JIT compiler:

* Improved constants folding in load/store instructions
* Merged load instructions

This is almost the same commit as r6076/r6077 but x64 build has been fixed.
Thanks a lot to skidau and BHaaL!!


git-svn-id: https://dolphin-emu.googlecode.com/svn/trunk@6120 8ced0084-cf51-0410-be5f-012b33b47a6e
This commit is contained in:
dok.slade 2010-08-23 22:26:00 +00:00
parent 430380eac6
commit cf5088c37e
8 changed files with 338 additions and 262 deletions

View File

@ -127,12 +127,20 @@ void XEmitter::ABI_CallFunctionRR(void *func, Gen::X64Reg reg1, Gen::X64Reg reg2
void XEmitter::ABI_CallFunctionAC(void *func, const Gen::OpArg &arg1, u32 param2) void XEmitter::ABI_CallFunctionAC(void *func, const Gen::OpArg &arg1, u32 param2)
{ {
ABI_AlignStack(2 * 4); ABI_AlignStack(2 * 4);
PUSH(32, arg1);
PUSH(32, Imm32(param2)); PUSH(32, Imm32(param2));
PUSH(32, arg1);
CALL(func); CALL(func);
ABI_RestoreStack(2 * 4); ABI_RestoreStack(2 * 4);
} }
void XEmitter::ABI_CallFunctionA(void *func, const Gen::OpArg &arg1)
{
ABI_AlignStack(1 * 4);
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(1 * 4);
}
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() { void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
// Note: 4 * 4 = 16 bytes, so alignment is preserved. // Note: 4 * 4 = 16 bytes, so alignment is preserved.
PUSH(EBP); PUSH(EBP);
@ -259,6 +267,13 @@ void XEmitter::ABI_CallFunctionAC(void *func, const Gen::OpArg &arg1, u32 param2
CALL(func); CALL(func);
} }
void XEmitter::ABI_CallFunctionA(void *func, const Gen::OpArg &arg1)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
CALL(func);
}
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) { unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
return frameSize; return frameSize;
} }

View File

@ -600,6 +600,7 @@ public:
void ABI_CallFunctionCCC(void *func, u32 param1, u32 param2, u32 param3); void ABI_CallFunctionCCC(void *func, u32 param1, u32 param2, u32 param3);
void ABI_CallFunctionCCP(void *func, u32 param1, u32 param2, void *param3); void ABI_CallFunctionCCP(void *func, u32 param1, u32 param2, void *param3);
void ABI_CallFunctionAC(void *func, const Gen::OpArg &arg1, u32 param2); void ABI_CallFunctionAC(void *func, const Gen::OpArg &arg1, u32 param2);
void ABI_CallFunctionA(void *func, const Gen::OpArg &arg1);
// Pass a register as a paremeter. // Pass a register as a paremeter.
void ABI_CallFunctionR(void *func, Gen::X64Reg reg1); void ABI_CallFunctionR(void *func, Gen::X64Reg reg1);

View File

@ -236,8 +236,6 @@ public:
void fmaddXX(UGeckoInstruction inst); void fmaddXX(UGeckoInstruction inst);
void fsign(UGeckoInstruction inst); void fsign(UGeckoInstruction inst);
void stX(UGeckoInstruction inst); //stw sth stb void stX(UGeckoInstruction inst); //stw sth stb
void lXz(UGeckoInstruction inst);
void lha(UGeckoInstruction inst);
void rlwinmx(UGeckoInstruction inst); void rlwinmx(UGeckoInstruction inst);
void rlwimix(UGeckoInstruction inst); void rlwimix(UGeckoInstruction inst);
void rlwnmx(UGeckoInstruction inst); void rlwnmx(UGeckoInstruction inst);
@ -254,12 +252,8 @@ public:
void subfmex(UGeckoInstruction inst); void subfmex(UGeckoInstruction inst);
void subfzex(UGeckoInstruction inst); void subfzex(UGeckoInstruction inst);
void lbzx(UGeckoInstruction inst); void lXXx(UGeckoInstruction inst);
void lwzx(UGeckoInstruction inst);
void lhax(UGeckoInstruction inst);
void lwzux(UGeckoInstruction inst);
void stXx(UGeckoInstruction inst); void stXx(UGeckoInstruction inst);
void lmw(UGeckoInstruction inst); void lmw(UGeckoInstruction inst);

View File

@ -77,14 +77,14 @@ static GekkoOPTemplate primarytable[] =
{28, &Jit64::reg_imm}, //"andi_rc", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_SET_CR0}}, {28, &Jit64::reg_imm}, //"andi_rc", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_SET_CR0}},
{29, &Jit64::reg_imm}, //"andis_rc", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_SET_CR0}}, {29, &Jit64::reg_imm}, //"andis_rc", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_SET_CR0}},
{32, &Jit64::lXz}, //"lwz", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}}, {32, &Jit64::lXXx}, //"lwz", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}},
{33, &Jit64::Default}, //"lwzu", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}}, {33, &Jit64::lXXx}, //"lwzu", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}},
{34, &Jit64::lXz}, //"lbz", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}}, {34, &Jit64::lXXx}, //"lbz", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}},
{35, &Jit64::Default}, //"lbzu", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}}, {35, &Jit64::lXXx}, //"lbzu", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}},
{40, &Jit64::lXz}, //"lhz", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}}, {40, &Jit64::lXXx}, //"lhz", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}},
{41, &Jit64::Default}, //"lhzu", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}}, {41, &Jit64::lXXx}, //"lhzu", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}},
{42, &Jit64::lha}, //"lha", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}}, {42, &Jit64::lXXx}, //"lha", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}},
{43, &Jit64::Default}, //"lhau", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}}, {43, &Jit64::lXXx}, //"lhau", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}},
{44, &Jit64::stX}, //"sth", OPTYPE_STORE, FL_IN_A | FL_IN_S}}, {44, &Jit64::stX}, //"sth", OPTYPE_STORE, FL_IN_A | FL_IN_S}},
{45, &Jit64::stX}, //"sthu", OPTYPE_STORE, FL_OUT_A | FL_IN_A | FL_IN_S}}, {45, &Jit64::stX}, //"sthu", OPTYPE_STORE, FL_OUT_A | FL_IN_A | FL_IN_S}},
@ -220,20 +220,20 @@ static GekkoOPTemplate table31[] =
{1014, &Jit64::dcbz}, //"dcbz", OPTYPE_DCACHE, 0, 4}}, {1014, &Jit64::dcbz}, //"dcbz", OPTYPE_DCACHE, 0, 4}},
//load word //load word
{23, &Jit64::lwzx}, //"lwzx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}}, {23, &Jit64::lXXx}, //"lwzx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
{55, &Jit64::lwzux}, //"lwzux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}}, {55, &Jit64::lXXx}, //"lwzux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}},
//load halfword //load halfword
{279, &Jit64::Default}, //"lhzx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}}, {279, &Jit64::lXXx}, //"lhzx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
{311, &Jit64::Default}, //"lhzux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}}, {311, &Jit64::lXXx}, //"lhzux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}},
//load halfword signextend //load halfword signextend
{343, &Jit64::lhax}, //"lhax", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}}, {343, &Jit64::lXXx}, //"lhax", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
{375, &Jit64::Default}, //"lhaux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}}, {375, &Jit64::lXXx}, //"lhaux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}},
//load byte //load byte
{87, &Jit64::lbzx}, //"lbzx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}}, {87, &Jit64::lXXx}, //"lbzx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
{119, &Jit64::Default}, //"lbzux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}}, {119, &Jit64::lXXx}, //"lbzux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}},
//load byte reverse //load byte reverse
{534, &Jit64::Default}, //"lwbrx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}}, {534, &Jit64::Default}, //"lwbrx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},

View File

@ -34,96 +34,85 @@
#include "JitAsm.h" #include "JitAsm.h"
#include "JitRegCache.h" #include "JitRegCache.h"
void Jit64::lbzx(UGeckoInstruction inst) void Jit64::lXXx(UGeckoInstruction inst)
{ {
INSTRUCTION_START INSTRUCTION_START
JITDISABLE(LoadStore) JITDISABLE(LoadStore)
if (Core::g_CoreStartupParameter.bJITLoadStorelbzxOff) int a = inst.RA, b = inst.RB, d = inst.RD;
// Skip disabled JIT instructions
if (Core::g_CoreStartupParameter.bJITLoadStorelbzxOff && (inst.OPCD == 31) && (inst.SUBOP10 == 87))
{ Default(inst); return; }
if (Core::g_CoreStartupParameter.bJITLoadStorelXzOff && ((inst.OPCD == 34) || (inst.OPCD == 40) || (inst.OPCD == 32)))
{ Default(inst); return; }
if (Core::g_CoreStartupParameter.bJITLoadStorelwzOff && (inst.OPCD == 32))
{ Default(inst); return; } { Default(inst); return; }
int a = inst.RA, b = inst.RB, d = inst.RD; // Determine memory access size and sign extend
gpr.FlushLockX(ABI_PARAM1); int accessSize;
MOV(32, R(ABI_PARAM1), gpr.R(b)); bool signExtend;
if (a) switch (inst.OPCD)
{ {
ADD(32, R(ABI_PARAM1), gpr.R(a)); case 32: /* lwz */
case 33: /* lwzu */
accessSize = 32;
signExtend = false;
break;
case 34: /* lbz */
case 35: /* lbzu */
accessSize = 8;
signExtend = false;
break;
case 40: /* lhz */
case 41: /* lhzu */
accessSize = 16;
signExtend = false;
break;
case 42: /* lha */
case 43: /* lhau */
accessSize = 16;
signExtend = true;
break;
case 31:
switch (inst.SUBOP10)
{
case 23: /* lwzx */
case 55: /* lwzux */
accessSize = 32;
signExtend = false;
break;
case 87: /* lbzx */
case 119: /* lbzux */
accessSize = 8;
signExtend = false;
break;
case 279: /* lhzx */
case 311: /* lhzux */
accessSize = 16;
signExtend = false;
break;
case 343: /* lhax */
case 375: /* lhaux */
accessSize = 16;
signExtend = true;
break;
default:
PanicAlert("Invalid instruction");
}
break;
default:
PanicAlert("Invalid instruction");
} }
SafeLoadRegToEAX(ABI_PARAM1, 8, 0);
MEMCHECK_START
gpr.KillImmediate(d, false, true);
MOV(32, gpr.R(d), R(EAX));
MEMCHECK_END
gpr.UnlockAllX();
}
void Jit64::lhax(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(LoadStore)
int a = inst.RA, b = inst.RB, d = inst.RD;
gpr.FlushLockX(ABI_PARAM1);
MOV(32, R(ABI_PARAM1), gpr.R(b));
if (a)
{
ADD(32, R(ABI_PARAM1), gpr.R(a));
}
// Some homebrew actually loads from a hw reg with this instruction
SafeLoadRegToEAX(ABI_PARAM1, 16, 0, true);
MEMCHECK_START
gpr.KillImmediate(d, false, true);
MOV(32, gpr.R(d), R(EAX));
MEMCHECK_END
gpr.UnlockAllX();
}
void Jit64::lwzx(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(LoadStore)
int a = inst.RA, b = inst.RB, d = inst.RD;
gpr.FlushLockX(ABI_PARAM1);
MOV(32, R(ABI_PARAM1), gpr.R(b));
if (a)
{
ADD(32, R(ABI_PARAM1), gpr.R(a));
}
SafeLoadRegToEAX(ABI_PARAM1, 32, 0);
MEMCHECK_START
gpr.KillImmediate(d, false, true);
MOV(32, gpr.R(d), R(EAX));
MEMCHECK_END
gpr.UnlockAllX();
}
void Jit64::lXz(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(LoadStore)
if (Core::g_CoreStartupParameter.bJITLoadStorelXzOff)
{ Default(inst); return; }
int d = inst.RD;
int a = inst.RA;
// TODO(ector): Make it dynamically enable/disable idle skipping where appropriate // TODO(ector): Make it dynamically enable/disable idle skipping where appropriate
// Will give nice boost to dual core mode // Will give nice boost to dual core mode
// (mb2): I agree, // (mb2): I agree,
@ -144,20 +133,17 @@ void Jit64::lXz(UGeckoInstruction inst)
// do our job at first // do our job at first
s32 offset = (s32)(s16)inst.SIMM_16; s32 offset = (s32)(s16)inst.SIMM_16;
gpr.FlushLockX(ABI_PARAM1);
gpr.Lock(d); gpr.Lock(d);
MOV(32, R(ABI_PARAM1), gpr.R(a)); SafeLoadToEAX(gpr.R(a), accessSize, offset, signExtend);
SafeLoadRegToEAX(ABI_PARAM1, 32, offset);
gpr.KillImmediate(d, false, true); gpr.KillImmediate(d, false, true);
MOV(32, gpr.R(d), R(EAX)); MOV(32, gpr.R(d), R(EAX));
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX();
gpr.Flush(FLUSH_ALL); gpr.Flush(FLUSH_ALL);
// if it's still 0, we can wait until the next event // if it's still 0, we can wait until the next event
CMP(32, R(RAX), Imm32(0)); TEST(32, R(EAX), R(EAX));
FixupBranch noIdle = J_CC(CC_NE); FixupBranch noIdle = J_CC(CC_NZ);
gpr.Flush(FLUSH_ALL); gpr.Flush(FLUSH_ALL);
fpr.Flush(FLUSH_ALL); fpr.Flush(FLUSH_ALL);
@ -172,110 +158,81 @@ void Jit64::lXz(UGeckoInstruction inst)
//js.compilerPC += 8; //js.compilerPC += 8;
return; return;
} }
// R2 always points to the small read-only data area. We could bake R2-relative loads into immediates. // Determine whether this instruction updates inst.RA
// R13 always points to the small read/write data area. Not so exciting but at least could drop checks in 32-bit safe mode. bool update;
if (inst.OPCD == 31)
s32 offset = (s32)(s16)inst.SIMM_16; update = ((inst.SUBOP10 & 0x20) != 0);
if (!a) else
update = ((inst.OPCD & 1) != 0);
// Prepare address operand
Gen::OpArg opAddress;
if (!update && !a)
{ {
Default(inst); if (inst.OPCD == 31)
return; {
gpr.Lock(b);
opAddress = gpr.R(b);
}
else
{
opAddress = Imm32((u32)(s32)inst.SIMM_16);
}
} }
else if (update && ((a == 0) || (d == a)))
int accessSize;
switch (inst.OPCD)
{ {
case 32: PanicAlert("Invalid instruction");
accessSize = 32;
if (Core::g_CoreStartupParameter.bJITLoadStorelwzOff) {Default(inst); return;}
break; //lwz
case 40: accessSize = 16; break; //lhz
case 34: accessSize = 8; break; //lbz
default:
//_assert_msg_(DYNA_REC, 0, "lXz: invalid access size");
PanicAlert("lXz: invalid access size");
return;
}
if (accessSize == 32 && jo.enableFastMem && !Core::g_CoreStartupParameter.bMMU)
{
// Fast and daring
gpr.Lock(a, d);
gpr.BindToRegister(a, true, false);
gpr.BindToRegister(d, a == d, true);
MOV(accessSize, gpr.R(d), MComplex(RBX, gpr.R(a).GetSimpleReg(), SCALE_1, offset));
BSWAP(32, gpr.R(d).GetSimpleReg());
gpr.UnlockAll();
} }
else else
{ {
gpr.FlushLockX(ABI_PARAM1); if ((inst.OPCD != 31) && gpr.R(a).IsImm())
gpr.Lock(a); {
gpr.BindToRegister(a, true, false); opAddress = Imm32((u32)gpr.R(a).offset + (s32)inst.SIMM_16);
MOV(32, R(ABI_PARAM1), gpr.R(a)); }
SafeLoadRegToEAX(ABI_PARAM1, accessSize, offset); else if ((inst.OPCD == 31) && gpr.R(a).IsImm() && gpr.R(b).IsImm())
{
MEMCHECK_START opAddress = Imm32((u32)gpr.R(a).offset + (u32)gpr.R(b).offset);
}
gpr.KillImmediate(d, false, true); else
MOV(32, gpr.R(d), R(EAX)); {
gpr.FlushLockX(ABI_PARAM1);
MEMCHECK_END opAddress = R(ABI_PARAM1);
MOV(32, opAddress, gpr.R(a));
gpr.UnlockAll();
gpr.UnlockAllX(); if (inst.OPCD == 31)
ADD(32, opAddress, gpr.R(b));
else
ADD(32, opAddress, Imm32((u32)(s32)inst.SIMM_16));
}
} }
}
void Jit64::lha(UGeckoInstruction inst) SafeLoadToEAX(opAddress, accessSize, 0, signExtend);
{
INSTRUCTION_START
JITDISABLE(LoadStore)
int d = inst.RD; // We must flush immediate values from the following registers because
int a = inst.RA; // they may change at runtime if no MMU exception has been raised
s32 offset = (s32)(s16)inst.SIMM_16; gpr.KillImmediate(d, true, true);
// Safe and boring if (update)
gpr.FlushLockX(ABI_PARAM1);
MOV(32, R(ABI_PARAM1), gpr.R(a));
SafeLoadRegToEAX(ABI_PARAM1, 16, offset, true);
MEMCHECK_START
gpr.KillImmediate(d, false, true);
MOV(32, gpr.R(d), R(EAX));
MEMCHECK_END
gpr.UnlockAllX();
}
void Jit64::lwzux(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(LoadStore)
int a = inst.RA, b = inst.RB, d = inst.RD;
if (!a || a == d || a == b)
{ {
Default(inst); gpr.Lock(a);
return; gpr.BindToRegister(a, true, true);
} }
gpr.Lock(a);
gpr.BindToRegister(a, true, true);
ADD(32, gpr.R(a), gpr.R(b));
MOV(32, R(EAX), gpr.R(a));
SafeLoadRegToEAX(EAX, 32, 0, false);
MEMCHECK_START MEMCHECK_START
gpr.KillImmediate(d, false, true); if (update)
{
if (inst.OPCD == 31)
ADD(32, gpr.R(a), gpr.R(b));
else
ADD(32, gpr.R(a), Imm32((u32)(s32)inst.SIMM_16));
}
MOV(32, gpr.R(d), R(EAX)); MOV(32, gpr.R(d), R(EAX));
MEMCHECK_END MEMCHECK_END
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX();
} }
// Zero cache line. // Zero cache line.
@ -312,7 +269,7 @@ void Jit64::stX(UGeckoInstruction inst)
bool update = inst.OPCD & 1; bool update = inst.OPCD & 1;
s32 offset = (s32)(s16)inst.SIMM_16; s32 offset = (s32)(s16)inst.SIMM_16;
if (a || update) if (a || !update)
{ {
int accessSize; int accessSize;
switch (inst.OPCD & ~1) switch (inst.OPCD & ~1)
@ -323,18 +280,18 @@ void Jit64::stX(UGeckoInstruction inst)
default: _assert_msg_(DYNA_REC, 0, "AWETKLJASDLKF"); return; default: _assert_msg_(DYNA_REC, 0, "AWETKLJASDLKF"); return;
} }
if (gpr.R(a).IsImm()) if ((a == 0) || gpr.R(a).IsImm())
{ {
// If we already know the address through constant folding, we can do some // If we already know the address through constant folding, we can do some
// fun tricks... // fun tricks...
u32 addr = (u32)gpr.R(a).offset; u32 addr = ((a == 0) ? 0 : (u32)gpr.R(a).offset);
addr += offset; addr += offset;
if ((addr & 0xFFFFF000) == 0xCC008000 && jo.optimizeGatherPipe) if ((addr & 0xFFFFF000) == 0xCC008000 && jo.optimizeGatherPipe)
{ {
if (offset && update)
gpr.SetImmediate32(a, addr);
gpr.FlushLockX(ABI_PARAM1); gpr.FlushLockX(ABI_PARAM1);
MOV(32, R(ABI_PARAM1), gpr.R(s)); MOV(32, R(ABI_PARAM1), gpr.R(s));
if (update)
gpr.SetImmediate32(a, addr);
switch (accessSize) switch (accessSize)
{ {
// No need to protect these, they don't touch any state // No need to protect these, they don't touch any state
@ -347,16 +304,27 @@ void Jit64::stX(UGeckoInstruction inst)
gpr.UnlockAllX(); gpr.UnlockAllX();
return; return;
} }
else if (Memory::IsRAMAddress(addr) && accessSize == 32) else if (Memory::IsRAMAddress(addr))
{ {
if (offset && update) MOV(32, R(EAX), gpr.R(s));
gpr.SetImmediate32(a, addr);
MOV(accessSize, R(EAX), gpr.R(s));
BSWAP(accessSize, EAX); BSWAP(accessSize, EAX);
WriteToConstRamAddress(accessSize, R(EAX), addr); WriteToConstRamAddress(accessSize, R(EAX), addr);
if (update)
gpr.SetImmediate32(a, addr);
return;
}
else
{
switch (accessSize)
{
case 32: ABI_CallFunctionAC(thunks.ProtectFunction(true ? ((void *)&Memory::Write_U32) : ((void *)&Memory::Write_U32_Swap), 2), gpr.R(s), addr); break;
case 16: ABI_CallFunctionAC(thunks.ProtectFunction(true ? ((void *)&Memory::Write_U16) : ((void *)&Memory::Write_U16_Swap), 2), gpr.R(s), addr); break;
case 8: ABI_CallFunctionAC(thunks.ProtectFunction((void *)&Memory::Write_U8, 2), gpr.R(s), addr); break;
}
if (update)
gpr.SetImmediate32(a, addr);
return; return;
} }
// Other IO not worth the trouble.
} }
// Optimized stack access? // Optimized stack access?
@ -368,11 +336,11 @@ void Jit64::stX(UGeckoInstruction inst)
BSWAP(32, EAX); BSWAP(32, EAX);
#ifdef _M_X64 #ifdef _M_X64
MOV(accessSize, MComplex(RBX, ABI_PARAM1, SCALE_1, (u32)offset), R(EAX)); MOV(accessSize, MComplex(RBX, ABI_PARAM1, SCALE_1, (u32)offset), R(EAX));
#elif _M_IX86 #else
AND(32, R(ABI_PARAM1), Imm32(Memory::MEMVIEW32_MASK)); AND(32, R(ABI_PARAM1), Imm32(Memory::MEMVIEW32_MASK));
MOV(accessSize, MDisp(ABI_PARAM1, (u32)Memory::base + (u32)offset), R(EAX)); MOV(accessSize, MDisp(ABI_PARAM1, (u32)Memory::base + (u32)offset), R(EAX));
#endif #endif
if (update) if (update && offset)
{ {
gpr.Lock(a); gpr.Lock(a);
gpr.KillImmediate(a, true, true); gpr.KillImmediate(a, true, true);
@ -406,9 +374,9 @@ void Jit64::stX(UGeckoInstruction inst)
if (update && offset) if (update && offset)
{ {
gpr.KillImmediate(a, true, true);
MEMCHECK_START MEMCHECK_START
gpr.KillImmediate(a, true, true);
ADD(32, gpr.R(a), Imm32((u32)offset)); ADD(32, gpr.R(a), Imm32((u32)offset));
MEMCHECK_END MEMCHECK_END
@ -419,7 +387,7 @@ void Jit64::stX(UGeckoInstruction inst)
} }
else else
{ {
Default(inst); PanicAlert("Invalid stX");
} }
} }
@ -470,9 +438,7 @@ void Jit64::stXx(UGeckoInstruction inst)
// A few games use these heavily in video codecs. // A few games use these heavily in video codecs.
void Jit64::lmw(UGeckoInstruction inst) void Jit64::lmw(UGeckoInstruction inst)
{ {
#ifdef _M_IX86 #ifdef _M_X64
Default(inst); return;
#else
gpr.FlushLockX(ECX); gpr.FlushLockX(ECX);
MOV(32, R(EAX), Imm32((u32)(s32)inst.SIMM_16)); MOV(32, R(EAX), Imm32((u32)(s32)inst.SIMM_16));
if (inst.RA) if (inst.RA)
@ -485,14 +451,14 @@ void Jit64::lmw(UGeckoInstruction inst)
MOV(32, gpr.R(i), R(ECX)); MOV(32, gpr.R(i), R(ECX));
} }
gpr.UnlockAllX(); gpr.UnlockAllX();
#else
Default(inst); return;
#endif #endif
} }
void Jit64::stmw(UGeckoInstruction inst) void Jit64::stmw(UGeckoInstruction inst)
{ {
#ifdef _M_IX86 #ifdef _M_X64
Default(inst); return;
#else
gpr.FlushLockX(ECX); gpr.FlushLockX(ECX);
MOV(32, R(EAX), Imm32((u32)(s32)inst.SIMM_16)); MOV(32, R(EAX), Imm32((u32)(s32)inst.SIMM_16));
if (inst.RA) if (inst.RA)
@ -504,6 +470,8 @@ void Jit64::stmw(UGeckoInstruction inst)
MOV(32, MComplex(EBX, EAX, SCALE_1, (i - inst.RD) * 4), R(ECX)); MOV(32, MComplex(EBX, EAX, SCALE_1, (i - inst.RD) * 4), R(ECX));
} }
gpr.UnlockAllX(); gpr.UnlockAllX();
#else
Default(inst); return;
#endif #endif
} }

View File

@ -62,15 +62,13 @@ void Jit64::lfs(UGeckoInstruction inst)
return; return;
} }
s32 offset = (s32)(s16)inst.SIMM_16; s32 offset = (s32)(s16)inst.SIMM_16;
gpr.FlushLockX(ABI_PARAM1);
MOV(32, R(ABI_PARAM1), gpr.R(a));
if (jo.assumeFPLoadFromMem) if (jo.assumeFPLoadFromMem)
{ {
UnsafeLoadRegToReg(ABI_PARAM1, EAX, 32, offset, false); UnsafeLoadToEAX(gpr.R(a), 32, offset, false);
} }
else else
{ {
SafeLoadRegToEAX(ABI_PARAM1, 32, offset); SafeLoadToEAX(gpr.R(a), 32, offset, false);
} }
MEMCHECK_START MEMCHECK_START
@ -83,7 +81,6 @@ void Jit64::lfs(UGeckoInstruction inst)
MEMCHECK_END MEMCHECK_END
gpr.UnlockAllX();
fpr.UnlockAll(); fpr.UnlockAll();
} }
@ -299,9 +296,12 @@ void Jit64::stfs(UGeckoInstruction inst)
ADD(32, R(ABI_PARAM2), Imm32(offset)); ADD(32, R(ABI_PARAM2), Imm32(offset));
if (update && offset) if (update && offset)
{ {
// We must flush immediate values from the following register because
// it may take another value at runtime if no MMU exception has been raised
gpr.KillImmediate(a, true, true);
MEMCHECK_START MEMCHECK_START
gpr.KillImmediate(a, false, true);
MOV(32, gpr.R(a), R(ABI_PARAM2)); MOV(32, gpr.R(a), R(ABI_PARAM2));
MEMCHECK_END MEMCHECK_END
@ -362,7 +362,7 @@ void Jit64::lfsx(UGeckoInstruction inst)
MEMCHECK_END MEMCHECK_END
} else { } else {
SafeLoadRegToEAX(EAX, 32, false); SafeLoadToEAX(R(EAX), 32, 0, false);
MEMCHECK_START MEMCHECK_START

View File

@ -36,11 +36,11 @@ static u32 GC_ALIGNED16(float_buffer);
void EmuCodeBlock::UnsafeLoadRegToReg(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset, bool signExtend) void EmuCodeBlock::UnsafeLoadRegToReg(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset, bool signExtend)
{ {
#ifdef _M_IX86 #ifdef _M_X64
MOVZX(32, accessSize, reg_value, MComplex(RBX, reg_addr, SCALE_1, offset));
#else
AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK)); AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK));
MOVZX(32, accessSize, reg_value, MDisp(reg_addr, (u32)Memory::base + offset)); MOVZX(32, accessSize, reg_value, MDisp(reg_addr, (u32)Memory::base + offset));
#else
MOVZX(32, accessSize, reg_value, MComplex(RBX, reg_addr, SCALE_1, offset));
#endif #endif
if (accessSize == 32) if (accessSize == 32)
{ {
@ -63,52 +63,149 @@ void EmuCodeBlock::UnsafeLoadRegToReg(X64Reg reg_addr, X64Reg reg_value, int acc
void EmuCodeBlock::UnsafeLoadRegToRegNoSwap(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset) void EmuCodeBlock::UnsafeLoadRegToRegNoSwap(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset)
{ {
#ifdef _M_IX86 #ifdef _M_X64
MOVZX(32, accessSize, reg_value, MComplex(RBX, reg_addr, SCALE_1, offset));
#else
AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK)); AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK));
MOVZX(32, accessSize, reg_value, MDisp(reg_addr, (u32)Memory::base + offset)); MOVZX(32, accessSize, reg_value, MDisp(reg_addr, (u32)Memory::base + offset));
#else
MOVZX(32, accessSize, reg_value, MComplex(RBX, reg_addr, SCALE_1, offset));
#endif #endif
} }
void EmuCodeBlock::SafeLoadRegToEAX(X64Reg reg_addr, int accessSize, s32 offset, bool signExtend) void EmuCodeBlock::UnsafeLoadToEAX(const Gen::OpArg & opAddress, int accessSize, s32 offset, bool signExtend)
{ {
if (Core::g_CoreStartupParameter.bUseFastMem && (accessSize == 32 || accessSize == 8) && !Core::g_CoreStartupParameter.bMMU) #ifdef _M_X64
if (opAddress.IsSimpleReg())
{ {
// FIXME: accessSize == 16 does not work. Breaks mkdd MOVZX(32, accessSize, EAX, MComplex(RBX, opAddress.GetSimpleReg(), SCALE_1, offset));
UnsafeLoadRegToReg(reg_addr, EAX, accessSize, offset, signExtend); }
else if (opAddress.IsImm() && (((u32)opAddress.offset + offset) < 0x80000000)) // MDisp can only be used with s32 offsets
{
MOVZX(32, accessSize, EAX, MDisp(RBX, (u32)opAddress.offset + offset));
} }
else else
{ {
if (offset) MOV(32, R(EAX), opAddress);
ADD(32, R(reg_addr), Imm32((u32)offset)); MOVZX(32, accessSize, EAX, MComplex(RBX, EAX, SCALE_1, offset));
}
#else
if (opAddress.IsImm())
{
MOVZX(32, accessSize, EAX, M(Memory::base + (((u32)opAddress.offset + offset) & Memory::MEMVIEW32_MASK)));
}
else
{
if (!opAddress.IsSimpleReg(EAX))
MOV(32, R(EAX), opAddress);
AND(32, R(EAX), Imm32(Memory::MEMVIEW32_MASK));
MOVZX(32, accessSize, EAX, MDisp(EAX, (u32)Memory::base + offset));
}
#endif
if (accessSize == 32)
{
BSWAP(32, EAX);
}
else if (accessSize == 16)
{
BSWAP(32, EAX);
if (signExtend)
SAR(32, R(EAX), Imm8(16));
else
SHR(32, R(EAX), Imm8(16));
}
else if (signExtend)
{
// TODO: bake 8-bit into the original load.
MOVSX(32, accessSize, EAX, R(EAX));
}
}
void EmuCodeBlock::SafeLoadToEAX(const Gen::OpArg & opAddress, int accessSize, s32 offset, bool signExtend)
{
if (Core::g_CoreStartupParameter.bUseFastMem && (accessSize == 32) && !Core::g_CoreStartupParameter.bMMU)
{
// BackPatch only supports 32-bits accesses
UnsafeLoadToEAX(opAddress, accessSize, offset, signExtend);
}
else
{
u32 mem_mask = Memory::ADDR_MASK_HW_ACCESS; u32 mem_mask = Memory::ADDR_MASK_HW_ACCESS;
if (Core::g_CoreStartupParameter.bMMU || Core::g_CoreStartupParameter.iTLBHack) if (Core::g_CoreStartupParameter.bMMU || Core::g_CoreStartupParameter.iTLBHack)
{ {
mem_mask |= Memory::ADDR_MASK_MEM1; mem_mask |= Memory::ADDR_MASK_MEM1;
} }
TEST(32, R(reg_addr), Imm32(mem_mask)); if (opAddress.IsImm())
FixupBranch fast = J_CC(CC_Z);
switch (accessSize)
{ {
case 32: ABI_CallFunctionR(thunks.ProtectFunction((void *)&Memory::Read_U32, 1), reg_addr); break; u32 address = (u32)opAddress.offset + offset;
case 16: ABI_CallFunctionR(thunks.ProtectFunction((void *)&Memory::Read_U16_ZX, 1), reg_addr); break; if ((address & mem_mask) == 0)
case 8: ABI_CallFunctionR(thunks.ProtectFunction((void *)&Memory::Read_U8_ZX, 1), reg_addr); break; {
UnsafeLoadToEAX(opAddress, accessSize, offset, signExtend);
}
else
{
switch (accessSize)
{
case 32: ABI_CallFunctionC(thunks.ProtectFunction((void *)&Memory::Read_U32, 1), address); break;
case 16: ABI_CallFunctionC(thunks.ProtectFunction((void *)&Memory::Read_U16_ZX, 1), address); break;
case 8: ABI_CallFunctionC(thunks.ProtectFunction((void *)&Memory::Read_U8_ZX, 1), address); break;
}
if (signExtend && accessSize < 32)
{
// Need to sign extend values coming from the Read_U* functions.
MOVSX(32, accessSize, EAX, R(EAX));
}
}
} }
if (signExtend && accessSize < 32) else
{ {
// Need to sign extend values coming from the Read_U* functions. if (offset)
MOVSX(32, accessSize, EAX, R(EAX)); {
} MOV(32, R(EAX), opAddress);
ADD(32, R(EAX), Imm32(offset));
TEST(32, R(EAX), Imm32(mem_mask));
FixupBranch fast = J_CC(CC_Z);
FixupBranch exit = J(); switch (accessSize)
SetJumpTarget(fast); {
UnsafeLoadRegToReg(reg_addr, EAX, accessSize, 0, signExtend); case 32: ABI_CallFunctionR(thunks.ProtectFunction((void *)&Memory::Read_U32, 1), EAX); break;
SetJumpTarget(exit); case 16: ABI_CallFunctionR(thunks.ProtectFunction((void *)&Memory::Read_U16_ZX, 1), EAX); break;
case 8: ABI_CallFunctionR(thunks.ProtectFunction((void *)&Memory::Read_U8_ZX, 1), EAX); break;
}
if (signExtend && accessSize < 32)
{
// Need to sign extend values coming from the Read_U* functions.
MOVSX(32, accessSize, EAX, R(EAX));
}
FixupBranch exit = J();
SetJumpTarget(fast);
UnsafeLoadToEAX(R(EAX), accessSize, 0, signExtend);
SetJumpTarget(exit);
}
else
{
TEST(32, opAddress, Imm32(mem_mask));
FixupBranch fast = J_CC(CC_Z);
switch (accessSize)
{
case 32: ABI_CallFunctionA(thunks.ProtectFunction((void *)&Memory::Read_U32, 1), opAddress); break;
case 16: ABI_CallFunctionA(thunks.ProtectFunction((void *)&Memory::Read_U16_ZX, 1), opAddress); break;
case 8: ABI_CallFunctionA(thunks.ProtectFunction((void *)&Memory::Read_U8_ZX, 1), opAddress); break;
}
if (signExtend && accessSize < 32)
{
// Need to sign extend values coming from the Read_U* functions.
MOVSX(32, accessSize, EAX, R(EAX));
}
FixupBranch exit = J();
SetJumpTarget(fast);
UnsafeLoadToEAX(opAddress, accessSize, offset, signExtend);
SetJumpTarget(exit);
}
}
} }
} }
@ -118,11 +215,11 @@ void EmuCodeBlock::UnsafeWriteRegToReg(X64Reg reg_value, X64Reg reg_addr, int ac
PanicAlert("WARNING: likely incorrect use of UnsafeWriteRegToReg!"); PanicAlert("WARNING: likely incorrect use of UnsafeWriteRegToReg!");
} }
if (swap) BSWAP(accessSize, reg_value); if (swap) BSWAP(accessSize, reg_value);
#ifdef _M_IX86 #ifdef _M_X64
MOV(accessSize, MComplex(RBX, reg_addr, SCALE_1, offset), R(reg_value));
#else
AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK)); AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK));
MOV(accessSize, MDisp(reg_addr, (u32)Memory::base + offset), R(reg_value)); MOV(accessSize, MDisp(reg_addr, (u32)Memory::base + offset), R(reg_value));
#else
MOV(accessSize, MComplex(RBX, reg_addr, SCALE_1, offset), R(reg_value));
#endif #endif
} }
@ -174,11 +271,11 @@ void EmuCodeBlock::SafeWriteFloatToReg(X64Reg xmm_value, X64Reg reg_addr)
FixupBranch arg2 = J(); FixupBranch arg2 = J();
SetJumpTarget(argh); SetJumpTarget(argh);
PSHUFB(xmm_value, M((void *)pbswapShuffle1x4)); PSHUFB(xmm_value, M((void *)pbswapShuffle1x4));
#ifdef _M_IX86 #ifdef _M_X64
MOVD_xmm(MComplex(RBX, reg_addr, SCALE_1, 0), xmm_value);
#else
AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK)); AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK));
MOVD_xmm(MDisp(reg_addr, (u32)Memory::base), xmm_value); MOVD_xmm(MDisp(reg_addr, (u32)Memory::base), xmm_value);
#else
MOVD_xmm(MComplex(RBX, reg_addr, SCALE_1, 0), xmm_value);
#endif #endif
SetJumpTarget(arg2); SetJumpTarget(arg2);
} else { } else {

View File

@ -27,7 +27,8 @@ public:
void UnsafeLoadRegToReg(Gen::X64Reg reg_addr, Gen::X64Reg reg_value, int accessSize, s32 offset = 0, bool signExtend = false); void UnsafeLoadRegToReg(Gen::X64Reg reg_addr, Gen::X64Reg reg_value, int accessSize, s32 offset = 0, bool signExtend = false);
void UnsafeLoadRegToRegNoSwap(Gen::X64Reg reg_addr, Gen::X64Reg reg_value, int accessSize, s32 offset); void UnsafeLoadRegToRegNoSwap(Gen::X64Reg reg_addr, Gen::X64Reg reg_value, int accessSize, s32 offset);
void UnsafeWriteRegToReg(Gen::X64Reg reg_value, Gen::X64Reg reg_addr, int accessSize, s32 offset = 0, bool swap = true); void UnsafeWriteRegToReg(Gen::X64Reg reg_value, Gen::X64Reg reg_addr, int accessSize, s32 offset = 0, bool swap = true);
void SafeLoadRegToEAX(Gen::X64Reg reg, int accessSize, s32 offset, bool signExtend = false); void UnsafeLoadToEAX(const Gen::OpArg & opAddress, int accessSize, s32 offset, bool signExtend);
void SafeLoadToEAX(const Gen::OpArg & opAddress, int accessSize, s32 offset, bool signExtend);
void SafeWriteRegToReg(Gen::X64Reg reg_value, Gen::X64Reg reg_addr, int accessSize, s32 offset, bool swap = true); void SafeWriteRegToReg(Gen::X64Reg reg_value, Gen::X64Reg reg_addr, int accessSize, s32 offset, bool swap = true);
// Trashes both inputs and EAX. // Trashes both inputs and EAX.