTimingState&&) = delete;
CoreTimingState& operator=(const CoreTimingState&) = delete;
CoreTimingState& operator=(CoreTimingState&&) = delete;
~CoreTimingState();
struct Data;
Data& GetData() { return *m_data; }
private:
std::unique_ptr<Data> m_data;
};
// These really shouldn't be global, but jit64 accesses them directly // These really shouldn't be global, but jit64 accesses them directly
struct Globals struct Globals
{ {
s64 global_timer; s64 global_timer = 0;
int slice_length; int slice_length = 0;
u64 fake_TB_start_value; u64 fake_TB_start_value = 0;
u64 fake_TB_start_ticks; u64 fake_TB_start_ticks = 0;
float last_OC_factor_inverted; float last_OC_factor_inverted = 0.0f;
}; };
// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
// required to end slice -1 and start slice 0 before the first cycle of code is executed.
void Init();
void Shutdown();
typedef void (*TimedCallback)(Core::System& system, u64 userdata, s64 cyclesLate); typedef void (*TimedCallback)(Core::System& system, u64 userdata, s64 cyclesLate);
// This should only be called from the CPU thread, if you are calling it any other thread, you are struct EventType
// doing something evil {
u64 GetTicks(); TimedCallback callback;
u64 GetIdleTicks(); const std::string* name;
};
void RefreshConfig(); struct Event
{
void DoState(PointerWrap& p); s64 time;
u64 fifo_order;
struct EventType; u64 userdata;
EventType* type;
// Returns the event_type identifier. if name is not unique, an existing event_type will be };
// discarded.
EventType* RegisterEvent(const std::string& name, TimedCallback callback);
void UnregisterAllEvents();
enum class FromThread enum class FromThread
{ {
@ -89,47 +68,107 @@ enum class FromThread
ANY ANY
}; };
// userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from savestates. // helpers until the JIT is updated to use the instance
// After the first Advance, the slice lengths and the downcount will be reduced whenever an event void GlobalAdvance();
// is scheduled earlier than the current values (when scheduled from the CPU Thread only). void GlobalIdle();
// Scheduling from a callback will not update the downcount until the Advance() completes.
void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata = 0,
FromThread from = FromThread::CPU);
// We only permit one event of each type in the queue at a time. class CoreTimingManager
void RemoveEvent(EventType* event_type); {
void RemoveAllEvents(EventType* event_type); public:
// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
// required to end slice -1 and start slice 0 before the first cycle of code is executed.
void Init();
void Shutdown();
// Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends // This should only be called from the CPU thread, if you are calling it any other thread, you are
// the previous timing slice and begins the next one, you must Advance from the previous // doing something evil
// slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an u64 GetTicks() const;
// Advance() is required to initialize the slice length before the first cycle of emulated u64 GetIdleTicks() const;
// instructions is executed.
// NOTE: Advance updates the PowerPC downcount and performs a PPC external exception check.
void Advance();
void MoveEvents();
// Pretend that the main CPU has executed enough cycles to reach the next event. void RefreshConfig();
void Idle();
// Clear all pending events. This should ONLY be done on exit or state load. void DoState(PointerWrap& p);
void ClearPendingEvents();
void LogPendingEvents(); // Returns the event_type identifier. if name is not unique, an existing event_type will be
// discarded.
EventType* RegisterEvent(const std::string& name, TimedCallback callback);
void UnregisterAllEvents();
std::string GetScheduledEventsSummary(); // userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from savestates.
// After the first Advance, the slice lengths and the downcount will be reduced whenever an event
// is scheduled earlier than the current values (when scheduled from the CPU Thread only).
// Scheduling from a callback will not update the downcount until the Advance() completes.
void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata = 0,
FromThread from = FromThread::CPU);
void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock); // We only permit one event of each type in the queue at a time.
void RemoveEvent(EventType* event_type);
void RemoveAllEvents(EventType* event_type);
u32 GetFakeDecStartValue(); // Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends
void SetFakeDecStartValue(u32 val); // the previous timing slice and begins the next one, you must Advance from the previous
u64 GetFakeDecStartTicks(); // slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an
void SetFakeDecStartTicks(u64 val); // Advance() is required to initialize the slice length before the first cycle of emulated
u64 GetFakeTBStartValue(); // instructions is executed.
void SetFakeTBStartValue(u64 val); // NOTE: Advance updates the PowerPC downcount and performs a PPC external exception check.
u64 GetFakeTBStartTicks(); void Advance();
void SetFakeTBStartTicks(u64 val); void MoveEvents();
void ForceExceptionCheck(s64 cycles); // Pretend that the main CPU has executed enough cycles to reach the next event.
void Idle();
// Clear all pending events. This should ONLY be done on exit or state load.
void ClearPendingEvents();
void LogPendingEvents() const;
std::string GetScheduledEventsSummary() const;
void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock);
u32 GetFakeDecStartValue() const;
void SetFakeDecStartValue(u32 val);
u64 GetFakeDecStartTicks() const;
void SetFakeDecStartTicks(u64 val);
u64 GetFakeTBStartValue() const;
void SetFakeTBStartValue(u64 val);
u64 GetFakeTBStartTicks() const;
void SetFakeTBStartTicks(u64 val);
void ForceExceptionCheck(s64 cycles);
private:
// unordered_map stores each element separately as a linked list node so pointers to elements
// remain stable regardless of rehashes/resizing.
std::unordered_map<std::string, EventType> m_event_types;
// STATE_TO_SAVE
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
// by the standard adaptor class.
std::vector<Event> m_event_queue;
u64 m_event_fifo_id = 0;
std::mutex m_ts_write_lock;
Common::SPSCQueue<Event, false> m_ts_queue;
float m_last_oc_factor = 0.0f;
s64 m_idled_cycles = 0;
u32 m_fake_dec_start_value = 0;
u64 m_fake_dec_start_ticks = 0;
// Are we in a function that has been called from Advance()
bool m_is_global_timer_sane = false;
EventType* m_ev_lost = nullptr;
size_t m_registered_config_callback_id = 0;
float m_config_oc_factor = 0.0f;
float m_config_oc_inv_factor = 0.0f;
bool m_config_sync_on_skip_idle = false;
int CyclesToDowncount(int cycles) const;
};
} // namespace CoreTiming } // namespace CoreTiming

View File

@ -18,6 +18,7 @@
#include "Core/DSP/Interpreter/DSPIntTables.h" #include "Core/DSP/Interpreter/DSPIntTables.h"
#include "Core/HW/Memmap.h" #include "Core/HW/Memmap.h"
#include "Core/HW/SystemTimers.h" #include "Core/HW/SystemTimers.h"
#include "Core/System.h"
namespace DSP::Interpreter namespace DSP::Interpreter
{ {
@ -271,7 +272,7 @@ u16 Interpreter::ReadControlRegister()
if (SystemTimers::GetFakeTimeBase() >= state.control_reg_init_code_clear_time) if (SystemTimers::GetFakeTimeBase() >= state.control_reg_init_code_clear_time)
state.control_reg &= ~CR_INIT_CODE; state.control_reg &= ~CR_INIT_CODE;
else else
CoreTiming::ForceExceptionCheck(50); // Keep checking Core::System::GetInstance().GetCoreTiming().ForceExceptionCheck(50); // Keep checking
} }
return state.control_reg; return state.control_reg;
} }

View File

@ -23,6 +23,7 @@
#include "Core/Host.h" #include "Core/Host.h"
#include "Core/PowerPC/MMU.h" #include "Core/PowerPC/MMU.h"
#include "Core/PowerPC/PowerPC.h" #include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "VideoCommon/BPMemory.h" #include "VideoCommon/BPMemory.h"
#include "VideoCommon/CommandProcessor.h" #include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoCommon.h"
@ -508,6 +509,8 @@ void FifoPlayer::WriteFifo(const u8* data, u32 start, u32 end)
u32 written = start; u32 written = start;
u32 lastBurstEnd = end - 1; u32 lastBurstEnd = end - 1;
auto& core_timing = Core::System::GetInstance().GetCoreTiming();
// Write up to 256 bytes at a time // Write up to 256 bytes at a time
while (written < end) while (written < end)
{ {
@ -515,8 +518,8 @@ void FifoPlayer::WriteFifo(const u8* data, u32 start, u32 end)
{ {
if (CPU::GetState() != CPU::State::Running) if (CPU::GetState() != CPU::State::Running)
break; break;
CoreTiming::Idle(); core_timing.Idle();
CoreTiming::Advance(); core_timing.Advance();
} }
u32 burstEnd = std::min(written + 255, lastBurstEnd); u32 burstEnd = std::min(written + 255, lastBurstEnd);
@ -533,7 +536,7 @@ void FifoPlayer::WriteFifo(const u8* data, u32 start, u32 end)
m_ElapsedCycles = elapsedCycles; m_ElapsedCycles = elapsedCycles;
PowerPC::ppcState.downcount -= cyclesUsed; PowerPC::ppcState.downcount -= cyclesUsed;
CoreTiming::Advance(); core_timing.Advance();
} }
} }
@ -712,11 +715,13 @@ void FifoPlayer::FlushWGP()
void FifoPlayer::WaitForGPUInactive() void FifoPlayer::WaitForGPUInactive()
{ {
auto& core_timing = Core::System::GetInstance().GetCoreTiming();
// Sleep while the GPU is active // Sleep while the GPU is active
while (!IsIdleSet() && CPU::GetState() != CPU::State::PowerDown) while (!IsIdleSet() && CPU::GetState() != CPU::State::PowerDown)
{ {
CoreTiming::Idle(); core_timing.Idle();
CoreTiming::Advance(); core_timing.Advance();
} }
} }

View File

@ -204,15 +204,16 @@ static void Update(Core::System& system, u64 userdata, s64 cycles_late)
return; return;
auto& state = system.GetAudioInterfaceState().GetData(); auto& state = system.GetAudioInterfaceState().GetData();
auto& core_timing = system.GetCoreTiming();
const u64 diff = CoreTiming::GetTicks() - state.last_cpu_time; const u64 diff = core_timing.GetTicks() - state.last_cpu_time;
if (diff > state.cpu_cycles_per_sample) if (diff > state.cpu_cycles_per_sample)
{ {
const u32 samples = static_cast<u32>(diff / state.cpu_cycles_per_sample); const u32 samples = static_cast<u32>(diff / state.cpu_cycles_per_sample);
state.last_cpu_time += samples * state.cpu_cycles_per_sample; state.last_cpu_time += samples * state.cpu_cycles_per_sample;
IncreaseSampleCount(samples); IncreaseSampleCount(samples);
} }
CoreTiming::ScheduleEvent(GetAIPeriod() - cycles_late, state.event_type_ai); core_timing.ScheduleEvent(GetAIPeriod() - cycles_late, state.event_type_ai);
} }
void SetAIDSampleRate(SampleRate sample_rate) void SetAIDSampleRate(SampleRate sample_rate)
@ -258,7 +259,9 @@ void SetAISSampleRate(SampleRate sample_rate)
void Init() void Init()
{ {
auto& state = Core::System::GetInstance().GetAudioInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
auto& state = system.GetAudioInterfaceState().GetData();
state.control.hex = 0; state.control.hex = 0;
SetAISSampleRate(SampleRate::AI48KHz); SetAISSampleRate(SampleRate::AI48KHz);
@ -269,7 +272,7 @@ void Init()
state.last_cpu_time = 0; state.last_cpu_time = 0;
state.event_type_ai = CoreTiming::RegisterEvent("AICallback", Update); state.event_type_ai = core_timing.RegisterEvent("AICallback", Update);
} }
void Shutdown() void Shutdown()
@ -285,6 +288,7 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
MMIO::ComplexWrite<u32>([](Core::System& system, u32, u32 val) { MMIO::ComplexWrite<u32>([](Core::System& system, u32, u32 val) {
const AICR tmp_ai_ctrl(val); const AICR tmp_ai_ctrl(val);
auto& core_timing = system.GetCoreTiming();
auto& state = system.GetAudioInterfaceState().GetData(); auto& state = system.GetAudioInterfaceState().GetData();
if (state.control.AIINTMSK != tmp_ai_ctrl.AIINTMSK) if (state.control.AIINTMSK != tmp_ai_ctrl.AIINTMSK)
{ {
@ -321,10 +325,10 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
DEBUG_LOG_FMT(AUDIO_INTERFACE, "{} streaming audio", DEBUG_LOG_FMT(AUDIO_INTERFACE, "{} streaming audio",
tmp_ai_ctrl.PSTAT ? "start" : "stop"); tmp_ai_ctrl.PSTAT ? "start" : "stop");
state.control.PSTAT = tmp_ai_ctrl.PSTAT; state.control.PSTAT = tmp_ai_ctrl.PSTAT;
state.last_cpu_time = CoreTiming::GetTicks(); state.last_cpu_time = core_timing.GetTicks();
CoreTiming::RemoveEvent(state.event_type_ai); core_timing.RemoveEvent(state.event_type_ai);
CoreTiming::ScheduleEvent(GetAIPeriod(), state.event_type_ai); core_timing.ScheduleEvent(GetAIPeriod(), state.event_type_ai);
} }
// AI Interrupt // AI Interrupt
@ -340,7 +344,7 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
DEBUG_LOG_FMT(AUDIO_INTERFACE, "Reset AIS sample counter"); DEBUG_LOG_FMT(AUDIO_INTERFACE, "Reset AIS sample counter");
state.sample_counter = 0; state.sample_counter = 0;
state.last_cpu_time = CoreTiming::GetTicks(); state.last_cpu_time = core_timing.GetTicks();
} }
UpdateInterrupts(); UpdateInterrupts();
@ -357,28 +361,30 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
mmio->Register(base | AI_SAMPLE_COUNTER, MMIO::ComplexRead<u32>([](Core::System& system, u32) { mmio->Register(base | AI_SAMPLE_COUNTER, MMIO::ComplexRead<u32>([](Core::System& system, u32) {
auto& state = system.GetAudioInterfaceState().GetData(); auto& state = system.GetAudioInterfaceState().GetData();
const u64 cycles_streamed = IsPlaying() ? const u64 cycles_streamed =
(CoreTiming::GetTicks() - state.last_cpu_time) : IsPlaying() ? (system.GetCoreTiming().GetTicks() - state.last_cpu_time) :
state.last_cpu_time; state.last_cpu_time;
return state.sample_counter + return state.sample_counter +
static_cast<u32>(cycles_streamed / state.cpu_cycles_per_sample); static_cast<u32>(cycles_streamed / state.cpu_cycles_per_sample);
}), }),
MMIO::ComplexWrite<u32>([](Core::System& system, u32, u32 val) { MMIO::ComplexWrite<u32>([](Core::System& system, u32, u32 val) {
auto& core_timing = system.GetCoreTiming();
auto& state = system.GetAudioInterfaceState().GetData(); auto& state = system.GetAudioInterfaceState().GetData();
state.sample_counter = val; state.sample_counter = val;
state.last_cpu_time = CoreTiming::GetTicks(); state.last_cpu_time = core_timing.GetTicks();
CoreTiming::RemoveEvent(state.event_type_ai); core_timing.RemoveEvent(state.event_type_ai);
CoreTiming::ScheduleEvent(GetAIPeriod(), state.event_type_ai); core_timing.ScheduleEvent(GetAIPeriod(), state.event_type_ai);
})); }));
mmio->Register(base | AI_INTERRUPT_TIMING, MMIO::DirectRead<u32>(&state.interrupt_timing), mmio->Register(base | AI_INTERRUPT_TIMING, MMIO::DirectRead<u32>(&state.interrupt_timing),
MMIO::ComplexWrite<u32>([](Core::System& system, u32, u32 val) { MMIO::ComplexWrite<u32>([](Core::System& system, u32, u32 val) {
auto& core_timing = system.GetCoreTiming();
auto& state = system.GetAudioInterfaceState().GetData(); auto& state = system.GetAudioInterfaceState().GetData();
DEBUG_LOG_FMT(AUDIO_INTERFACE, "AI_INTERRUPT_TIMING={:08x} at PC: {:08x}", val, DEBUG_LOG_FMT(AUDIO_INTERFACE, "AI_INTERRUPT_TIMING={:08x} at PC: {:08x}", val,
PowerPC::ppcState.pc); PowerPC::ppcState.pc);
state.interrupt_timing = val; state.interrupt_timing = val;
CoreTiming::RemoveEvent(state.event_type_ai); core_timing.RemoveEvent(state.event_type_ai);
CoreTiming::ScheduleEvent(GetAIPeriod(), state.event_type_ai); core_timing.ScheduleEvent(GetAIPeriod(), state.event_type_ai);
})); }));
} }

View File

@ -194,11 +194,13 @@ DSPEmulator* GetDSPEmulator()
void Init(bool hle) void Init(bool hle)
{ {
auto& state = Core::System::GetInstance().GetDSPState().GetData(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
auto& state = system.GetDSPState().GetData();
Reinit(hle); Reinit(hle);
state.event_type_generate_dsp_interrupt = state.event_type_generate_dsp_interrupt =
CoreTiming::RegisterEvent("DSPint", GenerateDSPInterrupt); core_timing.RegisterEvent("DSPint", GenerateDSPInterrupt);
state.event_type_complete_aram = CoreTiming::RegisterEvent("ARAMint", CompleteARAM); state.event_type_complete_aram = core_timing.RegisterEvent("ARAMint", CompleteARAM);
} }
void Reinit(bool hle) void Reinit(bool hle)
@ -432,7 +434,8 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
// TODO: need hardware tests for the timing of this interrupt. // TODO: need hardware tests for the timing of this interrupt.
// Sky Crawlers crashes at boot if this is scheduled less than 87 cycles in the future. // Sky Crawlers crashes at boot if this is scheduled less than 87 cycles in the future.
// Other Namco games crash too, see issue 9509. For now we will just push it to 200 cycles // Other Namco games crash too, see issue 9509. For now we will just push it to 200 cycles
CoreTiming::ScheduleEvent(200, state.event_type_generate_dsp_interrupt, INT_AID); system.GetCoreTiming().ScheduleEvent(200, state.event_type_generate_dsp_interrupt,
INT_AID);
} }
})); }));
@ -486,8 +489,10 @@ static void GenerateDSPInterrupt(Core::System& system, u64 DSPIntType, s64 cycle
// CALLED FROM DSP EMULATOR, POSSIBLY THREADED // CALLED FROM DSP EMULATOR, POSSIBLY THREADED
void GenerateDSPInterruptFromDSPEmu(DSPInterruptType type, int cycles_into_future) void GenerateDSPInterruptFromDSPEmu(DSPInterruptType type, int cycles_into_future)
{ {
auto& state = Core::System::GetInstance().GetDSPState().GetData(); auto& system = Core::System::GetInstance();
CoreTiming::ScheduleEvent(cycles_into_future, state.event_type_generate_dsp_interrupt, type, auto& core_timing = system.GetCoreTiming();
auto& state = system.GetDSPState().GetData();
core_timing.ScheduleEvent(cycles_into_future, state.event_type_generate_dsp_interrupt, type,
CoreTiming::FromThread::ANY); CoreTiming::FromThread::ANY);
} }
@ -547,13 +552,15 @@ void UpdateAudioDMA()
static void Do_ARAM_DMA() static void Do_ARAM_DMA()
{ {
auto& state = Core::System::GetInstance().GetDSPState().GetData(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
auto& state = system.GetDSPState().GetData();
state.dsp_control.DMAState = 1; state.dsp_control.DMAState = 1;
// ARAM DMA transfer rate has been measured on real hw // ARAM DMA transfer rate has been measured on real hw
int ticksToTransfer = (state.aram_dma.Cnt.count / 32) * 246; int ticksToTransfer = (state.aram_dma.Cnt.count / 32) * 246;
CoreTiming::ScheduleEvent(ticksToTransfer, state.event_type_complete_aram); core_timing.ScheduleEvent(ticksToTransfer, state.event_type_complete_aram);
// Real hardware DMAs in 32byte chunks, but we can get by with 8byte chunks // Real hardware DMAs in 32byte chunks, but we can get by with 8byte chunks
if (state.aram_dma.Cnt.dir) if (state.aram_dma.Cnt.dir)

View File

@ -10,6 +10,7 @@
#include "Core/CoreTiming.h" #include "Core/CoreTiming.h"
#include "Core/HW/DSPHLE/UCodes/UCodes.h" #include "Core/HW/DSPHLE/UCodes/UCodes.h"
#include "Core/HW/SystemTimers.h" #include "Core/HW/SystemTimers.h"
#include "Core/System.h"
namespace DSP::HLE namespace DSP::HLE
{ {
@ -234,7 +235,7 @@ u16 DSPHLE::DSP_ReadControlRegister()
if (SystemTimers::GetFakeTimeBase() >= m_control_reg_init_code_clear_time) if (SystemTimers::GetFakeTimeBase() >= m_control_reg_init_code_clear_time)
m_dsp_control.DSPInitCode = 0; m_dsp_control.DSPInitCode = 0;
else else
CoreTiming::ForceExceptionCheck(50); // Keep checking Core::System::GetInstance().GetCoreTiming().ForceExceptionCheck(50); // Keep checking
} }
return m_dsp_control.Hex; return m_dsp_control.Hex;
} }

View File

@ -309,7 +309,8 @@ static u32 AdvanceDTK(u32 maximum_samples, u32* samples_to_process)
static void DTKStreamingCallback(DIInterruptType interrupt_type, const std::vector<u8>& audio_data, static void DTKStreamingCallback(DIInterruptType interrupt_type, const std::vector<u8>& audio_data,
s64 cycles_late) s64 cycles_late)
{ {
auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& state = system.GetDVDInterfaceState().GetData();
// Actual games always set this to 48 KHz // Actual games always set this to 48 KHz
// but let's make sure to use GetAISSampleRateDivisor() // but let's make sure to use GetAISSampleRateDivisor()
@ -330,7 +331,6 @@ static void DTKStreamingCallback(DIInterruptType interrupt_type, const std::vect
std::vector<s16> temp_pcm(state.pending_samples * 2, 0); std::vector<s16> temp_pcm(state.pending_samples * 2, 0);
ProcessDTKSamples(&temp_pcm, audio_data); ProcessDTKSamples(&temp_pcm, audio_data);
auto& system = Core::System::GetInstance();
SoundStream* sound_stream = system.GetSoundStream(); SoundStream* sound_stream = system.GetSoundStream();
sound_stream->GetMixer()->PushStreamingSamples(temp_pcm.data(), state.pending_samples); sound_stream->GetMixer()->PushStreamingSamples(temp_pcm.data(), state.pending_samples);
@ -364,7 +364,7 @@ static void DTKStreamingCallback(DIInterruptType interrupt_type, const std::vect
{ {
// There's nothing to read, so using DVDThread is unnecessary. // There's nothing to read, so using DVDThread is unnecessary.
u64 userdata = PackFinishExecutingCommandUserdata(ReplyType::DTK, DIInterruptType::TCINT); u64 userdata = PackFinishExecutingCommandUserdata(ReplyType::DTK, DIInterruptType::TCINT);
CoreTiming::ScheduleEvent(ticks_to_dtk, state.finish_executing_command, userdata); system.GetCoreTiming().ScheduleEvent(ticks_to_dtk, state.finish_executing_command, userdata);
} }
} }
@ -374,7 +374,10 @@ void Init()
DVDThread::Start(); DVDThread::Start();
auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
auto& state = system.GetDVDInterfaceState().GetData();
state.DISR.Hex = 0; state.DISR.Hex = 0;
state.DICVR.Hex = 1; // Disc Channel relies on cover being open when no disc is inserted state.DICVR.Hex = 1; // Disc Channel relies on cover being open when no disc is inserted
state.DICMDBUF[0] = 0; state.DICMDBUF[0] = 0;
@ -389,15 +392,15 @@ void Init()
ResetDrive(false); ResetDrive(false);
state.auto_change_disc = CoreTiming::RegisterEvent("AutoChangeDisc", AutoChangeDiscCallback); state.auto_change_disc = core_timing.RegisterEvent("AutoChangeDisc", AutoChangeDiscCallback);
state.eject_disc = CoreTiming::RegisterEvent("EjectDisc", EjectDiscCallback); state.eject_disc = core_timing.RegisterEvent("EjectDisc", EjectDiscCallback);
state.insert_disc = CoreTiming::RegisterEvent("InsertDisc", InsertDiscCallback); state.insert_disc = core_timing.RegisterEvent("InsertDisc", InsertDiscCallback);
state.finish_executing_command = state.finish_executing_command =
CoreTiming::RegisterEvent("FinishExecutingCommand", FinishExecutingCommandCallback); core_timing.RegisterEvent("FinishExecutingCommand", FinishExecutingCommandCallback);
u64 userdata = PackFinishExecutingCommandUserdata(ReplyType::DTK, DIInterruptType::TCINT); u64 userdata = PackFinishExecutingCommandUserdata(ReplyType::DTK, DIInterruptType::TCINT);
CoreTiming::ScheduleEvent(0, state.finish_executing_command, userdata); core_timing.ScheduleEvent(0, state.finish_executing_command, userdata);
} }
// Resets state on the MN102 chip in the drive itself, but not the DI registers exposed on the // Resets state on the MN102 chip in the drive itself, but not the DI registers exposed on the
@ -557,8 +560,10 @@ static void InsertDiscCallback(Core::System& system, u64 userdata, s64 cyclesLat
// Must only be called on the CPU thread // Must only be called on the CPU thread
void EjectDisc(EjectCause cause) void EjectDisc(EjectCause cause)
{ {
auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData(); auto& system = Core::System::GetInstance();
CoreTiming::ScheduleEvent(0, state.eject_disc); auto& core_timing = system.GetCoreTiming();
auto& state = system.GetDVDInterfaceState().GetData();
core_timing.ScheduleEvent(0, state.eject_disc);
if (cause == EjectCause::User) if (cause == EjectCause::User)
ExpansionInterface::g_rtc_flags[ExpansionInterface::RTCFlag::EjectButton] = true; ExpansionInterface::g_rtc_flags[ExpansionInterface::RTCFlag::EjectButton] = true;
} }
@ -581,7 +586,8 @@ void ChangeDisc(const std::vector<std::string>& paths)
// Must only be called on the CPU thread // Must only be called on the CPU thread
void ChangeDisc(const std::string& new_path) void ChangeDisc(const std::string& new_path)
{ {
auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& state = system.GetDVDInterfaceState().GetData();
if (!state.disc_path_to_insert.empty()) if (!state.disc_path_to_insert.empty())
{ {
PanicAlertFmtT("A disc is already about to be inserted."); PanicAlertFmtT("A disc is already about to be inserted.");
@ -591,7 +597,7 @@ void ChangeDisc(const std::string& new_path)
EjectDisc(EjectCause::User); EjectDisc(EjectCause::User);
state.disc_path_to_insert = new_path; state.disc_path_to_insert = new_path;
CoreTiming::ScheduleEvent(SystemTimers::GetTicksPerSecond(), state.insert_disc); system.GetCoreTiming().ScheduleEvent(SystemTimers::GetTicksPerSecond(), state.insert_disc);
Movie::SignalDiscChange(new_path); Movie::SignalDiscChange(new_path);
for (size_t i = 0; i < state.auto_disc_change_paths.size(); ++i) for (size_t i = 0; i < state.auto_disc_change_paths.size(); ++i)
@ -724,7 +730,8 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base, bool is_wii)
static void UpdateInterrupts() static void UpdateInterrupts()
{ {
auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& state = system.GetDVDInterfaceState().GetData();
const bool set_mask = (state.DISR.DEINT & state.DISR.DEINTMASK) != 0 || const bool set_mask = (state.DISR.DEINT & state.DISR.DEINTMASK) != 0 ||
(state.DISR.TCINT & state.DISR.TCINTMASK) != 0 || (state.DISR.TCINT & state.DISR.TCINTMASK) != 0 ||
(state.DISR.BRKINT & state.DISR.BRKINTMASK) != 0 || (state.DISR.BRKINT & state.DISR.BRKINTMASK) != 0 ||
@ -733,7 +740,7 @@ static void UpdateInterrupts()
ProcessorInterface::SetInterrupt(ProcessorInterface::INT_CAUSE_DI, set_mask); ProcessorInterface::SetInterrupt(ProcessorInterface::INT_CAUSE_DI, set_mask);
// Required for Summoner: A Goddess Reborn // Required for Summoner: A Goddess Reborn
CoreTiming::ForceExceptionCheck(50); system.GetCoreTiming().ForceExceptionCheck(50);
} }
static void GenerateDIInterrupt(DIInterruptType dvd_interrupt) static void GenerateDIInterrupt(DIInterruptType dvd_interrupt)
@ -876,7 +883,8 @@ static bool ExecuteReadCommand(u64 dvd_offset, u32 output_address, u32 dvd_lengt
// with the userdata set to the interrupt type. // with the userdata set to the interrupt type.
void ExecuteCommand(ReplyType reply_type) void ExecuteCommand(ReplyType reply_type)
{ {
auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& state = system.GetDVDInterfaceState().GetData();
DIInterruptType interrupt_type = DIInterruptType::TCINT; DIInterruptType interrupt_type = DIInterruptType::TCINT;
bool command_handled_by_thread = false; bool command_handled_by_thread = false;
@ -1214,8 +1222,8 @@ void ExecuteCommand(ReplyType reply_type)
if (Config::Get(Config::MAIN_AUTO_DISC_CHANGE) && !Movie::IsPlayingInput() && if (Config::Get(Config::MAIN_AUTO_DISC_CHANGE) && !Movie::IsPlayingInput() &&
DVDThread::IsInsertedDiscRunning() && !state.auto_disc_change_paths.empty()) DVDThread::IsInsertedDiscRunning() && !state.auto_disc_change_paths.empty())
{ {
CoreTiming::ScheduleEvent(force_eject ? 0 : SystemTimers::GetTicksPerSecond() / 2, system.GetCoreTiming().ScheduleEvent(force_eject ? 0 : SystemTimers::GetTicksPerSecond() / 2,
state.auto_change_disc); state.auto_change_disc);
OSD::AddMessage("Changing discs automatically...", OSD::Duration::NORMAL); OSD::AddMessage("Changing discs automatically...", OSD::Duration::NORMAL);
} }
else if (force_eject) else if (force_eject)
@ -1306,17 +1314,18 @@ void ExecuteCommand(ReplyType reply_type)
if (!command_handled_by_thread) if (!command_handled_by_thread)
{ {
// TODO: Needs testing to determine if MINIMUM_COMMAND_LATENCY_US is accurate for this // TODO: Needs testing to determine if MINIMUM_COMMAND_LATENCY_US is accurate for this
CoreTiming::ScheduleEvent(MINIMUM_COMMAND_LATENCY_US * system.GetCoreTiming().ScheduleEvent(
(SystemTimers::GetTicksPerSecond() / 1000000), MINIMUM_COMMAND_LATENCY_US * (SystemTimers::GetTicksPerSecond() / 1000000),
state.finish_executing_command, state.finish_executing_command,
PackFinishExecutingCommandUserdata(reply_type, interrupt_type)); PackFinishExecutingCommandUserdata(reply_type, interrupt_type));
} }
} }
void PerformDecryptingRead(u32 position, u32 length, u32 output_address, void PerformDecryptingRead(u32 position, u32 length, u32 output_address,
const DiscIO::Partition& partition, ReplyType reply_type) const DiscIO::Partition& partition, ReplyType reply_type)
{ {
auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& state = system.GetDVDInterfaceState().GetData();
DIInterruptType interrupt_type = DIInterruptType::TCINT; DIInterruptType interrupt_type = DIInterruptType::TCINT;
if (state.drive_state == DriveState::ReadyNoReadsMade) if (state.drive_state == DriveState::ReadyNoReadsMade)
@ -1329,16 +1338,17 @@ void PerformDecryptingRead(u32 position, u32 length, u32 output_address,
if (!command_handled_by_thread) if (!command_handled_by_thread)
{ {
// TODO: Needs testing to determine if MINIMUM_COMMAND_LATENCY_US is accurate for this // TODO: Needs testing to determine if MINIMUM_COMMAND_LATENCY_US is accurate for this
CoreTiming::ScheduleEvent(MINIMUM_COMMAND_LATENCY_US * system.GetCoreTiming().ScheduleEvent(
(SystemTimers::GetTicksPerSecond() / 1000000), MINIMUM_COMMAND_LATENCY_US * (SystemTimers::GetTicksPerSecond() / 1000000),
state.finish_executing_command, state.finish_executing_command,
PackFinishExecutingCommandUserdata(reply_type, interrupt_type)); PackFinishExecutingCommandUserdata(reply_type, interrupt_type));
} }
} }
void ForceOutOfBoundsRead(ReplyType reply_type) void ForceOutOfBoundsRead(ReplyType reply_type)
{ {
auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& state = system.GetDVDInterfaceState().GetData();
INFO_LOG_FMT(DVDINTERFACE, "Forcing an out-of-bounds disc read."); INFO_LOG_FMT(DVDINTERFACE, "Forcing an out-of-bounds disc read.");
if (state.drive_state == DriveState::ReadyNoReadsMade) if (state.drive_state == DriveState::ReadyNoReadsMade)
@ -1348,10 +1358,10 @@ void ForceOutOfBoundsRead(ReplyType reply_type)
// TODO: Needs testing to determine if MINIMUM_COMMAND_LATENCY_US is accurate for this // TODO: Needs testing to determine if MINIMUM_COMMAND_LATENCY_US is accurate for this
const DIInterruptType interrupt_type = DIInterruptType::DEINT; const DIInterruptType interrupt_type = DIInterruptType::DEINT;
CoreTiming::ScheduleEvent(MINIMUM_COMMAND_LATENCY_US * system.GetCoreTiming().ScheduleEvent(
(SystemTimers::GetTicksPerSecond() / 1000000), MINIMUM_COMMAND_LATENCY_US * (SystemTimers::GetTicksPerSecond() / 1000000),
state.finish_executing_command, state.finish_executing_command,
PackFinishExecutingCommandUserdata(reply_type, interrupt_type)); PackFinishExecutingCommandUserdata(reply_type, interrupt_type));
} }
void AudioBufferConfig(bool enable_dtk, u8 dtk_buffer_length) void AudioBufferConfig(bool enable_dtk, u8 dtk_buffer_length)
@ -1445,6 +1455,8 @@ void FinishExecutingCommand(ReplyType reply_type, DIInterruptType interrupt_type
static void ScheduleReads(u64 offset, u32 length, const DiscIO::Partition& partition, static void ScheduleReads(u64 offset, u32 length, const DiscIO::Partition& partition,
u32 output_address, ReplyType reply_type) u32 output_address, ReplyType reply_type)
{ {
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData(); auto& state = Core::System::GetInstance().GetDVDInterfaceState().GetData();
// The drive continues to read 1 MiB beyond the last read position when idle. // The drive continues to read 1 MiB beyond the last read position when idle.
@ -1456,7 +1468,7 @@ static void ScheduleReads(u64 offset, u32 length, const DiscIO::Partition& parti
// faster than on real hardware, and if there's too much latency in the wrong // faster than on real hardware, and if there's too much latency in the wrong
// places, the video before the save-file select screen lags. // places, the video before the save-file select screen lags.
const u64 current_time = CoreTiming::GetTicks(); const u64 current_time = core_timing.GetTicks();
const u32 ticks_per_second = SystemTimers::GetTicksPerSecond(); const u32 ticks_per_second = SystemTimers::GetTicksPerSecond();
const bool wii_disc = DVDThread::GetDiscType() == DiscIO::Platform::WiiDisc; const bool wii_disc = DVDThread::GetDiscType() == DiscIO::Platform::WiiDisc;
@ -1581,7 +1593,7 @@ static void ScheduleReads(u64 offset, u32 length, const DiscIO::Partition& parti
// should actually happen before reading data from the disc. // should actually happen before reading data from the disc.
const double time_after_seek = const double time_after_seek =
(CoreTiming::GetTicks() + ticks_until_completion) / ticks_per_second; (core_timing.GetTicks() + ticks_until_completion) / ticks_per_second;
ticks_until_completion += ticks_per_second * DVDMath::CalculateRotationalLatency( ticks_until_completion += ticks_per_second * DVDMath::CalculateRotationalLatency(
dvd_offset, time_after_seek, wii_disc); dvd_offset, time_after_seek, wii_disc);

View File

@ -102,9 +102,10 @@ DVDThreadState::~DVDThreadState() = default;
void Start() void Start()
{ {
auto& state = Core::System::GetInstance().GetDVDThreadState().GetData(); auto& system = Core::System::GetInstance();
auto& state = system.GetDVDThreadState().GetData();
state.finish_read = CoreTiming::RegisterEvent("FinishReadDVDThread", FinishRead); state.finish_read = system.GetCoreTiming().RegisterEvent("FinishReadDVDThread", FinishRead);
state.request_queue_expanded.Reset(); state.request_queue_expanded.Reset();
state.result_queue_expanded.Reset(); state.result_queue_expanded.Reset();
@ -305,7 +306,9 @@ static void StartReadInternal(bool copy_to_ram, u32 output_address, u64 dvd_offs
{ {
ASSERT(Core::IsCPUThread()); ASSERT(Core::IsCPUThread());
auto& state = Core::System::GetInstance().GetDVDThreadState().GetData(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
auto& state = system.GetDVDThreadState().GetData();
ReadRequest request; ReadRequest request;
@ -319,13 +322,13 @@ static void StartReadInternal(bool copy_to_ram, u32 output_address, u64 dvd_offs
u64 id = state.next_id++; u64 id = state.next_id++;
request.id = id; request.id = id;
request.time_started_ticks = CoreTiming::GetTicks(); request.time_started_ticks = core_timing.GetTicks();
request.realtime_started_us = Common::Timer::NowUs(); request.realtime_started_us = Common::Timer::NowUs();
state.request_queue.Push(std::move(request)); state.request_queue.Push(std::move(request));
state.request_queue_expanded.Set(); state.request_queue_expanded.Set();
CoreTiming::ScheduleEvent(ticks_until_completion, state.finish_read, id); core_timing.ScheduleEvent(ticks_until_completion, state.finish_read, id);
} }
static void FinishRead(Core::System& system, u64 id, s64 cycles_late) static void FinishRead(Core::System& system, u64 id, s64 cycles_late)
@ -373,7 +376,7 @@ static void FinishRead(Core::System& system, u64 id, s64 cycles_late)
"Emulated time including delay: {} us.", "Emulated time including delay: {} us.",
request.realtime_done_us - request.realtime_started_us, request.realtime_done_us - request.realtime_started_us,
Common::Timer::NowUs() - request.realtime_started_us, Common::Timer::NowUs() - request.realtime_started_us,
(CoreTiming::GetTicks() - request.time_started_ticks) / (system.GetCoreTiming().GetTicks() - request.time_started_ticks) /
(SystemTimers::GetTicksPerSecond() / 1000000)); (SystemTimers::GetTicksPerSecond() / 1000000));
DVDInterface::DIInterruptType interrupt; DVDInterface::DIInterruptType interrupt;

View File

@ -161,10 +161,11 @@ void Init(const Sram* override_sram)
SlotToEXIDevice(Slot::SP1)); SlotToEXIDevice(Slot::SP1));
state.channels[2]->AddDevice(EXIDeviceType::AD16, 0); state.channels[2]->AddDevice(EXIDeviceType::AD16, 0);
auto& core_timing = system.GetCoreTiming();
state.event_type_change_device = state.event_type_change_device =
CoreTiming::RegisterEvent("ChangeEXIDevice", ChangeDeviceCallback); core_timing.RegisterEvent("ChangeEXIDevice", ChangeDeviceCallback);
state.event_type_update_interrupts = state.event_type_update_interrupts =
CoreTiming::RegisterEvent("EXIUpdateInterrupts", UpdateInterruptsCallback); core_timing.RegisterEvent("EXIUpdateInterrupts", UpdateInterruptsCallback);
} }
void Shutdown() void Shutdown()
@ -233,11 +234,13 @@ void ChangeDevice(u8 channel, u8 device_num, EXIDeviceType device_type,
CoreTiming::FromThread from_thread) CoreTiming::FromThread from_thread)
{ {
// Let the hardware see no device for 1 second // Let the hardware see no device for 1 second
auto& state = Core::System::GetInstance().GetExpansionInterfaceState().GetData(); auto& system = Core::System::GetInstance();
CoreTiming::ScheduleEvent(0, state.event_type_change_device, auto& core_timing = system.GetCoreTiming();
auto& state = system.GetExpansionInterfaceState().GetData();
core_timing.ScheduleEvent(0, state.event_type_change_device,
((u64)channel << 32) | ((u64)EXIDeviceType::None << 16) | device_num, ((u64)channel << 32) | ((u64)EXIDeviceType::None << 16) | device_num,
from_thread); from_thread);
CoreTiming::ScheduleEvent(SystemTimers::GetTicksPerSecond(), state.event_type_change_device, core_timing.ScheduleEvent(SystemTimers::GetTicksPerSecond(), state.event_type_change_device,
((u64)channel << 32) | ((u64)device_type << 16) | device_num, ((u64)channel << 32) | ((u64)device_type << 16) | device_num,
from_thread); from_thread);
} }
@ -277,8 +280,9 @@ static void UpdateInterruptsCallback(Core::System& system, u64 userdata, s64 cyc
void ScheduleUpdateInterrupts(CoreTiming::FromThread from, int cycles_late) void ScheduleUpdateInterrupts(CoreTiming::FromThread from, int cycles_late)
{ {
auto& system = Core::System::GetInstance();
auto& state = Core::System::GetInstance().GetExpansionInterfaceState().GetData(); auto& state = Core::System::GetInstance().GetExpansionInterfaceState().GetData();
CoreTiming::ScheduleEvent(cycles_late, state.event_type_update_interrupts, 0, from); system.GetCoreTiming().ScheduleEvent(cycles_late, state.event_type_update_interrupts, 0, from);
} }
} // namespace ExpansionInterface } // namespace ExpansionInterface

View File

@ -405,14 +405,16 @@ u32 CEXIIPL::GetEmulatedTime(u32 epoch)
ltime = Movie::GetRecordingStartTime(); ltime = Movie::GetRecordingStartTime();
// let's keep time moving forward, regardless of what it starts at // let's keep time moving forward, regardless of what it starts at
ltime += CoreTiming::GetTicks() / SystemTimers::GetTicksPerSecond(); ltime +=
Core::System::GetInstance().GetCoreTiming().GetTicks() / SystemTimers::GetTicksPerSecond();
} }
else if (NetPlay::IsNetPlayRunning()) else if (NetPlay::IsNetPlayRunning())
{ {
ltime = NetPlay_GetEmulatedTime(); ltime = NetPlay_GetEmulatedTime();
// let's keep time moving forward, regardless of what it starts at // let's keep time moving forward, regardless of what it starts at
ltime += CoreTiming::GetTicks() / SystemTimers::GetTicksPerSecond(); ltime +=
Core::System::GetInstance().GetCoreTiming().GetTicks() / SystemTimers::GetTicksPerSecond();
} }
else else
{ {

View File

@ -86,11 +86,13 @@ void CEXIMemoryCard::Init()
{ {
static_assert(s_et_cmd_done.size() == s_et_transfer_complete.size(), "Event array size differs"); static_assert(s_et_cmd_done.size() == s_et_transfer_complete.size(), "Event array size differs");
static_assert(s_et_cmd_done.size() == MEMCARD_SLOTS.size(), "Event array size differs"); static_assert(s_et_cmd_done.size() == MEMCARD_SLOTS.size(), "Event array size differs");
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
for (Slot slot : MEMCARD_SLOTS) for (Slot slot : MEMCARD_SLOTS)
{ {
s_et_cmd_done[slot] = CoreTiming::RegisterEvent( s_et_cmd_done[slot] = core_timing.RegisterEvent(
fmt::format("memcardDone{}", s_card_short_names[slot]), CmdDoneCallback); fmt::format("memcardDone{}", s_card_short_names[slot]), CmdDoneCallback);
s_et_transfer_complete[slot] = CoreTiming::RegisterEvent( s_et_transfer_complete[slot] = core_timing.RegisterEvent(
fmt::format("memcardTransferComplete{}", s_card_short_names[slot]), fmt::format("memcardTransferComplete{}", s_card_short_names[slot]),
TransferCompleteCallback); TransferCompleteCallback);
} }
@ -233,8 +235,10 @@ void CEXIMemoryCard::SetupRawMemcard(u16 size_mb)
CEXIMemoryCard::~CEXIMemoryCard() CEXIMemoryCard::~CEXIMemoryCard()
{ {
CoreTiming::RemoveEvent(s_et_cmd_done[m_card_slot]); auto& system = Core::System::GetInstance();
CoreTiming::RemoveEvent(s_et_transfer_complete[m_card_slot]); auto& core_timing = system.GetCoreTiming();
core_timing.RemoveEvent(s_et_cmd_done[m_card_slot]);
core_timing.RemoveEvent(s_et_transfer_complete[m_card_slot]);
} }
bool CEXIMemoryCard::UseDelayedTransferCompletion() const bool CEXIMemoryCard::UseDelayedTransferCompletion() const
@ -265,8 +269,10 @@ void CEXIMemoryCard::TransferComplete()
void CEXIMemoryCard::CmdDoneLater(u64 cycles) void CEXIMemoryCard::CmdDoneLater(u64 cycles)
{ {
CoreTiming::RemoveEvent(s_et_cmd_done[m_card_slot]); auto& system = Core::System::GetInstance();
CoreTiming::ScheduleEvent(cycles, s_et_cmd_done[m_card_slot], static_cast<u64>(m_card_slot)); auto& core_timing = system.GetCoreTiming();
core_timing.RemoveEvent(s_et_cmd_done[m_card_slot]);
core_timing.ScheduleEvent(cycles, s_et_cmd_done[m_card_slot], static_cast<u64>(m_card_slot));
} }
void CEXIMemoryCard::SetCS(int cs) void CEXIMemoryCard::SetCS(int cs)
@ -525,8 +531,9 @@ void CEXIMemoryCard::DMARead(u32 addr, u32 size)
} }
// Schedule transfer complete later based on read speed // Schedule transfer complete later based on read speed
CoreTiming::ScheduleEvent(size * (SystemTimers::GetTicksPerSecond() / MC_TRANSFER_RATE_READ), Core::System::GetInstance().GetCoreTiming().ScheduleEvent(
s_et_transfer_complete[m_card_slot], static_cast<u64>(m_card_slot)); size * (SystemTimers::GetTicksPerSecond() / MC_TRANSFER_RATE_READ),
s_et_transfer_complete[m_card_slot], static_cast<u64>(m_card_slot));
} }
// DMA write are preceded by all of the necessary setup via IMMWrite // DMA write are preceded by all of the necessary setup via IMMWrite
@ -541,7 +548,8 @@ void CEXIMemoryCard::DMAWrite(u32 addr, u32 size)
} }
// Schedule transfer complete later based on write speed // Schedule transfer complete later based on write speed
CoreTiming::ScheduleEvent(size * (SystemTimers::GetTicksPerSecond() / MC_TRANSFER_RATE_WRITE), Core::System::GetInstance().GetCoreTiming().ScheduleEvent(
s_et_transfer_complete[m_card_slot], static_cast<u64>(m_card_slot)); size * (SystemTimers::GetTicksPerSecond() / MC_TRANSFER_RATE_WRITE),
s_et_transfer_complete[m_card_slot], static_cast<u64>(m_card_slot));
} }
} // namespace ExpansionInterface } // namespace ExpansionInterface

View File

@ -18,6 +18,7 @@
#include "Core/HW/EXI/EXI.h" #include "Core/HW/EXI/EXI.h"
#include "Core/HW/GCPad.h" #include "Core/HW/GCPad.h"
#include "Core/HW/SystemTimers.h" #include "Core/HW/SystemTimers.h"
#include "Core/System.h"
namespace ExpansionInterface namespace ExpansionInterface
{ {
@ -182,13 +183,13 @@ void CEXIMic::SetCS(int cs)
void CEXIMic::UpdateNextInterruptTicks() void CEXIMic::UpdateNextInterruptTicks()
{ {
int diff = (SystemTimers::GetTicksPerSecond() / sample_rate) * buff_size_samples; int diff = (SystemTimers::GetTicksPerSecond() / sample_rate) * buff_size_samples;
next_int_ticks = CoreTiming::GetTicks() + diff; next_int_ticks = Core::System::GetInstance().GetCoreTiming().GetTicks() + diff;
ExpansionInterface::ScheduleUpdateInterrupts(CoreTiming::FromThread::CPU, diff); ExpansionInterface::ScheduleUpdateInterrupts(CoreTiming::FromThread::CPU, diff);
} }
bool CEXIMic::IsInterruptSet() bool CEXIMic::IsInterruptSet()
{ {
if (next_int_ticks && CoreTiming::GetTicks() >= next_int_ticks) if (next_int_ticks && Core::System::GetInstance().GetCoreTiming().GetTicks() >= next_int_ticks)
{ {
if (status.is_active) if (status.is_active)
UpdateNextInterruptTicks(); UpdateNextInterruptTicks();

View File

@ -27,12 +27,13 @@
#include "Core/HW/WII_IPC.h" #include "Core/HW/WII_IPC.h"
#include "Core/IOS/IOS.h" #include "Core/IOS/IOS.h"
#include "Core/State.h" #include "Core/State.h"
#include "Core/System.h"
namespace HW namespace HW
{ {
void Init(const Sram* override_sram) void Init(const Sram* override_sram)
{ {
CoreTiming::Init(); Core::System::GetInstance().GetCoreTiming().Init();
SystemTimers::PreInit(); SystemTimers::PreInit();
State::Init(); State::Init();
@ -79,7 +80,7 @@ void Shutdown()
AudioInterface::Shutdown(); AudioInterface::Shutdown();
State::Shutdown(); State::Shutdown();
CoreTiming::Shutdown(); Core::System::GetInstance().GetCoreTiming().Shutdown();
} }
void DoState(PointerWrap& p) void DoState(PointerWrap& p)

View File

@ -72,11 +72,13 @@ void Init()
m_ResetCode = 0; // Cold reset m_ResetCode = 0; // Cold reset
m_InterruptCause = INT_CAUSE_RST_BUTTON | INT_CAUSE_VI; m_InterruptCause = INT_CAUSE_RST_BUTTON | INT_CAUSE_VI;
toggleResetButton = CoreTiming::RegisterEvent("ToggleResetButton", ToggleResetButtonCallback); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
toggleResetButton = core_timing.RegisterEvent("ToggleResetButton", ToggleResetButtonCallback);
iosNotifyResetButton = iosNotifyResetButton =
CoreTiming::RegisterEvent("IOSNotifyResetButton", IOSNotifyResetButtonCallback); core_timing.RegisterEvent("IOSNotifyResetButton", IOSNotifyResetButtonCallback);
iosNotifyPowerButton = iosNotifyPowerButton =
CoreTiming::RegisterEvent("IOSNotifyPowerButton", IOSNotifyPowerButtonCallback); core_timing.RegisterEvent("IOSNotifyPowerButton", IOSNotifyPowerButtonCallback);
} }
void RegisterMMIO(MMIO::Mapping* mmio, u32 base) void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
@ -261,9 +263,12 @@ void ResetButton_Tap()
{ {
if (!Core::IsRunning()) if (!Core::IsRunning())
return; return;
CoreTiming::ScheduleEvent(0, toggleResetButton, true, CoreTiming::FromThread::ANY);
CoreTiming::ScheduleEvent(0, iosNotifyResetButton, 0, CoreTiming::FromThread::ANY); auto& system = Core::System::GetInstance();
CoreTiming::ScheduleEvent(SystemTimers::GetTicksPerSecond() / 2, toggleResetButton, false, auto& core_timing = system.GetCoreTiming();
core_timing.ScheduleEvent(0, toggleResetButton, true, CoreTiming::FromThread::ANY);
core_timing.ScheduleEvent(0, iosNotifyResetButton, 0, CoreTiming::FromThread::ANY);
core_timing.ScheduleEvent(SystemTimers::GetTicksPerSecond() / 2, toggleResetButton, false,
CoreTiming::FromThread::ANY); CoreTiming::FromThread::ANY);
} }
@ -271,7 +276,10 @@ void PowerButton_Tap()
{ {
if (!Core::IsRunning()) if (!Core::IsRunning())
return; return;
CoreTiming::ScheduleEvent(0, iosNotifyPowerButton, 0, CoreTiming::FromThread::ANY);
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
core_timing.ScheduleEvent(0, iosNotifyPowerButton, 0, CoreTiming::FromThread::ANY);
} }
} // namespace ProcessorInterface } // namespace ProcessorInterface

View File

@ -344,8 +344,8 @@ static void RunSIBuffer(Core::System& system, u64 user_data, s64 cycles_late)
} }
else else
{ {
CoreTiming::ScheduleEvent(device->TransferInterval() - cycles_late, system.GetCoreTiming().ScheduleEvent(device->TransferInterval() - cycles_late,
state.event_type_tranfer_pending); state.event_type_tranfer_pending);
} }
} }
} }
@ -388,10 +388,12 @@ static void DeviceEventCallback(Core::System& system, u64 userdata, s64 cyclesLa
static void RegisterEvents() static void RegisterEvents()
{ {
auto& state = Core::System::GetInstance().GetSerialInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
auto& state = system.GetSerialInterfaceState().GetData();
state.event_type_change_device = state.event_type_change_device =
CoreTiming::RegisterEvent("ChangeSIDevice", ChangeDeviceCallback); core_timing.RegisterEvent("ChangeSIDevice", ChangeDeviceCallback);
state.event_type_tranfer_pending = CoreTiming::RegisterEvent("SITransferPending", RunSIBuffer); state.event_type_tranfer_pending = core_timing.RegisterEvent("SITransferPending", RunSIBuffer);
constexpr std::array<CoreTiming::TimedCallback, MAX_SI_CHANNELS> event_callbacks = { constexpr std::array<CoreTiming::TimedCallback, MAX_SI_CHANNELS> event_callbacks = {
DeviceEventCallback<0>, DeviceEventCallback<0>,
@ -402,20 +404,24 @@ static void RegisterEvents()
for (int i = 0; i < MAX_SI_CHANNELS; ++i) for (int i = 0; i < MAX_SI_CHANNELS; ++i)
{ {
state.event_types_device[i] = state.event_types_device[i] =
CoreTiming::RegisterEvent(fmt::format("SIEventChannel{}", i), event_callbacks[i]); core_timing.RegisterEvent(fmt::format("SIEventChannel{}", i), event_callbacks[i]);
} }
} }
void ScheduleEvent(int device_number, s64 cycles_into_future, u64 userdata) void ScheduleEvent(int device_number, s64 cycles_into_future, u64 userdata)
{ {
auto& state = Core::System::GetInstance().GetSerialInterfaceState().GetData(); auto& system = Core::System::GetInstance();
CoreTiming::ScheduleEvent(cycles_into_future, state.event_types_device[device_number], userdata); auto& core_timing = system.GetCoreTiming();
auto& state = system.GetSerialInterfaceState().GetData();
core_timing.ScheduleEvent(cycles_into_future, state.event_types_device[device_number], userdata);
} }
void RemoveEvent(int device_number) void RemoveEvent(int device_number)
{ {
auto& state = Core::System::GetInstance().GetSerialInterfaceState().GetData(); auto& system = Core::System::GetInstance();
CoreTiming::RemoveEvent(state.event_types_device[device_number]); auto& core_timing = system.GetCoreTiming();
auto& state = system.GetSerialInterfaceState().GetData();
core_timing.RemoveEvent(state.event_types_device[device_number]);
} }
void Init() void Init()
@ -573,7 +579,7 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
if (tmp_com_csr.TSTART) if (tmp_com_csr.TSTART)
{ {
if (state.com_csr.TSTART) if (state.com_csr.TSTART)
CoreTiming::RemoveEvent(state.event_type_tranfer_pending); system.GetCoreTiming().RemoveEvent(state.event_type_tranfer_pending);
state.com_csr.TSTART = 1; state.com_csr.TSTART = 1;
RunSIBuffer(system, 0, 0); RunSIBuffer(system, 0, 0);
} }
@ -676,7 +682,8 @@ void ChangeDevice(SIDevices device, int channel)
static void ChangeDeviceDeterministic(SIDevices device, int channel) static void ChangeDeviceDeterministic(SIDevices device, int channel)
{ {
auto& state = Core::System::GetInstance().GetSerialInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& state = system.GetSerialInterfaceState().GetData();
if (state.channel[channel].has_recent_device_change) if (state.channel[channel].has_recent_device_change)
return; return;
@ -696,8 +703,8 @@ static void ChangeDeviceDeterministic(SIDevices device, int channel)
// Prevent additional device changes on this channel for one second. // Prevent additional device changes on this channel for one second.
state.channel[channel].has_recent_device_change = true; state.channel[channel].has_recent_device_change = true;
CoreTiming::ScheduleEvent(SystemTimers::GetTicksPerSecond(), state.event_type_change_device, system.GetCoreTiming().ScheduleEvent(SystemTimers::GetTicksPerSecond(),
channel); state.event_type_change_device, channel);
} }
void UpdateDevices() void UpdateDevices()

View File

@ -20,6 +20,7 @@
#include "Core/CoreTiming.h" #include "Core/CoreTiming.h"
#include "Core/HW/SI/SI_Device.h" #include "Core/HW/SI/SI_Device.h"
#include "Core/HW/SystemTimers.h" #include "Core/HW/SystemTimers.h"
#include "Core/System.h"
namespace SerialInterface namespace SerialInterface
{ {
@ -145,21 +146,24 @@ void GBASockServer::ClockSync()
if (!(m_clock_sync = GetNextClock())) if (!(m_clock_sync = GetNextClock()))
return; return;
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
u32 time_slice = 0; u32 time_slice = 0;
if (m_last_time_slice == 0) if (m_last_time_slice == 0)
{ {
s_num_connected++; s_num_connected++;
m_last_time_slice = CoreTiming::GetTicks(); m_last_time_slice = core_timing.GetTicks();
time_slice = (u32)(SystemTimers::GetTicksPerSecond() / 60); time_slice = (u32)(SystemTimers::GetTicksPerSecond() / 60);
} }
else else
{ {
time_slice = (u32)(CoreTiming::GetTicks() - m_last_time_slice); time_slice = (u32)(core_timing.GetTicks() - m_last_time_slice);
} }
time_slice = (u32)((u64)time_slice * 16777216 / SystemTimers::GetTicksPerSecond()); time_slice = (u32)((u64)time_slice * 16777216 / SystemTimers::GetTicksPerSecond());
m_last_time_slice = CoreTiming::GetTicks(); m_last_time_slice = core_timing.GetTicks();
char bytes[4] = {0, 0, 0, 0}; char bytes[4] = {0, 0, 0, 0};
bytes[0] = (time_slice >> 24) & 0xff; bytes[0] = (time_slice >> 24) & 0xff;
bytes[1] = (time_slice >> 16) & 0xff; bytes[1] = (time_slice >> 16) & 0xff;
@ -285,14 +289,15 @@ int CSIDevice_GBA::RunBuffer(u8* buffer, int request_length)
} }
m_last_cmd = static_cast<EBufferCommands>(buffer[0]); m_last_cmd = static_cast<EBufferCommands>(buffer[0]);
m_timestamp_sent = CoreTiming::GetTicks(); m_timestamp_sent = Core::System::GetInstance().GetCoreTiming().GetTicks();
m_next_action = NextAction::WaitTransferTime; m_next_action = NextAction::WaitTransferTime;
return 0; return 0;
} }
case NextAction::WaitTransferTime: case NextAction::WaitTransferTime:
{ {
int elapsed_time = static_cast<int>(CoreTiming::GetTicks() - m_timestamp_sent); int elapsed_time =
static_cast<int>(Core::System::GetInstance().GetCoreTiming().GetTicks() - m_timestamp_sent);
// Tell SI to ask again after TransferInterval() cycles // Tell SI to ask again after TransferInterval() cycles
if (SIDevice_GetGBATransferTime(m_last_cmd) > elapsed_time) if (SIDevice_GetGBATransferTime(m_last_cmd) > elapsed_time)
return 0; return 0;

View File

@ -18,6 +18,7 @@
#include "Core/HW/SystemTimers.h" #include "Core/HW/SystemTimers.h"
#include "Core/Host.h" #include "Core/Host.h"
#include "Core/NetPlayProto.h" #include "Core/NetPlayProto.h"
#include "Core/System.h"
namespace SerialInterface namespace SerialInterface
{ {
@ -30,7 +31,7 @@ CSIDevice_GBAEmu::CSIDevice_GBAEmu(SIDevices device, int device_number)
: ISIDevice(device, device_number) : ISIDevice(device, device_number)
{ {
m_core = std::make_shared<HW::GBA::Core>(m_device_number); m_core = std::make_shared<HW::GBA::Core>(m_device_number);
m_core->Start(CoreTiming::GetTicks()); m_core->Start(Core::System::GetInstance().GetCoreTiming().GetTicks());
m_gbahost = Host_CreateGBAHost(m_core); m_gbahost = Host_CreateGBAHost(m_core);
m_core->SetHost(m_gbahost); m_core->SetHost(m_gbahost);
ScheduleEvent(m_device_number, GetSyncInterval()); ScheduleEvent(m_device_number, GetSyncInterval());
@ -55,7 +56,7 @@ int CSIDevice_GBAEmu::RunBuffer(u8* buffer, int request_length)
buffer[0], buffer[1], buffer[2], buffer[3], buffer[4]); buffer[0], buffer[1], buffer[2], buffer[3], buffer[4]);
#endif #endif
m_last_cmd = static_cast<EBufferCommands>(buffer[0]); m_last_cmd = static_cast<EBufferCommands>(buffer[0]);
m_timestamp_sent = CoreTiming::GetTicks(); m_timestamp_sent = Core::System::GetInstance().GetCoreTiming().GetTicks();
m_core->SendJoybusCommand(m_timestamp_sent, TransferInterval(), buffer, m_keys); m_core->SendJoybusCommand(m_timestamp_sent, TransferInterval(), buffer, m_keys);
RemoveEvent(m_device_number); RemoveEvent(m_device_number);
@ -74,7 +75,8 @@ int CSIDevice_GBAEmu::RunBuffer(u8* buffer, int request_length)
case NextAction::WaitTransferTime: case NextAction::WaitTransferTime:
{ {
int elapsed_time = static_cast<int>(CoreTiming::GetTicks() - m_timestamp_sent); int elapsed_time =
static_cast<int>(Core::System::GetInstance().GetCoreTiming().GetTicks() - m_timestamp_sent);
// Tell SI to ask again after TransferInterval() cycles // Tell SI to ask again after TransferInterval() cycles
if (TransferInterval() > elapsed_time) if (TransferInterval() > elapsed_time)
return 0; return 0;
@ -162,7 +164,8 @@ void CSIDevice_GBAEmu::DoState(PointerWrap& p)
void CSIDevice_GBAEmu::OnEvent(u64 userdata, s64 cycles_late) void CSIDevice_GBAEmu::OnEvent(u64 userdata, s64 cycles_late)
{ {
m_core->SendJoybusCommand(CoreTiming::GetTicks() + userdata, 0, nullptr, m_keys); m_core->SendJoybusCommand(Core::System::GetInstance().GetCoreTiming().GetTicks() + userdata, 0,
nullptr, m_keys);
ScheduleEvent(m_device_number, userdata + GetSyncInterval()); ScheduleEvent(m_device_number, userdata + GetSyncInterval());
} }
} // namespace SerialInterface } // namespace SerialInterface

View File

@ -18,6 +18,7 @@
#include "Core/HW/SystemTimers.h" #include "Core/HW/SystemTimers.h"
#include "Core/Movie.h" #include "Core/Movie.h"
#include "Core/NetPlayProto.h" #include "Core/NetPlayProto.h"
#include "Core/System.h"
#include "InputCommon/GCPadStatus.h" #include "InputCommon/GCPadStatus.h"
namespace SerialInterface namespace SerialInterface
@ -263,12 +264,12 @@ CSIDevice_GCController::HandleButtonCombos(const GCPadStatus& pad_status)
{ {
m_last_button_combo = temp_combo; m_last_button_combo = temp_combo;
if (m_last_button_combo != COMBO_NONE) if (m_last_button_combo != COMBO_NONE)
m_timer_button_combo_start = CoreTiming::GetTicks(); m_timer_button_combo_start = Core::System::GetInstance().GetCoreTiming().GetTicks();
} }
if (m_last_button_combo != COMBO_NONE) if (m_last_button_combo != COMBO_NONE)
{ {
const u64 current_time = CoreTiming::GetTicks(); const u64 current_time = Core::System::GetInstance().GetCoreTiming().GetTicks();
if (u32(current_time - m_timer_button_combo_start) > SystemTimers::GetTicksPerSecond() * 3) if (u32(current_time - m_timer_button_combo_start) > SystemTimers::GetTicksPerSecond() * 3)
{ {
if (m_last_button_combo == COMBO_RESET) if (m_last_button_combo == COMBO_RESET)

View File

@ -65,6 +65,7 @@ IPC_HLE_PERIOD: For the Wii Remote this is the call schedule:
#include "Core/IOS/IOS.h" #include "Core/IOS/IOS.h"
#include "Core/PatchEngine.h" #include "Core/PatchEngine.h"
#include "Core/PowerPC/PowerPC.h" #include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "VideoCommon/Fifo.h" #include "VideoCommon/Fifo.h"
namespace SystemTimers namespace SystemTimers
@ -105,7 +106,8 @@ void DSPCallback(Core::System& system, u64 userdata, s64 cyclesLate)
// splits up the cycle budget in case lle is used // splits up the cycle budget in case lle is used
// for hle, just gives all of the slice to hle // for hle, just gives all of the slice to hle
DSP::UpdateDSPSlice(static_cast<int>(DSP::GetDSPEmulator()->DSP_UpdateRate() - cyclesLate)); DSP::UpdateDSPSlice(static_cast<int>(DSP::GetDSPEmulator()->DSP_UpdateRate() - cyclesLate));
CoreTiming::ScheduleEvent(DSP::GetDSPEmulator()->DSP_UpdateRate() - cyclesLate, et_DSP); system.GetCoreTiming().ScheduleEvent(DSP::GetDSPEmulator()->DSP_UpdateRate() - cyclesLate,
et_DSP);
} }
int GetAudioDMACallbackPeriod() int GetAudioDMACallbackPeriod()
@ -118,7 +120,7 @@ int GetAudioDMACallbackPeriod()
void AudioDMACallback(Core::System& system, u64 userdata, s64 cyclesLate) void AudioDMACallback(Core::System& system, u64 userdata, s64 cyclesLate)
{ {
DSP::UpdateAudioDMA(); // Push audio to speakers. DSP::UpdateAudioDMA(); // Push audio to speakers.
CoreTiming::ScheduleEvent(GetAudioDMACallbackPeriod() - cyclesLate, et_AudioDMA); system.GetCoreTiming().ScheduleEvent(GetAudioDMACallbackPeriod() - cyclesLate, et_AudioDMA);
} }
void IPC_HLE_UpdateCallback(Core::System& system, u64 userdata, s64 cyclesLate) void IPC_HLE_UpdateCallback(Core::System& system, u64 userdata, s64 cyclesLate)
@ -126,14 +128,15 @@ void IPC_HLE_UpdateCallback(Core::System& system, u64 userdata, s64 cyclesLate)
if (SConfig::GetInstance().bWii) if (SConfig::GetInstance().bWii)
{ {
IOS::HLE::GetIOS()->UpdateDevices(); IOS::HLE::GetIOS()->UpdateDevices();
CoreTiming::ScheduleEvent(s_ipc_hle_period - cyclesLate, et_IPC_HLE); system.GetCoreTiming().ScheduleEvent(s_ipc_hle_period - cyclesLate, et_IPC_HLE);
} }
} }
void VICallback(Core::System& system, u64 userdata, s64 cyclesLate) void VICallback(Core::System& system, u64 userdata, s64 cyclesLate)
{ {
VideoInterface::Update(CoreTiming::GetTicks() - cyclesLate); auto& core_timing = system.GetCoreTiming();
CoreTiming::ScheduleEvent(VideoInterface::GetTicksPerHalfLine() - cyclesLate, et_VI); VideoInterface::Update(core_timing.GetTicks() - cyclesLate);
core_timing.ScheduleEvent(VideoInterface::GetTicksPerHalfLine() - cyclesLate, et_VI);
} }
void DecrementerCallback(Core::System& system, u64 userdata, s64 cyclesLate) void DecrementerCallback(Core::System& system, u64 userdata, s64 cyclesLate)
@ -164,7 +167,7 @@ void PatchEngineCallback(Core::System& system, u64 userdata, s64 cycles_late)
cycles_pruned += next_schedule; cycles_pruned += next_schedule;
} }
CoreTiming::ScheduleEvent(next_schedule, et_PatchEngine, cycles_pruned); system.GetCoreTiming().ScheduleEvent(next_schedule, et_PatchEngine, cycles_pruned);
} }
void ThrottleCallback(Core::System& system, u64 deadline, s64 cyclesLate) void ThrottleCallback(Core::System& system, u64 deadline, s64 cyclesLate)
@ -208,7 +211,7 @@ void ThrottleCallback(Core::System& system, u64 deadline, s64 cyclesLate)
} }
// reschedule 1ms (possibly scaled by emulation_speed) into future on ppc // reschedule 1ms (possibly scaled by emulation_speed) into future on ppc
// add 1ms to the deadline // add 1ms to the deadline
CoreTiming::ScheduleEvent(next_event - cyclesLate, et_Throttle, deadline + 1000); system.GetCoreTiming().ScheduleEvent(next_event - cyclesLate, et_Throttle, deadline + 1000);
} }
} // namespace } // namespace
@ -219,34 +222,43 @@ u32 GetTicksPerSecond()
void DecrementerSet() void DecrementerSet()
{ {
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
u32 decValue = PowerPC::ppcState.spr[SPR_DEC]; u32 decValue = PowerPC::ppcState.spr[SPR_DEC];
CoreTiming::RemoveEvent(et_Dec); core_timing.RemoveEvent(et_Dec);
if ((decValue & 0x80000000) == 0) if ((decValue & 0x80000000) == 0)
{ {
CoreTiming::SetFakeDecStartTicks(CoreTiming::GetTicks()); core_timing.SetFakeDecStartTicks(core_timing.GetTicks());
CoreTiming::SetFakeDecStartValue(decValue); core_timing.SetFakeDecStartValue(decValue);
CoreTiming::ScheduleEvent(decValue * TIMER_RATIO, et_Dec); core_timing.ScheduleEvent(decValue * TIMER_RATIO, et_Dec);
} }
} }
u32 GetFakeDecrementer() u32 GetFakeDecrementer()
{ {
return (CoreTiming::GetFakeDecStartValue() - auto& system = Core::System::GetInstance();
(u32)((CoreTiming::GetTicks() - CoreTiming::GetFakeDecStartTicks()) / TIMER_RATIO)); auto& core_timing = system.GetCoreTiming();
return (core_timing.GetFakeDecStartValue() -
(u32)((core_timing.GetTicks() - core_timing.GetFakeDecStartTicks()) / TIMER_RATIO));
} }
void TimeBaseSet() void TimeBaseSet()
{ {
CoreTiming::SetFakeTBStartTicks(CoreTiming::GetTicks()); auto& system = Core::System::GetInstance();
CoreTiming::SetFakeTBStartValue(PowerPC::ReadFullTimeBaseValue()); auto& core_timing = system.GetCoreTiming();
core_timing.SetFakeTBStartTicks(core_timing.GetTicks());
core_timing.SetFakeTBStartValue(PowerPC::ReadFullTimeBaseValue());
} }
u64 GetFakeTimeBase() u64 GetFakeTimeBase()
{ {
return CoreTiming::GetFakeTBStartValue() + auto& system = Core::System::GetInstance();
((CoreTiming::GetTicks() - CoreTiming::GetFakeTBStartTicks()) / TIMER_RATIO); auto& core_timing = system.GetCoreTiming();
return core_timing.GetFakeTBStartValue() +
((core_timing.GetTicks() - core_timing.GetFakeTBStartTicks()) / TIMER_RATIO);
} }
s64 GetLocalTimeRTCOffset() s64 GetLocalTimeRTCOffset()
@ -293,7 +305,8 @@ void ChangePPCClock(Mode mode)
s_cpu_core_clock = 729000000u; s_cpu_core_clock = 729000000u;
else else
s_cpu_core_clock = 486000000u; s_cpu_core_clock = 486000000u;
CoreTiming::AdjustEventQueueTimes(s_cpu_core_clock, previous_clock); Core::System::GetInstance().GetCoreTiming().AdjustEventQueueTimes(s_cpu_core_clock,
previous_clock);
} }
void Init() void Init()
@ -315,32 +328,35 @@ void Init()
Common::Timer::GetLocalTimeSinceJan1970() - Config::Get(Config::MAIN_CUSTOM_RTC_VALUE); Common::Timer::GetLocalTimeSinceJan1970() - Config::Get(Config::MAIN_CUSTOM_RTC_VALUE);
} }
CoreTiming::SetFakeTBStartValue(static_cast<u64>(s_cpu_core_clock / TIMER_RATIO) * auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
core_timing.SetFakeTBStartValue(static_cast<u64>(s_cpu_core_clock / TIMER_RATIO) *
static_cast<u64>(ExpansionInterface::CEXIIPL::GetEmulatedTime( static_cast<u64>(ExpansionInterface::CEXIIPL::GetEmulatedTime(
ExpansionInterface::CEXIIPL::GC_EPOCH))); ExpansionInterface::CEXIIPL::GC_EPOCH)));
CoreTiming::SetFakeTBStartTicks(CoreTiming::GetTicks()); core_timing.SetFakeTBStartTicks(core_timing.GetTicks());
CoreTiming::SetFakeDecStartValue(0xFFFFFFFF); core_timing.SetFakeDecStartValue(0xFFFFFFFF);
CoreTiming::SetFakeDecStartTicks(CoreTiming::GetTicks()); core_timing.SetFakeDecStartTicks(core_timing.GetTicks());
et_Dec = CoreTiming::RegisterEvent("DecCallback", DecrementerCallback); et_Dec = core_timing.RegisterEvent("DecCallback", DecrementerCallback);
et_VI = CoreTiming::RegisterEvent("VICallback", VICallback); et_VI = core_timing.RegisterEvent("VICallback", VICallback);
et_DSP = CoreTiming::RegisterEvent("DSPCallback", DSPCallback); et_DSP = core_timing.RegisterEvent("DSPCallback", DSPCallback);
et_AudioDMA = CoreTiming::RegisterEvent("AudioDMACallback", AudioDMACallback); et_AudioDMA = core_timing.RegisterEvent("AudioDMACallback", AudioDMACallback);
et_IPC_HLE = CoreTiming::RegisterEvent("IPC_HLE_UpdateCallback", IPC_HLE_UpdateCallback); et_IPC_HLE = core_timing.RegisterEvent("IPC_HLE_UpdateCallback", IPC_HLE_UpdateCallback);
et_PatchEngine = CoreTiming::RegisterEvent("PatchEngine", PatchEngineCallback); et_PatchEngine = core_timing.RegisterEvent("PatchEngine", PatchEngineCallback);
et_Throttle = CoreTiming::RegisterEvent("Throttle", ThrottleCallback); et_Throttle = core_timing.RegisterEvent("Throttle", ThrottleCallback);
CoreTiming::ScheduleEvent(VideoInterface::GetTicksPerHalfLine(), et_VI); core_timing.ScheduleEvent(VideoInterface::GetTicksPerHalfLine(), et_VI);
CoreTiming::ScheduleEvent(0, et_DSP); core_timing.ScheduleEvent(0, et_DSP);
CoreTiming::ScheduleEvent(GetAudioDMACallbackPeriod(), et_AudioDMA); core_timing.ScheduleEvent(GetAudioDMACallbackPeriod(), et_AudioDMA);
CoreTiming::ScheduleEvent(0, et_Throttle, 0); core_timing.ScheduleEvent(0, et_Throttle, 0);
CoreTiming::ScheduleEvent(VideoInterface::GetTicksPerField(), et_PatchEngine); core_timing.ScheduleEvent(VideoInterface::GetTicksPerField(), et_PatchEngine);
if (SConfig::GetInstance().bWii) if (SConfig::GetInstance().bWii)
CoreTiming::ScheduleEvent(s_ipc_hle_period, et_IPC_HLE); core_timing.ScheduleEvent(s_ipc_hle_period, et_IPC_HLE);
s_emu_to_real_time_ring_buffer.fill(0); s_emu_to_real_time_ring_buffer.fill(0);
} }

View File

@ -317,7 +317,8 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
base | VI_HORIZONTAL_BEAM_POSITION, MMIO::ComplexRead<u16>([](Core::System& system, u32) { base | VI_HORIZONTAL_BEAM_POSITION, MMIO::ComplexRead<u16>([](Core::System& system, u32) {
auto& state = system.GetVideoInterfaceState().GetData(); auto& state = system.GetVideoInterfaceState().GetData();
u16 value = static_cast<u16>( u16 value = static_cast<u16>(
1 + state.h_timing_0.HLW * (CoreTiming::GetTicks() - state.ticks_last_line_start) / 1 + state.h_timing_0.HLW *
(system.GetCoreTiming().GetTicks() - state.ticks_last_line_start) /
(GetTicksPerHalfLine())); (GetTicksPerHalfLine()));
return std::clamp<u16>(value, 1, state.h_timing_0.HLW * 2); return std::clamp<u16>(value, 1, state.h_timing_0.HLW * 2);
}), }),
@ -878,7 +879,8 @@ static void EndField(FieldType field, u64 ticks)
// Run when: When a frame is scanned (progressive/interlace) // Run when: When a frame is scanned (progressive/interlace)
void Update(u64 ticks) void Update(u64 ticks)
{ {
auto& state = Core::System::GetInstance().GetVideoInterfaceState().GetData(); auto& system = Core::System::GetInstance();
auto& state = system.GetVideoInterfaceState().GetData();
// Movie's frame counter should be updated before actually rendering the frame, // Movie's frame counter should be updated before actually rendering the frame,
// in case frame counter display is enabled // in case frame counter display is enabled
@ -946,7 +948,7 @@ void Update(u64 ticks)
if (!(state.half_line_count & 1)) if (!(state.half_line_count & 1))
{ {
state.ticks_last_line_start = CoreTiming::GetTicks(); state.ticks_last_line_start = system.GetCoreTiming().GetTicks();
} }
// Check if we need to assert IR_INT. Note that the granularity of our current horizontal // Check if we need to assert IR_INT. Note that the granularity of our current horizontal

View File

@ -157,7 +157,8 @@ static void InitState()
void Init() void Init()
{ {
InitState(); InitState();
updateInterrupts = CoreTiming::RegisterEvent("IPCInterrupt", UpdateInterrupts); updateInterrupts =
Core::System::GetInstance().GetCoreTiming().RegisterEvent("IPCInterrupt", UpdateInterrupts);
} }
void Reset() void Reset()
@ -176,7 +177,7 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
mmio->Register(base | IPC_PPCCTRL, mmio->Register(base | IPC_PPCCTRL,
MMIO::ComplexRead<u32>([](Core::System&, u32) { return ctrl.ppc(); }), MMIO::ComplexRead<u32>([](Core::System&, u32) { return ctrl.ppc(); }),
MMIO::ComplexWrite<u32>([](Core::System&, u32, u32 val) { MMIO::ComplexWrite<u32>([](Core::System& system, u32, u32 val) {
ctrl.ppc(val); ctrl.ppc(val);
// The IPC interrupt is triggered when IY1/IY2 is set and // The IPC interrupt is triggered when IY1/IY2 is set and
// Y1/Y2 is written to -- even when this results in clearing the bit. // Y1/Y2 is written to -- even when this results in clearing the bit.
@ -185,25 +186,25 @@ void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
if (ctrl.X1) if (ctrl.X1)
HLE::GetIOS()->EnqueueIPCRequest(ppc_msg); HLE::GetIOS()->EnqueueIPCRequest(ppc_msg);
HLE::GetIOS()->UpdateIPC(); HLE::GetIOS()->UpdateIPC();
CoreTiming::ScheduleEvent(0, updateInterrupts, 0); system.GetCoreTiming().ScheduleEvent(0, updateInterrupts, 0);
})); }));
mmio->Register(base | IPC_ARMMSG, MMIO::DirectRead<u32>(&arm_msg), MMIO::InvalidWrite<u32>()); mmio->Register(base | IPC_ARMMSG, MMIO::DirectRead<u32>(&arm_msg), MMIO::InvalidWrite<u32>());
mmio->Register(base | PPC_IRQFLAG, MMIO::InvalidRead<u32>(), mmio->Register(base | PPC_IRQFLAG, MMIO::InvalidRead<u32>(),
MMIO::ComplexWrite<u32>([](Core::System&, u32, u32 val) { MMIO::ComplexWrite<u32>([](Core::System& system, u32, u32 val) {
ppc_irq_flags &= ~val; ppc_irq_flags &= ~val;
HLE::GetIOS()->UpdateIPC(); HLE::GetIOS()->UpdateIPC();
CoreTiming::ScheduleEvent(0, updateInterrupts, 0); system.GetCoreTiming().ScheduleEvent(0, updateInterrupts, 0);
})); }));
mmio->Register(base | PPC_IRQMASK, MMIO::InvalidRead<u32>(), mmio->Register(base | PPC_IRQMASK, MMIO::InvalidRead<u32>(),
MMIO::ComplexWrite<u32>([](Core::System&, u32, u32 val) { MMIO::ComplexWrite<u32>([](Core::System& system, u32, u32 val) {
ppc_irq_masks = val; ppc_irq_masks = val;
if (ppc_irq_masks & INT_CAUSE_IPC_BROADWAY) // wtf? if (ppc_irq_masks & INT_CAUSE_IPC_BROADWAY) // wtf?
Reset(); Reset();
HLE::GetIOS()->UpdateIPC(); HLE::GetIOS()->UpdateIPC();
CoreTiming::ScheduleEvent(0, updateInterrupts, 0); system.GetCoreTiming().ScheduleEvent(0, updateInterrupts, 0);
})); }));
mmio->Register(base | GPIOB_OUT, MMIO::DirectRead<u32>(&g_gpio_out.m_hex), mmio->Register(base | GPIOB_OUT, MMIO::DirectRead<u32>(&g_gpio_out.m_hex),
@ -313,7 +314,8 @@ void GenerateAck(u32 address)
ctrl.Y2, ctrl.X1); ctrl.Y2, ctrl.X1);
// Based on a hardware test, the IPC interrupt takes approximately 100 TB ticks to fire // Based on a hardware test, the IPC interrupt takes approximately 100 TB ticks to fire
// after Y2 is seen in the control register. // after Y2 is seen in the control register.
CoreTiming::ScheduleEvent(100 * SystemTimers::TIMER_RATIO, updateInterrupts); Core::System::GetInstance().GetCoreTiming().ScheduleEvent(100 * SystemTimers::TIMER_RATIO,
updateInterrupts);
} }
void GenerateReply(u32 address) void GenerateReply(u32 address)
@ -324,7 +326,8 @@ void GenerateReply(u32 address)
ctrl.Y1, ctrl.Y2, ctrl.X1); ctrl.Y1, ctrl.Y2, ctrl.X1);
// Based on a hardware test, the IPC interrupt takes approximately 100 TB ticks to fire // Based on a hardware test, the IPC interrupt takes approximately 100 TB ticks to fire
// after Y1 is seen in the control register. // after Y1 is seen in the control register.
CoreTiming::ScheduleEvent(100 * SystemTimers::TIMER_RATIO, updateInterrupts); Core::System::GetInstance().GetCoreTiming().ScheduleEvent(100 * SystemTimers::TIMER_RATIO,
updateInterrupts);
} }
bool IsReady() bool IsReady()

View File

@ -113,8 +113,8 @@ void DIDevice::ProcessQueuedIOCtl()
auto finished = StartIOCtl(request); auto finished = StartIOCtl(request);
if (finished) if (finished)
{ {
CoreTiming::ScheduleEvent(IPC_OVERHEAD_TICKS, s_finish_executing_di_command, Core::System::GetInstance().GetCoreTiming().ScheduleEvent(
static_cast<u64>(finished.value())); IPC_OVERHEAD_TICKS, s_finish_executing_di_command, static_cast<u64>(finished.value()));
return; return;
} }
} }

View File

@ -26,6 +26,7 @@
#include "Core/IOS/IOSC.h" #include "Core/IOS/IOSC.h"
#include "Core/IOS/Uids.h" #include "Core/IOS/Uids.h"
#include "Core/IOS/VersionInfo.h" #include "Core/IOS/VersionInfo.h"
#include "Core/System.h"
#include "DiscIO/Enums.h" #include "DiscIO/Enums.h"
namespace IOS::HLE namespace IOS::HLE
@ -103,8 +104,10 @@ ESDevice::ESDevice(Kernel& ios, const std::string& device_name) : Device(ios, de
if (Core::IsRunningAndStarted()) if (Core::IsRunningAndStarted())
{ {
CoreTiming::RemoveEvent(s_finish_init_event); auto& system = Core::System::GetInstance();
CoreTiming::ScheduleEvent(GetESBootTicks(m_ios.GetVersion()), s_finish_init_event); auto& core_timing = system.GetCoreTiming();
core_timing.RemoveEvent(s_finish_init_event);
core_timing.ScheduleEvent(GetESBootTicks(m_ios.GetVersion()), s_finish_init_event);
} }
else else
{ {
@ -114,14 +117,16 @@ ESDevice::ESDevice(Kernel& ios, const std::string& device_name) : Device(ios, de
void ESDevice::InitializeEmulationState() void ESDevice::InitializeEmulationState()
{ {
s_finish_init_event = CoreTiming::RegisterEvent( auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
s_finish_init_event = core_timing.RegisterEvent(
"IOS-ESFinishInit", [](Core::System& system, u64, s64) { GetIOS()->GetES()->FinishInit(); }); "IOS-ESFinishInit", [](Core::System& system, u64, s64) { GetIOS()->GetES()->FinishInit(); });
s_reload_ios_for_ppc_launch_event = CoreTiming::RegisterEvent( s_reload_ios_for_ppc_launch_event = core_timing.RegisterEvent(
"IOS-ESReloadIOSForPPCLaunch", [](Core::System& system, u64 ios_id, s64) { "IOS-ESReloadIOSForPPCLaunch", [](Core::System& system, u64 ios_id, s64) {
GetIOS()->GetES()->LaunchTitle(ios_id, HangPPC::Yes); GetIOS()->GetES()->LaunchTitle(ios_id, HangPPC::Yes);
}); });
s_bootstrap_ppc_for_launch_event = s_bootstrap_ppc_for_launch_event =
CoreTiming::RegisterEvent("IOS-ESBootstrapPPCForLaunch", [](Core::System& system, u64, s64) { core_timing.RegisterEvent("IOS-ESBootstrapPPCForLaunch", [](Core::System& system, u64, s64) {
GetIOS()->GetES()->BootstrapPPC(); GetIOS()->GetES()->BootstrapPPC();
}); });
} }
@ -397,6 +402,9 @@ bool ESDevice::LaunchPPCTitle(u64 title_id)
return false; return false;
} }
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
// Before launching a title, IOS first reads the TMD and reloads into the specified IOS version, // Before launching a title, IOS first reads the TMD and reloads into the specified IOS version,
// even when that version is already running. After it has reloaded, ES_Launch will be called // even when that version is already running. After it has reloaded, ES_Launch will be called
// again and the PPC will be bootstrapped then. // again and the PPC will be bootstrapped then.
@ -417,8 +425,8 @@ bool ESDevice::LaunchPPCTitle(u64 title_id)
const u64 required_ios = tmd.GetIOSId(); const u64 required_ios = tmd.GetIOSId();
if (!Core::IsRunningAndStarted()) if (!Core::IsRunningAndStarted())
return LaunchTitle(required_ios, HangPPC::Yes); return LaunchTitle(required_ios, HangPPC::Yes);
CoreTiming::RemoveEvent(s_reload_ios_for_ppc_launch_event); core_timing.RemoveEvent(s_reload_ios_for_ppc_launch_event);
CoreTiming::ScheduleEvent(ticks, s_reload_ios_for_ppc_launch_event, required_ios); core_timing.ScheduleEvent(ticks, s_reload_ios_for_ppc_launch_event, required_ios);
return true; return true;
} }
@ -446,8 +454,9 @@ bool ESDevice::LaunchPPCTitle(u64 title_id)
m_pending_ppc_boot_content_path = GetContentPath(tmd.GetTitleId(), content); m_pending_ppc_boot_content_path = GetContentPath(tmd.GetTitleId(), content);
if (!Core::IsRunningAndStarted()) if (!Core::IsRunningAndStarted())
return BootstrapPPC(); return BootstrapPPC();
CoreTiming::RemoveEvent(s_bootstrap_ppc_for_launch_event);
CoreTiming::ScheduleEvent(ticks, s_bootstrap_ppc_for_launch_event); core_timing.RemoveEvent(s_bootstrap_ppc_for_launch_event);
core_timing.ScheduleEvent(ticks, s_bootstrap_ppc_for_launch_event);
return true; return true;
} }

View File

@ -56,6 +56,7 @@
#include "Core/IOS/WFS/WFSI.h" #include "Core/IOS/WFS/WFSI.h"
#include "Core/IOS/WFS/WFSSRV.h" #include "Core/IOS/WFS/WFSSRV.h"
#include "Core/PowerPC/PowerPC.h" #include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "Core/WiiRoot.h" #include "Core/WiiRoot.h"
namespace IOS::HLE namespace IOS::HLE
@ -320,7 +321,7 @@ EmulationKernel::EmulationKernel(u64 title_id) : Kernel(title_id)
EmulationKernel::~EmulationKernel() EmulationKernel::~EmulationKernel()
{ {
CoreTiming::RemoveAllEvents(s_event_enqueue); Core::System::GetInstance().GetCoreTiming().RemoveAllEvents(s_event_enqueue);
} }
// The title ID is a u64 where the first 32 bits are used for the title type. // The title ID is a u64 where the first 32 bits are used for the title type.
@ -410,7 +411,8 @@ bool Kernel::BootstrapPPC(const std::string& boot_content_path)
return false; return false;
INFO_LOG_FMT(IOS, "BootstrapPPC: {}", boot_content_path); INFO_LOG_FMT(IOS, "BootstrapPPC: {}", boot_content_path);
CoreTiming::ScheduleEvent(ticks, s_event_finish_ppc_bootstrap, dol.IsAncast()); Core::System::GetInstance().GetCoreTiming().ScheduleEvent(ticks, s_event_finish_ppc_bootstrap,
dol.IsAncast());
return true; return true;
} }
@ -485,9 +487,14 @@ bool Kernel::BootIOS(const u64 ios_title_id, HangPPC hang_ppc, const std::string
ResetAndPausePPC(); ResetAndPausePPC();
if (Core::IsRunningAndStarted()) if (Core::IsRunningAndStarted())
CoreTiming::ScheduleEvent(GetIOSBootTicks(GetVersion()), s_event_finish_ios_boot, ios_title_id); {
Core::System::GetInstance().GetCoreTiming().ScheduleEvent(
GetIOSBootTicks(GetVersion()), s_event_finish_ios_boot, ios_title_id);
}
else else
{
FinishIOSBoot(ios_title_id); FinishIOSBoot(ios_title_id);
}
return true; return true;
} }
@ -720,10 +727,12 @@ void Kernel::ExecuteIPCCommand(const u32 address)
return; return;
// Ensure replies happen in order // Ensure replies happen in order
const s64 ticks_until_last_reply = m_last_reply_time - CoreTiming::GetTicks(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
const s64 ticks_until_last_reply = m_last_reply_time - core_timing.GetTicks();
if (ticks_until_last_reply > 0) if (ticks_until_last_reply > 0)
result->reply_delay_ticks += ticks_until_last_reply; result->reply_delay_ticks += ticks_until_last_reply;
m_last_reply_time = CoreTiming::GetTicks() + result->reply_delay_ticks; m_last_reply_time = core_timing.GetTicks() + result->reply_delay_ticks;
EnqueueIPCReply(request, result->return_value, result->reply_delay_ticks); EnqueueIPCReply(request, result->return_value, result->reply_delay_ticks);
} }
@ -734,7 +743,8 @@ void Kernel::EnqueueIPCRequest(u32 address)
// Based on hardware tests, IOS takes between 5µs and 10µs to acknowledge an IPC request. // Based on hardware tests, IOS takes between 5µs and 10µs to acknowledge an IPC request.
// Console 1: 456 TB ticks before ACK // Console 1: 456 TB ticks before ACK
// Console 2: 658 TB ticks before ACK // Console 2: 658 TB ticks before ACK
CoreTiming::ScheduleEvent(500_tbticks, s_event_enqueue, address | ENQUEUE_REQUEST_FLAG); Core::System::GetInstance().GetCoreTiming().ScheduleEvent(500_tbticks, s_event_enqueue,
address | ENQUEUE_REQUEST_FLAG);
} }
// Called to send a reply to an IOS syscall // Called to send a reply to an IOS syscall
@ -746,7 +756,8 @@ void Kernel::EnqueueIPCReply(const Request& request, const s32 return_value, s64
Memory::Write_U32(request.command, request.address + 8); Memory::Write_U32(request.command, request.address + 8);
// IOS also overwrites the command type with the reply type. // IOS also overwrites the command type with the reply type.
Memory::Write_U32(IPC_REPLY, request.address); Memory::Write_U32(IPC_REPLY, request.address);
CoreTiming::ScheduleEvent(cycles_in_future, s_event_enqueue, request.address, from); Core::System::GetInstance().GetCoreTiming().ScheduleEvent(cycles_in_future, s_event_enqueue,
request.address, from);
} }
void Kernel::HandleIPCEvent(u64 userdata) void Kernel::HandleIPCEvent(u64 userdata)
@ -892,8 +903,11 @@ static void FinishPPCBootstrap(Core::System& system, u64 userdata, s64 cycles_la
void Init() void Init()
{ {
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
s_event_enqueue = s_event_enqueue =
CoreTiming::RegisterEvent("IPCEvent", [](Core::System& system, u64 userdata, s64) { core_timing.RegisterEvent("IPCEvent", [](Core::System& system, u64 userdata, s64) {
if (s_ios) if (s_ios)
s_ios->HandleIPCEvent(userdata); s_ios->HandleIPCEvent(userdata);
}); });
@ -901,14 +915,14 @@ void Init()
ESDevice::InitializeEmulationState(); ESDevice::InitializeEmulationState();
s_event_finish_ppc_bootstrap = s_event_finish_ppc_bootstrap =
CoreTiming::RegisterEvent("IOSFinishPPCBootstrap", FinishPPCBootstrap); core_timing.RegisterEvent("IOSFinishPPCBootstrap", FinishPPCBootstrap);
s_event_finish_ios_boot = s_event_finish_ios_boot =
CoreTiming::RegisterEvent("IOSFinishIOSBoot", [](Core::System& system, u64 ios_title_id, core_timing.RegisterEvent("IOSFinishIOSBoot", [](Core::System& system, u64 ios_title_id,
s64) { FinishIOSBoot(ios_title_id); }); s64) { FinishIOSBoot(ios_title_id); });
DIDevice::s_finish_executing_di_command = DIDevice::s_finish_executing_di_command =
CoreTiming::RegisterEvent("FinishDICommand", DIDevice::FinishDICommandCallback); core_timing.RegisterEvent("FinishDICommand", DIDevice::FinishDICommandCallback);
// Start with IOS80 to simulate part of the Wii boot process. // Start with IOS80 to simulate part of the Wii boot process.
s_ios = std::make_unique<EmulationKernel>(Titles::SYSTEM_MENU_IOS); s_ios = std::make_unique<EmulationKernel>(Titles::SYSTEM_MENU_IOS);

View File

@ -25,6 +25,7 @@
#include "Core/NetPlayClient.h" #include "Core/NetPlayClient.h"
#include "Core/NetPlayProto.h" #include "Core/NetPlayProto.h"
#include "Core/SysConf.h" #include "Core/SysConf.h"
#include "Core/System.h"
#include "InputCommon/ControllerInterface/ControllerInterface.h" #include "InputCommon/ControllerInterface/ControllerInterface.h"
namespace IOS::HLE namespace IOS::HLE
@ -339,7 +340,7 @@ void BluetoothEmuDevice::Update()
wiimote->Update(); wiimote->Update();
const u64 interval = SystemTimers::GetTicksPerSecond() / Wiimote::UPDATE_FREQ; const u64 interval = SystemTimers::GetTicksPerSecond() / Wiimote::UPDATE_FREQ;
const u64 now = CoreTiming::GetTicks(); const u64 now = Core::System::GetInstance().GetCoreTiming().GetTicks();
if (now - m_last_ticks > interval) if (now - m_last_ticks > interval)
{ {

View File

@ -63,6 +63,7 @@
#include "Core/IOS/USB/Bluetooth/WiimoteDevice.h" #include "Core/IOS/USB/Bluetooth/WiimoteDevice.h"
#include "Core/NetPlayProto.h" #include "Core/NetPlayProto.h"
#include "Core/State.h" #include "Core/State.h"
#include "Core/System.h"
#include "Core/WiiUtils.h" #include "Core/WiiUtils.h"
#include "DiscIO/Enums.h" #include "DiscIO/Enums.h"
@ -290,9 +291,12 @@ void InputUpdate()
s_currentInputCount++; s_currentInputCount++;
if (IsRecordingInput()) if (IsRecordingInput())
{ {
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
s_totalInputCount = s_currentInputCount; s_totalInputCount = s_currentInputCount;
s_totalTickCount += CoreTiming::GetTicks() - s_tickCountAtLastInput; s_totalTickCount += core_timing.GetTicks() - s_tickCountAtLastInput;
s_tickCountAtLastInput = CoreTiming::GetTicks(); s_tickCountAtLastInput = core_timing.GetTicks();
} }
} }
@ -1181,7 +1185,8 @@ void LoadInput(const std::string& movie_path)
static void CheckInputEnd() static void CheckInputEnd()
{ {
if (s_currentByte >= s_temp_input.size() || if (s_currentByte >= s_temp_input.size() ||
(CoreTiming::GetTicks() > s_totalTickCount && !IsRecordingInputFromSaveState())) (Core::System::GetInstance().GetCoreTiming().GetTicks() > s_totalTickCount &&
!IsRecordingInputFromSaveState()))
{ {
EndPlayInput(!s_bReadOnly); EndPlayInput(!s_bReadOnly);
} }

View File

@ -13,6 +13,7 @@
#include "Core/PowerPC/Jit64Common/Jit64Constants.h" #include "Core/PowerPC/Jit64Common/Jit64Constants.h"
#include "Core/PowerPC/PPCAnalyst.h" #include "Core/PowerPC/PPCAnalyst.h"
#include "Core/PowerPC/PowerPC.h" #include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
struct CachedInterpreter::Instruction struct CachedInterpreter::Instruction
{ {
@ -109,12 +110,15 @@ void CachedInterpreter::ExecuteOneBlock()
void CachedInterpreter::Run() void CachedInterpreter::Run()
{ {
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
const CPU::State* state_ptr = CPU::GetStatePtr(); const CPU::State* state_ptr = CPU::GetStatePtr();
while (CPU::GetState() == CPU::State::Running) while (CPU::GetState() == CPU::State::Running)
{ {
// Start new timing slice // Start new timing slice
// NOTE: Exceptions may change PC // NOTE: Exceptions may change PC
CoreTiming::Advance(); core_timing.Advance();
do do
{ {
@ -126,7 +130,7 @@ void CachedInterpreter::Run()
void CachedInterpreter::SingleStep() void CachedInterpreter::SingleStep()
{ {
// Enter new timing slice // Enter new timing slice
CoreTiming::Advance(); Core::System::GetInstance().GetCoreTiming().Advance();
ExecuteOneBlock(); ExecuteOneBlock();
} }
@ -207,7 +211,7 @@ static bool CheckIdle(u32 idle_pc)
{ {
if (PowerPC::ppcState.npc == idle_pc) if (PowerPC::ppcState.npc == idle_pc)
{ {
CoreTiming::Idle(); Core::System::GetInstance().GetCoreTiming().Idle();
} }
return false; return false;
} }

View File

@ -37,6 +37,7 @@ typedef SSIZE_T ssize_t;
#include "Core/PowerPC/Gekko.h" #include "Core/PowerPC/Gekko.h"
#include "Core/PowerPC/PPCCache.h" #include "Core/PowerPC/PPCCache.h"
#include "Core/PowerPC/PowerPC.h" #include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
namespace GDBStub namespace GDBStub
{ {
@ -128,7 +129,7 @@ static void UpdateCallback(Core::System& system, u64 userdata, s64 cycles_late)
{ {
ProcessCommands(false); ProcessCommands(false);
if (IsActive()) if (IsActive())
CoreTiming::ScheduleEvent(GDB_UPDATE_CYCLES, s_update_event); Core::System::GetInstance().GetCoreTiming().ScheduleEvent(GDB_UPDATE_CYCLES, s_update_event);
} }
static u8 ReadByte() static u8 ReadByte()
@ -1068,8 +1069,10 @@ static void InitGeneric(int domain, const sockaddr* server_addr, socklen_t serve
#endif #endif
s_tmpsock = -1; s_tmpsock = -1;
s_update_event = CoreTiming::RegisterEvent("GDBStubUpdate", UpdateCallback); auto& system = Core::System::GetInstance();
CoreTiming::ScheduleEvent(GDB_UPDATE_CYCLES, s_update_event); auto& core_timing = system.GetCoreTiming();
s_update_event = core_timing.RegisterEvent("GDBStubUpdate", UpdateCallback);
core_timing.ScheduleEvent(GDB_UPDATE_CYCLES, s_update_event);
s_has_control = true; s_has_control = true;
} }

View File

@ -215,7 +215,7 @@ void Interpreter::SingleStep()
auto& core_timing_globals = Core::System::GetInstance().GetCoreTimingGlobals(); auto& core_timing_globals = Core::System::GetInstance().GetCoreTimingGlobals();
// Declare start of new slice // Declare start of new slice
CoreTiming::Advance(); Core::System::GetInstance().GetCoreTiming().Advance();
SingleStepInner(); SingleStepInner();
@ -241,12 +241,14 @@ constexpr u32 s_show_steps = 300;
// FastRun - inspired by GCemu (to imitate the JIT so that they can be compared). // FastRun - inspired by GCemu (to imitate the JIT so that they can be compared).
void Interpreter::Run() void Interpreter::Run()
{ {
auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
while (CPU::GetState() == CPU::State::Running) while (CPU::GetState() == CPU::State::Running)
{ {
// CoreTiming Advance() ends the previous slice and declares the start of the next // CoreTiming Advance() ends the previous slice and declares the start of the next
// one so it must always be called at the start. At boot, we are in slice -1 and must // one so it must always be called at the start. At boot, we are in slice -1 and must
// advance into slice 0 to get a correct slice length before executing any cycles. // advance into slice 0 to get a correct slice length before executing any cycles.
CoreTiming::Advance(); core_timing.Advance();
// we have to check exceptions at branches apparently (or maybe just rfi?) // we have to check exceptions at branches apparently (or maybe just rfi?)
if (Config::Get(Config::MAIN_ENABLE_DEBUGGING)) if (Config::Get(Config::MAIN_ENABLE_DEBUGGING))

View File

@ -44,6 +44,7 @@
#include "Core/PowerPC/PPCAnalyst.h" #include "Core/PowerPC/PPCAnalyst.h"
#include "Core/PowerPC/PowerPC.h" #include "Core/PowerPC/PowerPC.h"
#include "Core/PowerPC/Profiler.h" #include "Core/PowerPC/Profiler.h"
#include "Core/System.h"
using namespace Gen; using namespace Gen;
using namespace PowerPC; using namespace PowerPC;
@ -205,7 +206,7 @@ bool Jit64::HandleStackFault()
// to reset the guard page. // to reset the guard page.
// Yeah, it's kind of gross. // Yeah, it's kind of gross.
GetBlockCache()->InvalidateICache(0, 0xffffffff, true); GetBlockCache()->InvalidateICache(0, 0xffffffff, true);
CoreTiming::ForceExceptionCheck(0); Core::System::GetInstance().GetCoreTiming().ForceExceptionCheck(0);
m_cleanup_after_stackfault = true; m_cleanup_after_stackfault = true;
return true; return true;
@ -685,7 +686,7 @@ void Jit64::WriteRfiExitDestInRSCRATCH()
void Jit64::WriteIdleExit(u32 destination) void Jit64::WriteIdleExit(u32 destination)
{ {
ABI_PushRegistersAndAdjustStack({}, 0); ABI_PushRegistersAndAdjustStack({}, 0);
ABI_CallFunction(CoreTiming::Idle); ABI_CallFunction(CoreTiming::GlobalIdle);
ABI_PopRegistersAndAdjustStack({}, 0); ABI_PopRegistersAndAdjustStack({}, 0);
MOV(32, PPCSTATE(pc), Imm32(destination)); MOV(32, PPCSTATE(pc), Imm32(destination));
WriteExceptionExit(); WriteExceptionExit();

View File

@ -65,7 +65,7 @@ void Jit64AsmRoutineManager::Generate()
const u8* outerLoop = GetCodePtr(); const u8* outerLoop = GetCodePtr();
ABI_PushRegistersAndAdjustStack({}, 0); ABI_PushRegistersAndAdjustStack({}, 0);
ABI_CallFunction(CoreTiming::Advance); ABI_CallFunction(CoreTiming::GlobalAdvance);
ABI_PopRegistersAndAdjustStack({}, 0); ABI_PopRegistersAndAdjustStack({}, 0);
FixupBranch skipToRealDispatch = J(enable_debugging); // skip the sync and compare first time FixupBranch skipToRealDispatch = J(enable_debugging); // skip the sync and compare first time
dispatcher_mispredicted_blr = GetCodePtr(); dispatcher_mispredicted_blr = GetCodePtr();

View File

@ -24,6 +24,7 @@
#include "Core/PowerPC/JitArm64/JitArm64_RegCache.h" #include "Core/PowerPC/JitArm64/JitArm64_RegCache.h"
#include "Core/PowerPC/JitInterface.h" #include "Core/PowerPC/JitInterface.h"
#include "Core/PowerPC/Profiler.h" #include "Core/PowerPC/Profiler.h"
#include "Core/System.h"
using namespace Arm64Gen; using namespace Arm64Gen;
@ -120,7 +121,7 @@ bool JitArm64::HandleStackFault()
Common::UnWriteProtectMemory(m_stack_base + GUARD_OFFSET, GUARD_SIZE); Common::UnWriteProtectMemory(m_stack_base + GUARD_OFFSET, GUARD_SIZE);
#endif #endif
GetBlockCache()->InvalidateICache(0, 0xffffffff, true); GetBlockCache()->InvalidateICache(0, 0xffffffff, true);
CoreTiming::ForceExceptionCheck(0); Core::System::GetInstance().GetCoreTiming().ForceExceptionCheck(0);
m_cleanup_after_stackfault = true; m_cleanup_after_stackfault = true;
return true; return true;

View File

@ -105,7 +105,7 @@ void JitArm64::bx(UGeckoInstruction inst)
ARM64Reg WA = gpr.GetReg(); ARM64Reg WA = gpr.GetReg();
ARM64Reg XA = EncodeRegTo64(WA); ARM64Reg XA = EncodeRegTo64(WA);
MOVP2R(XA, &CoreTiming::Idle); MOVP2R(XA, &CoreTiming::GlobalIdle);
BLR(XA); BLR(XA);
gpr.Unlock(WA); gpr.Unlock(WA);
@ -161,7 +161,7 @@ void JitArm64::bcx(UGeckoInstruction inst)
// make idle loops go faster // make idle loops go faster
ARM64Reg XA = EncodeRegTo64(WA); ARM64Reg XA = EncodeRegTo64(WA);
MOVP2R(XA, &CoreTiming::Idle); MOVP2R(XA, &CoreTiming::GlobalIdle);
BLR(XA); BLR(XA);
WriteExceptionExit(js.op->branchTo); WriteExceptionExit(js.op->branchTo);
@ -281,7 +281,7 @@ void JitArm64::bclrx(UGeckoInstruction inst)
// make idle loops go faster // make idle loops go faster
ARM64Reg XA = EncodeRegTo64(WA); ARM64Reg XA = EncodeRegTo64(WA);
MOVP2R(XA, &CoreTiming::Idle); MOVP2R(XA, &CoreTiming::GlobalIdle);
BLR(XA); BLR(XA);
WriteExceptionExit(js.op->branchTo); WriteExceptionExit(js.op->branchTo);

View File

@ -172,7 +172,7 @@ void JitArm64::GenerateAsm()
FixupBranch Exit = B(CC_NEQ); FixupBranch Exit = B(CC_NEQ);
SetJumpTarget(to_start_of_timing_slice); SetJumpTarget(to_start_of_timing_slice);
MOVP2R(ARM64Reg::X8, &CoreTiming::Advance); MOVP2R(ARM64Reg::X8, &CoreTiming::GlobalAdvance);
BLR(ARM64Reg::X8); BLR(ARM64Reg::X8);
// Load the PC back into DISPATCHER_PC (the exception handler might have changed it) // Load the PC back into DISPATCHER_PC (the exception handler might have changed it)

View File

@ -31,6 +31,7 @@
#include "Core/PowerPC/JitInterface.h" #include "Core/PowerPC/JitInterface.h"
#include "Core/PowerPC/MMU.h" #include "Core/PowerPC/MMU.h"
#include "Core/PowerPC/PPCSymbolDB.h" #include "Core/PowerPC/PPCSymbolDB.h"
#include "Core/System.h"
namespace PowerPC namespace PowerPC
{ {
@ -258,8 +259,8 @@ CPUCore DefaultCPUCore()
void Init(CPUCore cpu_core) void Init(CPUCore cpu_core)
{ {
s_invalidate_cache_thread_safe = s_invalidate_cache_thread_safe = Core::System::GetInstance().GetCoreTiming().RegisterEvent(
CoreTiming::RegisterEvent("invalidateEmulatedCache", InvalidateCacheThreadSafe); "invalidateEmulatedCache", InvalidateCacheThreadSafe);
Reset(); Reset();
@ -284,8 +285,8 @@ void ScheduleInvalidateCacheThreadSafe(u32 address)
{ {
if (CPU::GetState() == CPU::State::Running) if (CPU::GetState() == CPU::State::Running)
{ {
CoreTiming::ScheduleEvent(0, s_invalidate_cache_thread_safe, address, Core::System::GetInstance().GetCoreTiming().ScheduleEvent(
CoreTiming::FromThread::NON_CPU); 0, s_invalidate_cache_thread_safe, address, CoreTiming::FromThread::NON_CPU);
} }
else else
{ {

View File

@ -39,6 +39,7 @@
#include "Core/Movie.h" #include "Core/Movie.h"
#include "Core/NetPlayClient.h" #include "Core/NetPlayClient.h"
#include "Core/PowerPC/PowerPC.h" #include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "VideoCommon/FrameDump.h" #include "VideoCommon/FrameDump.h"
#include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/OnScreenDisplay.h"
@ -224,7 +225,7 @@ static void DoState(PointerWrap& p)
p.DoMarker("PowerPC"); p.DoMarker("PowerPC");
// CoreTiming needs to be restored before restoring Hardware because // CoreTiming needs to be restored before restoring Hardware because
// the controller code might need to schedule an event if the controller has changed. // the controller code might need to schedule an event if the controller has changed.
CoreTiming::DoState(p); Core::System::GetInstance().GetCoreTiming().DoState(p);
p.DoMarker("CoreTiming"); p.DoMarker("CoreTiming");
HW::DoState(p); HW::DoState(p);
p.DoMarker("HW"); p.DoMarker("HW");

View File

@ -27,7 +27,7 @@ struct System::Impl
bool m_audio_dump_started = false; bool m_audio_dump_started = false;
AudioInterface::AudioInterfaceState m_audio_interface_state; AudioInterface::AudioInterfaceState m_audio_interface_state;
CoreTiming::CoreTimingState m_core_timing_state; CoreTiming::CoreTimingManager m_core_timing;
CoreTiming::Globals m_core_timing_globals; CoreTiming::Globals m_core_timing_globals;
DSP::DSPState m_dsp_state; DSP::DSPState m_dsp_state;
DVDInterface::DVDInterfaceState m_dvd_interface_state; DVDInterface::DVDInterfaceState m_dvd_interface_state;
@ -87,9 +87,9 @@ AudioInterface::AudioInterfaceState& System::GetAudioInterfaceState() const
return m_impl->m_audio_interface_state; return m_impl->m_audio_interface_state;
} }
CoreTiming::CoreTimingState& System::GetCoreTimingState() const CoreTiming::CoreTimingManager& System::GetCoreTiming() const
{ {
return m_impl->m_core_timing_state; return m_impl->m_core_timing;
} }
CoreTiming::Globals& System::GetCoreTimingGlobals() const CoreTiming::Globals& System::GetCoreTimingGlobals() const

View File

@ -14,7 +14,7 @@ class AudioInterfaceState;
}; };
namespace CoreTiming namespace CoreTiming
{ {
class CoreTimingState; class CoreTimingManager;
struct Globals; struct Globals;
} // namespace CoreTiming } // namespace CoreTiming
namespace DSP namespace DSP
@ -81,7 +81,7 @@ public:
void SetAudioDumpStarted(bool started); void SetAudioDumpStarted(bool started);
AudioInterface::AudioInterfaceState& GetAudioInterfaceState() const; AudioInterface::AudioInterfaceState& GetAudioInterfaceState() const;
CoreTiming::CoreTimingState& GetCoreTimingState() const; CoreTiming::CoreTimingManager& GetCoreTiming() const;
CoreTiming::Globals& GetCoreTimingGlobals() const; CoreTiming::Globals& GetCoreTimingGlobals() const;
DSP::DSPState& GetDSPState() const; DSP::DSPState& GetDSPState() const;
DVDInterface::DVDInterfaceState& GetDVDInterfaceState() const; DVDInterface::DVDInterfaceState& GetDVDInterfaceState() const;

View File

@ -42,10 +42,12 @@ static void RestartCore(const std::weak_ptr<HW::GBA::Core>& core, std::string_vi
auto& info = Config::MAIN_GBA_ROM_PATHS[core_ptr->GetCoreInfo().device_number]; auto& info = Config::MAIN_GBA_ROM_PATHS[core_ptr->GetCoreInfo().device_number];
core_ptr->Stop(); core_ptr->Stop();
Config::SetCurrent(info, rom_path); Config::SetCurrent(info, rom_path);
if (core_ptr->Start(CoreTiming::GetTicks())) auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
if (core_ptr->Start(core_timing.GetTicks()))
return; return;
Config::SetCurrent(info, Config::GetBase(info)); Config::SetCurrent(info, Config::GetBase(info));
core_ptr->Start(CoreTiming::GetTicks()); core_ptr->Start(core_timing.GetTicks());
} }
}, },
false); false);

View File

@ -33,6 +33,7 @@
#include "Core/HW/SI/SI.h" #include "Core/HW/SI/SI.h"
#include "Core/HW/SI/SI_Device.h" #include "Core/HW/SI/SI_Device.h"
#include "Core/HW/SystemTimers.h" #include "Core/HW/SystemTimers.h"
#include "Core/System.h"
#include "InputCommon/GCPadStatus.h" #include "InputCommon/GCPadStatus.h"
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION #if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
@ -419,10 +420,12 @@ void Init()
if (Core::GetState() != Core::State::Uninitialized && Core::GetState() != Core::State::Starting) if (Core::GetState() != Core::State::Uninitialized && Core::GetState() != Core::State::Starting)
{ {
if ((CoreTiming::GetTicks() - s_last_init) < SystemTimers::GetTicksPerSecond()) auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
if ((core_timing.GetTicks() - s_last_init) < SystemTimers::GetTicksPerSecond())
return; return;
s_last_init = CoreTiming::GetTicks(); s_last_init = core_timing.GetTicks();
} }
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION #if GCADAPTER_USE_LIBUSB_IMPLEMENTATION

View File

@ -21,6 +21,7 @@
#include "Core/FifoPlayer/FifoRecorder.h" #include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/HW/Memmap.h" #include "Core/HW/Memmap.h"
#include "Core/HW/VideoInterface.h" #include "Core/HW/VideoInterface.h"
#include "Core/System.h"
#include "VideoCommon/BPFunctions.h" #include "VideoCommon/BPFunctions.h"
#include "VideoCommon/BPMemory.h" #include "VideoCommon/BPMemory.h"
@ -324,7 +325,8 @@ static void BPWritten(const BPCmd& bp, int cycles_into_future)
if (g_ActiveConfig.bImmediateXFB) if (g_ActiveConfig.bImmediateXFB)
{ {
// below div two to convert from bytes to pixels - it expects width, not stride // below div two to convert from bytes to pixels - it expects width, not stride
g_renderer->Swap(destAddr, destStride / 2, destStride, height, CoreTiming::GetTicks()); g_renderer->Swap(destAddr, destStride / 2, destStride, height,
Core::System::GetInstance().GetCoreTiming().GetTicks());
} }
else else
{ {

View File

@ -149,7 +149,8 @@ void Init()
s_interrupt_set.Clear(); s_interrupt_set.Clear();
s_interrupt_waiting.Clear(); s_interrupt_waiting.Clear();
et_UpdateInterrupts = CoreTiming::RegisterEvent("CPInterrupt", UpdateInterrupts_Wrapper); et_UpdateInterrupts = Core::System::GetInstance().GetCoreTiming().RegisterEvent(
"CPInterrupt", UpdateInterrupts_Wrapper);
} }
u32 GetPhysicalAddressMask() u32 GetPhysicalAddressMask()
@ -406,7 +407,7 @@ void GatherPipeBursted()
// If the game is running close to overflowing, make the exception checking more frequent. // If the game is running close to overflowing, make the exception checking more frequent.
if (fifo.bFF_HiWatermark.load(std::memory_order_relaxed) != 0) if (fifo.bFF_HiWatermark.load(std::memory_order_relaxed) != 0)
CoreTiming::ForceExceptionCheck(0); Core::System::GetInstance().GetCoreTiming().ForceExceptionCheck(0);
fifo.CPReadWriteDistance.fetch_add(GPFifo::GATHER_PIPE_SIZE, std::memory_order_seq_cst); fifo.CPReadWriteDistance.fetch_add(GPFifo::GATHER_PIPE_SIZE, std::memory_order_seq_cst);
@ -445,7 +446,7 @@ void UpdateInterrupts(u64 userdata)
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt cleared"); DEBUG_LOG_FMT(COMMANDPROCESSOR, "Interrupt cleared");
ProcessorInterface::SetInterrupt(INT_CAUSE_CP, false); ProcessorInterface::SetInterrupt(INT_CAUSE_CP, false);
} }
CoreTiming::ForceExceptionCheck(0); Core::System::GetInstance().GetCoreTiming().ForceExceptionCheck(0);
s_interrupt_waiting.Clear(); s_interrupt_waiting.Clear();
Fifo::RunGpu(); Fifo::RunGpu();
} }
@ -453,7 +454,10 @@ void UpdateInterrupts(u64 userdata)
void UpdateInterruptsFromVideoBackend(u64 userdata) void UpdateInterruptsFromVideoBackend(u64 userdata)
{ {
if (!Fifo::UseDeterministicGPUThread()) if (!Fifo::UseDeterministicGPUThread())
CoreTiming::ScheduleEvent(0, et_UpdateInterrupts, userdata, CoreTiming::FromThread::NON_CPU); {
Core::System::GetInstance().GetCoreTiming().ScheduleEvent(0, et_UpdateInterrupts, userdata,
CoreTiming::FromThread::NON_CPU);
}
} }
bool IsInterruptWaiting() bool IsInterruptWaiting()

View File

@ -448,7 +448,8 @@ bool AtBreakpoint()
void RunGpu() void RunGpu()
{ {
const bool is_dual_core = Core::System::GetInstance().IsDualCoreMode(); auto& system = Core::System::GetInstance();
const bool is_dual_core = system.IsDualCoreMode();
// wake up GPU thread // wake up GPU thread
if (is_dual_core && !s_use_deterministic_gpu_thread) if (is_dual_core && !s_use_deterministic_gpu_thread)
@ -462,7 +463,8 @@ void RunGpu()
if (s_syncing_suspended) if (s_syncing_suspended)
{ {
s_syncing_suspended = false; s_syncing_suspended = false;
CoreTiming::ScheduleEvent(GPU_TIME_SLOT_SIZE, s_event_sync_gpu, GPU_TIME_SLOT_SIZE); system.GetCoreTiming().ScheduleEvent(GPU_TIME_SLOT_SIZE, s_event_sync_gpu,
GPU_TIME_SLOT_SIZE);
} }
} }
} }
@ -611,7 +613,7 @@ static void SyncGPUCallback(Core::System& system, u64 ticks, s64 cyclesLate)
s_syncing_suspended = next < 0; s_syncing_suspended = next < 0;
if (!s_syncing_suspended) if (!s_syncing_suspended)
CoreTiming::ScheduleEvent(next, s_event_sync_gpu, next); system.GetCoreTiming().ScheduleEvent(next, s_event_sync_gpu, next);
} }
void SyncGPUForRegisterAccess() void SyncGPUForRegisterAccess()
@ -627,7 +629,8 @@ void SyncGPUForRegisterAccess()
// Initialize GPU - CPU thread syncing, this gives us a deterministic way to start the GPU thread. // Initialize GPU - CPU thread syncing, this gives us a deterministic way to start the GPU thread.
void Prepare() void Prepare()
{ {
s_event_sync_gpu = CoreTiming::RegisterEvent("SyncGPUCallback", SyncGPUCallback); s_event_sync_gpu =
Core::System::GetInstance().GetCoreTiming().RegisterEvent("SyncGPUCallback", SyncGPUCallback);
s_syncing_suspended = true; s_syncing_suspended = true;
} }
} // namespace Fifo } // namespace Fifo

View File

@ -202,8 +202,8 @@ void Init()
s_signal_token_interrupt = false; s_signal_token_interrupt = false;
s_signal_finish_interrupt = false; s_signal_finish_interrupt = false;
et_SetTokenFinishOnMainThread = et_SetTokenFinishOnMainThread = Core::System::GetInstance().GetCoreTiming().RegisterEvent(
CoreTiming::RegisterEvent("SetTokenFinish", SetTokenFinish_OnMainThread); "SetTokenFinish", SetTokenFinish_OnMainThread);
} }
void RegisterMMIO(MMIO::Mapping* mmio, u32 base) void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
@ -341,7 +341,8 @@ static void RaiseEvent(int cycles_into_future)
// games time to setup any interrupt state // games time to setup any interrupt state
cycles = std::max(500, cycles_into_future); cycles = std::max(500, cycles_into_future);
} }
CoreTiming::ScheduleEvent(cycles, et_SetTokenFinishOnMainThread, 0, from); Core::System::GetInstance().GetCoreTiming().ScheduleEvent(cycles, et_SetTokenFinishOnMainThread,
0, from);
} }
// SetToken // SetToken

View File

@ -49,7 +49,9 @@ public:
Config::Init(); Config::Init();
SConfig::Init(); SConfig::Init();
PowerPC::Init(PowerPC::CPUCore::Interpreter); PowerPC::Init(PowerPC::CPUCore::Interpreter);
CoreTiming::Init(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
core_timing.Init();
} }
~ScopeInit() ~ScopeInit()
{ {
@ -57,7 +59,9 @@ public:
{ {
return; return;
} }
CoreTiming::Shutdown(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
core_timing.Shutdown();
PowerPC::Shutdown(); PowerPC::Shutdown();
SConfig::Shutdown(); SConfig::Shutdown();
Config::Shutdown(); Config::Shutdown();
@ -78,7 +82,9 @@ static void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0,
s_lateness = expected_lateness; s_lateness = expected_lateness;
PowerPC::ppcState.downcount = cpu_downcount; // Pretend we executed X cycles of instructions. PowerPC::ppcState.downcount = cpu_downcount; // Pretend we executed X cycles of instructions.
CoreTiming::Advance(); auto& system = Core::System::GetInstance();
auto& core_timing = system.GetCoreTiming();
core_timing.Advance();
EXPECT_EQ(decltype(s_callbacks_ran_flags)().set(idx), s_callbacks_ran_flags); EXPECT_EQ(decltype(s_callbacks_ran_flags)().set(idx), s_callbacks_ran_flags);
EXPECT_EQ(downcount, PowerPC::ppcState.downcount); EXPECT_EQ(downcount, PowerPC::ppcState.downcount);
@ -89,25 +95,28 @@ TEST(CoreTiming, BasicOrder)
ScopeInit guard; ScopeInit guard;
ASSERT_TRUE(guard.UserDirectoryExists()); ASSERT_TRUE(guard.UserDirectoryExists());
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); auto& system = Core::System::GetInstance();
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); auto& core_timing = system.GetCoreTiming();
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); CoreTiming::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); CoreTiming::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>);
CoreTiming::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
// Enter slice 0 // Enter slice 0
CoreTiming::Advance(); core_timing.Advance();
// D -> B -> C -> A -> E // D -> B -> C -> A -> E
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
EXPECT_EQ(1000, PowerPC::ppcState.downcount); EXPECT_EQ(1000, PowerPC::ppcState.downcount);
CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]); core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
EXPECT_EQ(500, PowerPC::ppcState.downcount); EXPECT_EQ(500, PowerPC::ppcState.downcount);
CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]); core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
EXPECT_EQ(500, PowerPC::ppcState.downcount); EXPECT_EQ(500, PowerPC::ppcState.downcount);
CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]); core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
EXPECT_EQ(100, PowerPC::ppcState.downcount); EXPECT_EQ(100, PowerPC::ppcState.downcount);
CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]); core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
EXPECT_EQ(100, PowerPC::ppcState.downcount); EXPECT_EQ(100, PowerPC::ppcState.downcount);
AdvanceAndCheck(3, 400); AdvanceAndCheck(3, 400);
@ -140,27 +149,30 @@ TEST(CoreTiming, SharedSlot)
ScopeInit guard; ScopeInit guard;
ASSERT_TRUE(guard.UserDirectoryExists()); ASSERT_TRUE(guard.UserDirectoryExists());
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>); auto& system = Core::System::GetInstance();
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>); auto& core_timing = system.GetCoreTiming();
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>);
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); CoreTiming::EventType* cb_a = core_timing.RegisterEvent("callbackA", FifoCallback<0>);
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); CoreTiming::EventType* cb_b = core_timing.RegisterEvent("callbackB", FifoCallback<1>);
CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]); CoreTiming::EventType* cb_c = core_timing.RegisterEvent("callbackC", FifoCallback<2>);
CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]); CoreTiming::EventType* cb_d = core_timing.RegisterEvent("callbackD", FifoCallback<3>);
CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]); CoreTiming::EventType* cb_e = core_timing.RegisterEvent("callbackE", FifoCallback<4>);
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
core_timing.ScheduleEvent(1000, cb_c, CB_IDS[2]);
core_timing.ScheduleEvent(1000, cb_d, CB_IDS[3]);
core_timing.ScheduleEvent(1000, cb_e, CB_IDS[4]);
// Enter slice 0 // Enter slice 0
CoreTiming::Advance(); core_timing.Advance();
EXPECT_EQ(1000, PowerPC::ppcState.downcount); EXPECT_EQ(1000, PowerPC::ppcState.downcount);
s_callbacks_ran_flags = 0; s_callbacks_ran_flags = 0;
s_counter = 0; s_counter = 0;
s_lateness = 0; s_lateness = 0;
PowerPC::ppcState.downcount = 0; PowerPC::ppcState.downcount = 0;
CoreTiming::Advance(); core_timing.Advance();
EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount); EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
EXPECT_EQ(0x1FULL, s_callbacks_ran_flags.to_ullong()); EXPECT_EQ(0x1FULL, s_callbacks_ran_flags.to_ullong());
} }
@ -170,14 +182,17 @@ TEST(CoreTiming, PredictableLateness)
ScopeInit guard; ScopeInit guard;
ASSERT_TRUE(guard.UserDirectoryExists()); ASSERT_TRUE(guard.UserDirectoryExists());
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); auto& system = Core::System::GetInstance();
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); auto& core_timing = system.GetCoreTiming();
CoreTiming::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
// Enter slice 0 // Enter slice 0
CoreTiming::Advance(); core_timing.Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
AdvanceAndCheck(0, 90, 10, -10); // (100 - 10) AdvanceAndCheck(0, 90, 10, -10); // (100 - 10)
AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50); AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50);
@ -194,7 +209,10 @@ static void RescheduleCallback(Core::System& system, u64 userdata, s64 lateness)
EXPECT_EQ(s_lateness, lateness); EXPECT_EQ(s_lateness, lateness);
if (s_reschedules > 0) if (s_reschedules > 0)
CoreTiming::ScheduleEvent(1000, reinterpret_cast<CoreTiming::EventType*>(userdata), userdata); {
system.GetCoreTiming().ScheduleEvent(1000, reinterpret_cast<CoreTiming::EventType*>(userdata),
userdata);
}
} }
} // namespace ChainSchedulingTest } // namespace ChainSchedulingTest
@ -205,19 +223,22 @@ TEST(CoreTiming, ChainScheduling)
ScopeInit guard; ScopeInit guard;
ASSERT_TRUE(guard.UserDirectoryExists()); ASSERT_TRUE(guard.UserDirectoryExists());
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); auto& system = Core::System::GetInstance();
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); auto& core_timing = system.GetCoreTiming();
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_rs = CoreTiming::EventType* cb_rs =
CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback); core_timing.RegisterEvent("callbackReschedule", RescheduleCallback);
// Enter slice 0 // Enter slice 0
CoreTiming::Advance(); core_timing.Advance();
CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]); core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]); core_timing.ScheduleEvent(2200, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs)); core_timing.ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
EXPECT_EQ(800, PowerPC::ppcState.downcount); EXPECT_EQ(800, PowerPC::ppcState.downcount);
s_reschedules = 3; s_reschedules = 3;
@ -226,14 +247,14 @@ TEST(CoreTiming, ChainScheduling)
EXPECT_EQ(2, s_reschedules); EXPECT_EQ(2, s_reschedules);
PowerPC::ppcState.downcount = 0; PowerPC::ppcState.downcount = 0;
CoreTiming::Advance(); // cb_rs core_timing.Advance(); // cb_rs
EXPECT_EQ(1, s_reschedules); EXPECT_EQ(1, s_reschedules);
EXPECT_EQ(200, PowerPC::ppcState.downcount); EXPECT_EQ(200, PowerPC::ppcState.downcount);
AdvanceAndCheck(2, 800); // cb_c AdvanceAndCheck(2, 800); // cb_c
PowerPC::ppcState.downcount = 0; PowerPC::ppcState.downcount = 0;
CoreTiming::Advance(); // cb_rs core_timing.Advance(); // cb_rs
EXPECT_EQ(0, s_reschedules); EXPECT_EQ(0, s_reschedules);
EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount); EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
} }
@ -247,7 +268,7 @@ static void ChainCallback(Core::System& system, u64 userdata, s64 lateness)
EXPECT_EQ(CB_IDS[0] + 1, userdata); EXPECT_EQ(CB_IDS[0] + 1, userdata);
EXPECT_EQ(0, lateness); EXPECT_EQ(0, lateness);
CoreTiming::ScheduleEvent(-1000, s_cb_next, userdata - 1); system.GetCoreTiming().ScheduleEvent(-1000, s_cb_next, userdata - 1);
} }
} // namespace ScheduleIntoPastTest } // namespace ScheduleIntoPastTest
@ -261,14 +282,17 @@ TEST(CoreTiming, ScheduleIntoPast)
ScopeInit guard; ScopeInit guard;
ASSERT_TRUE(guard.UserDirectoryExists()); ASSERT_TRUE(guard.UserDirectoryExists());
s_cb_next = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); auto& system = Core::System::GetInstance();
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); auto& core_timing = system.GetCoreTiming();
CoreTiming::EventType* cb_chain = CoreTiming::RegisterEvent("callbackChain", ChainCallback);
s_cb_next = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_chain = core_timing.RegisterEvent("callbackChain", ChainCallback);
// Enter slice 0 // Enter slice 0
CoreTiming::Advance(); core_timing.Advance();
CoreTiming::ScheduleEvent(1000, cb_chain, CB_IDS[0] + 1); core_timing.ScheduleEvent(1000, cb_chain, CB_IDS[0] + 1);
EXPECT_EQ(1000, PowerPC::ppcState.downcount); EXPECT_EQ(1000, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000); // Run cb_chain into late cb_a AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000); // Run cb_chain into late cb_a
@ -282,7 +306,7 @@ TEST(CoreTiming, ScheduleIntoPast)
Core::UndeclareAsCPUThread(); Core::UndeclareAsCPUThread();
auto& core_timing_globals = Core::System::GetInstance().GetCoreTimingGlobals(); auto& core_timing_globals = Core::System::GetInstance().GetCoreTimingGlobals();
core_timing_globals.global_timer -= 1000; core_timing_globals.global_timer -= 1000;
CoreTiming::ScheduleEvent(0, cb_b, CB_IDS[1], CoreTiming::FromThread::NON_CPU); core_timing.ScheduleEvent(0, cb_b, CB_IDS[1], CoreTiming::FromThread::NON_CPU);
core_timing_globals.global_timer += 1000; core_timing_globals.global_timer += 1000;
Core::DeclareAsCPUThread(); Core::DeclareAsCPUThread();
AdvanceAndCheck(1, MAX_SLICE_LENGTH, MAX_SLICE_LENGTH + 1000); AdvanceAndCheck(1, MAX_SLICE_LENGTH, MAX_SLICE_LENGTH + 1000);
@ -290,7 +314,7 @@ TEST(CoreTiming, ScheduleIntoPast)
// Schedule directly into the past from the CPU. // Schedule directly into the past from the CPU.
// This shouldn't happen in practice, but it's best if we don't mess up the slice length and // This shouldn't happen in practice, but it's best if we don't mess up the slice length and
// downcount if we do. // downcount if we do.
CoreTiming::ScheduleEvent(-1000, s_cb_next, CB_IDS[0]); core_timing.ScheduleEvent(-1000, s_cb_next, CB_IDS[0]);
EXPECT_EQ(0, PowerPC::ppcState.downcount); EXPECT_EQ(0, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000); AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000);
} }
@ -300,11 +324,14 @@ TEST(CoreTiming, Overclocking)
ScopeInit guard; ScopeInit guard;
ASSERT_TRUE(guard.UserDirectoryExists()); ASSERT_TRUE(guard.UserDirectoryExists());
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); auto& system = Core::System::GetInstance();
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); auto& core_timing = system.GetCoreTiming();
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); CoreTiming::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); CoreTiming::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>);
CoreTiming::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
// Overclock // Overclock
Config::SetCurrent(Config::MAIN_OVERCLOCK_ENABLE, true); Config::SetCurrent(Config::MAIN_OVERCLOCK_ENABLE, true);
@ -312,13 +339,13 @@ TEST(CoreTiming, Overclocking)
// Enter slice 0 // Enter slice 0
// Updates s_last_OC_factor. // Updates s_last_OC_factor.
CoreTiming::Advance(); core_timing.Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]); core_timing.ScheduleEvent(400, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]); core_timing.ScheduleEvent(800, cb_d, CB_IDS[3]);
CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]); core_timing.ScheduleEvent(1600, cb_e, CB_IDS[4]);
EXPECT_EQ(200, PowerPC::ppcState.downcount); EXPECT_EQ(200, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, 200); // (200 - 100) * 2 AdvanceAndCheck(0, 200); // (200 - 100) * 2
@ -329,13 +356,13 @@ TEST(CoreTiming, Overclocking)
// Underclock // Underclock
Config::SetCurrent(Config::MAIN_OVERCLOCK, 0.5f); Config::SetCurrent(Config::MAIN_OVERCLOCK, 0.5f);
CoreTiming::Advance(); core_timing.Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]); core_timing.ScheduleEvent(400, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]); core_timing.ScheduleEvent(800, cb_d, CB_IDS[3]);
CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]); core_timing.ScheduleEvent(1600, cb_e, CB_IDS[4]);
EXPECT_EQ(50, PowerPC::ppcState.downcount); EXPECT_EQ(50, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, 50); // (200 - 100) / 2 AdvanceAndCheck(0, 50); // (200 - 100) / 2
@ -346,13 +373,13 @@ TEST(CoreTiming, Overclocking)
// Try switching the clock mid-emulation // Try switching the clock mid-emulation
Config::SetCurrent(Config::MAIN_OVERCLOCK, 1.0f); Config::SetCurrent(Config::MAIN_OVERCLOCK, 1.0f);
CoreTiming::Advance(); core_timing.Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]); core_timing.ScheduleEvent(400, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]); core_timing.ScheduleEvent(800, cb_d, CB_IDS[3]);
CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]); core_timing.ScheduleEvent(1600, cb_e, CB_IDS[4]);
EXPECT_EQ(100, PowerPC::ppcState.downcount); EXPECT_EQ(100, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, 100); // (200 - 100) AdvanceAndCheck(0, 100); // (200 - 100)