Merge pull request #390 from magumagu/fp-reciprocal

Add accurate implementations of frsqrte and fres
This commit is contained in:
Tony Wasserka 2014-05-24 10:45:01 +02:00
commit cffa848b99
13 changed files with 153 additions and 161 deletions

View File

@ -4,6 +4,8 @@
#pragma once #pragma once
#include <limits>
#include "Common/CPUDetect.h" #include "Common/CPUDetect.h"
#include "Common/MathUtil.h" #include "Common/MathUtil.h"
#include "Core/PowerPC/Interpreter/Interpreter.h" #include "Core/PowerPC/Interpreter/Interpreter.h"
@ -271,3 +273,137 @@ inline u64 ConvertToDouble(u32 _x)
return ((x & 0xc0000000) << 32) | z | ((x & 0x3fffffff) << 29); return ((x & 0xc0000000) << 32) | z | ((x & 0x3fffffff) << 29);
} }
} }
// Used by fres and ps_res.
inline double ApproximateReciprocal(double val)
{
static const int expected_base[] = {
0x7ff800, 0x783800, 0x70ea00, 0x6a0800,
0x638800, 0x5d6200, 0x579000, 0x520800,
0x4cc800, 0x47ca00, 0x430800, 0x3e8000,
0x3a2c00, 0x360800, 0x321400, 0x2e4a00,
0x2aa800, 0x272c00, 0x23d600, 0x209e00,
0x1d8800, 0x1a9000, 0x17ae00, 0x14f800,
0x124400, 0x0fbe00, 0x0d3800, 0x0ade00,
0x088400, 0x065000, 0x041c00, 0x020c00,
};
static const int expected_dec[] = {
0x3e1, 0x3a7, 0x371, 0x340,
0x313, 0x2ea, 0x2c4, 0x2a0,
0x27f, 0x261, 0x245, 0x22a,
0x212, 0x1fb, 0x1e5, 0x1d1,
0x1be, 0x1ac, 0x19b, 0x18b,
0x17c, 0x16e, 0x15b, 0x15b,
0x143, 0x143, 0x12d, 0x12d,
0x11a, 0x11a, 0x108, 0x106,
};
union
{
double valf;
s64 vali;
};
valf = val;
s64 mantissa = vali & ((1LL << 52) - 1);
s64 sign = vali & (1ULL << 63);
s64 exponent = vali & (0x7FFLL << 52);
// Special case 0
if (mantissa == 0 && exponent == 0)
return sign ? -std::numeric_limits<double>::infinity() :
std::numeric_limits<double>::infinity();
// Special case NaN-ish numbers
if (exponent == (0x7FFLL << 52))
{
if (mantissa == 0)
return sign ? -0.0 : 0.0;
return 0.0 + valf;
}
// Special case small inputs
if (exponent < (895LL << 52))
return sign ? -FLT_MAX : FLT_MAX;
// Special case large inputs
if (exponent >= (1149LL << 52))
return sign ? -0.0f : 0.0f;
exponent = (0x7FDLL << 52) - exponent;
int i = (int)(mantissa >> 37);
vali = sign | exponent;
vali |= (s64)(expected_base[i / 1024] - (expected_dec[i / 1024] * (i % 1024) + 1) / 2) << 29;
return valf;
}
inline double ApproximateReciprocalSquareRoot(double val)
{
static const int expected_base[] = {
0x3ffa000, 0x3c29000, 0x38aa000, 0x3572000,
0x3279000, 0x2fb7000, 0x2d26000, 0x2ac0000,
0x2881000, 0x2665000, 0x2468000, 0x2287000,
0x20c1000, 0x1f12000, 0x1d79000, 0x1bf4000,
0x1a7e800, 0x17cb800, 0x1552800, 0x130c000,
0x10f2000, 0x0eff000, 0x0d2e000, 0x0b7c000,
0x09e5000, 0x0867000, 0x06ff000, 0x05ab800,
0x046a000, 0x0339800, 0x0218800, 0x0105800,
};
static const int expected_dec[] = {
0x7a4, 0x700, 0x670, 0x5f2,
0x584, 0x524, 0x4cc, 0x47e,
0x43a, 0x3fa, 0x3c2, 0x38e,
0x35e, 0x332, 0x30a, 0x2e6,
0x568, 0x4f3, 0x48d, 0x435,
0x3e7, 0x3a2, 0x365, 0x32e,
0x2fc, 0x2d0, 0x2a8, 0x283,
0x261, 0x243, 0x226, 0x20b,
};
union
{
double valf;
s64 vali;
};
valf = val;
s64 mantissa = vali & ((1LL << 52) - 1);
s64 sign = vali & (1ULL << 63);
s64 exponent = vali & (0x7FFLL << 52);
// Special case 0
if (mantissa == 0 && exponent == 0)
return sign ? -std::numeric_limits<double>::infinity() :
std::numeric_limits<double>::infinity();
// Special case NaN-ish numbers
if (exponent == (0x7FFLL << 52))
{
if (mantissa == 0)
{
if (sign)
return std::numeric_limits<double>::quiet_NaN();
return 0.0;
}
return 0.0 + valf;
}
// Negative numbers return NaN
if (sign)
return std::numeric_limits<double>::quiet_NaN();
if (!exponent)
{
// "Normalize" denormal values
do
{
exponent -= 1LL << 52;
mantissa <<= 1;
} while (!(mantissa & (1LL << 52)));
mantissa &= (1LL << 52) - 1;
exponent += 1LL << 52;
}
bool odd_exponent = !(exponent & (1LL << 52));
exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52);
int i = (int)(mantissa >> 37);
vali = sign | exponent;
int index = i / 2048 + (odd_exponent ? 16 : 0);
vali |= (s64)(expected_base[index] - expected_dec[index] * (i % 2048)) << 26;
return valf;
}

View File

@ -18,7 +18,6 @@
#endif #endif
#include "Common/MathUtil.h" #include "Common/MathUtil.h"
#include "Core/PowerPC/LUT_frsqrtex.h"
#include "Core/PowerPC/Interpreter/Interpreter.h" #include "Core/PowerPC/Interpreter/Interpreter.h"
#include "Core/PowerPC/Interpreter/Interpreter_FPUtils.h" #include "Core/PowerPC/Interpreter/Interpreter_FPUtils.h"
@ -388,19 +387,7 @@ void Interpreter::fdivsx(UGeckoInstruction _inst)
void Interpreter::fresx(UGeckoInstruction _inst) void Interpreter::fresx(UGeckoInstruction _inst)
{ {
double b = rPS0(_inst.FB); double b = rPS0(_inst.FB);
double one_over = ForceSingle(1.0 / b); rPS0(_inst.FD) = rPS1(_inst.FD) = ApproximateReciprocal(b);
// this is based on the real hardware tests
if (b != 0.0 && IsINF(one_over))
{
if (one_over > 0)
riPS0(_inst.FD) = riPS1(_inst.FD) = MAX_SINGLE;
else
riPS0(_inst.FD) = riPS1(_inst.FD) = MIN_SINGLE;
}
else
{
rPS0(_inst.FD) = rPS1(_inst.FD) = one_over;
}
if (b == 0.0) if (b == 0.0)
{ {
SetFPException(FPSCR_ZX); SetFPException(FPSCR_ZX);
@ -415,39 +402,12 @@ void Interpreter::frsqrtex(UGeckoInstruction _inst)
if (b < 0.0) if (b < 0.0)
{ {
SetFPException(FPSCR_VXSQRT); SetFPException(FPSCR_VXSQRT);
rPS0(_inst.FD) = PPC_NAN;
} }
else else if (b == 0.0)
{
#ifdef VERY_ACCURATE_FP
if (b == 0.0)
{ {
SetFPException(FPSCR_ZX); SetFPException(FPSCR_ZX);
riPS0(_inst.FD) = 0x7ff0000000000000;
}
else
{
u32 fsa = Common::swap32(Common::swap64(riPS0(_inst.FB)));
u32 fsb = Common::swap32(Common::swap64(riPS0(_inst.FB)) >> 32);
u32 idx=(fsa >> 5) % (sizeof(frsqrtex_lut) / sizeof(frsqrtex_lut[0]));
s32 e = fsa >> (32-12);
e &= 2047;
e -= 1023;
s32 oe =- ((e + 1) / 2);
oe -= ((e + 1) & 1);
u32 outb = frsqrtex_lut[idx] << 20;
u32 outa = ((oe + 1023) & 2047) << 20;
outa |= frsqrtex_lut[idx] >> 12;
riPS0(_inst.FD) = ((u64)outa << 32) + (u64)outb;
}
#else
if (b == 0.0)
SetFPException(FPSCR_ZX);
rPS0(_inst.FD) = ForceDouble(1.0 / sqrt(b));
#endif
} }
rPS0(_inst.FD) = ApproximateReciprocalSquareRoot(b);
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(); if (_inst.Rc) Helper_UpdateCR1();
} }

View File

@ -178,58 +178,27 @@ void Interpreter::ps_res(UGeckoInstruction _inst)
{ {
SetFPException(FPSCR_ZX); SetFPException(FPSCR_ZX);
} }
rPS0(_inst.FD) = ForceSingle(1.0 / a); rPS0(_inst.FD) = ApproximateReciprocal(a);
if (a != 0.0 && IsINF(rPS0(_inst.FD))) rPS1(_inst.FD) = ApproximateReciprocal(b);
{
if (rPS0(_inst.FD) > 0)
riPS0(_inst.FD) = MAX_SINGLE; // largest finite single
else
riPS0(_inst.FD) = MIN_SINGLE; // most negative finite single
}
rPS1(_inst.FD) = ForceSingle(1.0 / b);
if (b != 0.0 && IsINF(rPS1(_inst.FD)))
{
if (rPS1(_inst.FD) > 0)
riPS1(_inst.FD) = MAX_SINGLE;
else
riPS1(_inst.FD) = MIN_SINGLE;
}
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(); if (_inst.Rc) Helper_UpdateCR1();
} }
void Interpreter::ps_rsqrte(UGeckoInstruction _inst) void Interpreter::ps_rsqrte(UGeckoInstruction _inst)
{ {
// this code is based on the real hardware tests
if (rPS0(_inst.FB) == 0.0 || rPS1(_inst.FB) == 0.0) if (rPS0(_inst.FB) == 0.0 || rPS1(_inst.FB) == 0.0)
{ {
SetFPException(FPSCR_ZX); SetFPException(FPSCR_ZX);
} }
// PS0
if (rPS0(_inst.FB) < 0.0) if (rPS0(_inst.FB) < 0.0 || rPS1(_inst.FB) < 0.0)
{ {
SetFPException(FPSCR_VXSQRT); SetFPException(FPSCR_VXSQRT);
rPS0(_inst.FD) = PPC_NAN;
}
else
{
rPS0(_inst.FD) = 1.0 / sqrt(rPS0(_inst.FB));
u32 t = ConvertToSingle(riPS0(_inst.FD));
rPS0(_inst.FD) = *(float*)&t;
}
// PS1
if (rPS1(_inst.FB) < 0.0)
{
SetFPException(FPSCR_VXSQRT);
rPS1(_inst.FD) = PPC_NAN;
}
else
{
rPS1(_inst.FD) = 1.0 / sqrt(rPS1(_inst.FB));
u32 t = ConvertToSingle(riPS1(_inst.FD));
rPS1(_inst.FD) = *(float*)&t;
} }
rPS0(_inst.FD) = ApproximateReciprocalSquareRoot(rPS0(_inst.FB));
rPS1(_inst.FD) = ApproximateReciprocalSquareRoot(rPS1(_inst.FB));
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(); if (_inst.Rc) Helper_UpdateCR1();
} }

View File

@ -168,12 +168,10 @@ public:
void ps_arith(UGeckoInstruction inst); //aggregate void ps_arith(UGeckoInstruction inst); //aggregate
void ps_mergeXX(UGeckoInstruction inst); void ps_mergeXX(UGeckoInstruction inst);
void ps_maddXX(UGeckoInstruction inst); void ps_maddXX(UGeckoInstruction inst);
void ps_recip(UGeckoInstruction inst);
void ps_sum(UGeckoInstruction inst); void ps_sum(UGeckoInstruction inst);
void ps_muls(UGeckoInstruction inst); void ps_muls(UGeckoInstruction inst);
void fp_arith(UGeckoInstruction inst); void fp_arith(UGeckoInstruction inst);
void frsqrtex(UGeckoInstruction inst);
void fcmpx(UGeckoInstruction inst); void fcmpx(UGeckoInstruction inst);
void fmrx(UGeckoInstruction inst); void fmrx(UGeckoInstruction inst);

View File

@ -138,9 +138,9 @@ static GekkoOPTemplate table4_2[] =
{20, &Jit64::ps_arith}, //"ps_sub", OPTYPE_PS, 0}}, {20, &Jit64::ps_arith}, //"ps_sub", OPTYPE_PS, 0}},
{21, &Jit64::ps_arith}, //"ps_add", OPTYPE_PS, 0}}, {21, &Jit64::ps_arith}, //"ps_add", OPTYPE_PS, 0}},
{23, &Jit64::ps_sel}, //"ps_sel", OPTYPE_PS, 0}}, {23, &Jit64::ps_sel}, //"ps_sel", OPTYPE_PS, 0}},
{24, &Jit64::ps_recip}, //"ps_res", OPTYPE_PS, 0}}, {24, &Jit64::FallBackToInterpreter}, //"ps_res", OPTYPE_PS, 0}},
{25, &Jit64::ps_arith}, //"ps_mul", OPTYPE_PS, 0}}, {25, &Jit64::ps_arith}, //"ps_mul", OPTYPE_PS, 0}},
{26, &Jit64::ps_recip}, //"ps_rsqrte", OPTYPE_PS, 0, 1}}, {26, &Jit64::FallBackToInterpreter}, //"ps_rsqrte", OPTYPE_PS, 0, 1}},
{28, &Jit64::ps_maddXX}, //"ps_msub", OPTYPE_PS, 0}}, {28, &Jit64::ps_maddXX}, //"ps_msub", OPTYPE_PS, 0}},
{29, &Jit64::ps_maddXX}, //"ps_madd", OPTYPE_PS, 0}}, {29, &Jit64::ps_maddXX}, //"ps_madd", OPTYPE_PS, 0}},
{30, &Jit64::ps_maddXX}, //"ps_nmsub", OPTYPE_PS, 0}}, {30, &Jit64::ps_maddXX}, //"ps_nmsub", OPTYPE_PS, 0}},
@ -360,7 +360,7 @@ static GekkoOPTemplate table63_2[] =
{22, &Jit64::FallBackToInterpreter}, //"fsqrtx", OPTYPE_FPU, FL_RC_BIT_F}}, {22, &Jit64::FallBackToInterpreter}, //"fsqrtx", OPTYPE_FPU, FL_RC_BIT_F}},
{23, &Jit64::FallBackToInterpreter}, //"fselx", OPTYPE_FPU, FL_RC_BIT_F}}, {23, &Jit64::FallBackToInterpreter}, //"fselx", OPTYPE_FPU, FL_RC_BIT_F}},
{25, &Jit64::fp_arith}, //"fmulx", OPTYPE_FPU, FL_RC_BIT_F}}, {25, &Jit64::fp_arith}, //"fmulx", OPTYPE_FPU, FL_RC_BIT_F}},
{26, &Jit64::frsqrtex}, //"frsqrtex", OPTYPE_FPU, FL_RC_BIT_F}}, {26, &Jit64::FallBackToInterpreter}, //"frsqrtex", OPTYPE_FPU, FL_RC_BIT_F}},
{28, &Jit64::fmaddXX}, //"fmsubx", OPTYPE_FPU, FL_RC_BIT_F}}, {28, &Jit64::fmaddXX}, //"fmsubx", OPTYPE_FPU, FL_RC_BIT_F}},
{29, &Jit64::fmaddXX}, //"fmaddx", OPTYPE_FPU, FL_RC_BIT_F}}, {29, &Jit64::fmaddXX}, //"fmaddx", OPTYPE_FPU, FL_RC_BIT_F}},
{30, &Jit64::fmaddXX}, //"fnmsubx", OPTYPE_FPU, FL_RC_BIT_F}}, {30, &Jit64::fmaddXX}, //"fnmsubx", OPTYPE_FPU, FL_RC_BIT_F}},

View File

@ -101,21 +101,6 @@ void Jit64::fp_arith(UGeckoInstruction inst)
} }
} }
void Jit64::frsqrtex(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(bJITFloatingPointOff)
int d = inst.FD;
int b = inst.FB;
fpr.Lock(b, d);
fpr.BindToRegister(d, true, true);
MOVSD(XMM0, M((void *)&one_const));
SQRTSD(XMM1, fpr.R(b));
DIVSD(XMM0, R(XMM1));
MOVSD(fpr.R(d), XMM0);
fpr.UnlockAll();
}
void Jit64::fmaddXX(UGeckoInstruction inst) void Jit64::fmaddXX(UGeckoInstruction inst)
{ {
INSTRUCTION_START INSTRUCTION_START

View File

@ -112,41 +112,6 @@ void Jit64::ps_sign(UGeckoInstruction inst)
fpr.UnlockAll(); fpr.UnlockAll();
} }
// ps_res and ps_rsqrte
void Jit64::ps_recip(UGeckoInstruction inst)
{
INSTRUCTION_START
JITDISABLE(bJITPairedOff)
if (inst.Rc)
{
FallBackToInterpreter(inst);
return;
}
OpArg divisor;
int d = inst.FD;
int b = inst.FB;
fpr.Lock(d, b);
fpr.BindToRegister(d, (d == b));
switch (inst.SUBOP5)
{
case 24:
// ps_res
divisor = fpr.R(b);
break;
case 26:
// ps_rsqrte
SQRTPD(XMM0, fpr.R(b));
divisor = R(XMM0);
break;
}
MOVAPD(XMM1, M((void*)&psOneOne));
DIVPD(XMM1, divisor);
MOVAPD(fpr.R(d), XMM1);
fpr.UnlockAll();
}
//add a, b, c //add a, b, c
//mov a, b //mov a, b

View File

@ -674,7 +674,6 @@ static void DoWriteCode(IRBuilder* ibuild, JitIL* Jit, u32 exitAddress) {
case FSMul: case FSMul:
case FSAdd: case FSAdd:
case FSSub: case FSSub:
case FSRSqrt:
case FDMul: case FDMul:
case FDAdd: case FDAdd:
case FDSub: case FDSub:
@ -1435,14 +1434,6 @@ static void DoWriteCode(IRBuilder* ibuild, JitIL* Jit, u32 exitAddress) {
fregEmitBinInst(RI, I, &JitIL::SUBSS); fregEmitBinInst(RI, I, &JitIL::SUBSS);
break; break;
} }
case FSRSqrt: {
if (!thisUsed) break;
X64Reg reg = fregURegWithoutMov(RI, I);
Jit->RSQRTSS(reg, fregLocForInst(RI, getOp1(I)));
RI.fregs[reg] = I;
fregNormalRegClear(RI, I);
break;
}
case FDMul: { case FDMul: {
if (!thisUsed) break; if (!thisUsed) break;
fregEmitBinInst(RI, I, &JitIL::MULSD); fregEmitBinInst(RI, I, &JitIL::MULSD);

View File

@ -361,7 +361,7 @@ static GekkoOPTemplate table63_2[] =
{22, &JitIL::FallBackToInterpreter}, //"fsqrtx", OPTYPE_FPU, FL_RC_BIT_F}}, {22, &JitIL::FallBackToInterpreter}, //"fsqrtx", OPTYPE_FPU, FL_RC_BIT_F}},
{23, &JitIL::FallBackToInterpreter}, //"fselx", OPTYPE_FPU, FL_RC_BIT_F}}, {23, &JitIL::FallBackToInterpreter}, //"fselx", OPTYPE_FPU, FL_RC_BIT_F}},
{25, &JitIL::fp_arith_s}, //"fmulx", OPTYPE_FPU, FL_RC_BIT_F}}, {25, &JitIL::fp_arith_s}, //"fmulx", OPTYPE_FPU, FL_RC_BIT_F}},
{26, &JitIL::fp_arith_s}, //"frsqrtex", OPTYPE_FPU, FL_RC_BIT_F}}, {26, &JitIL::FallBackToInterpreter}, //"frsqrtex", OPTYPE_FPU, FL_RC_BIT_F}},
{28, &JitIL::fmaddXX}, //"fmsubx", OPTYPE_FPU, FL_RC_BIT_F}}, {28, &JitIL::fmaddXX}, //"fmsubx", OPTYPE_FPU, FL_RC_BIT_F}},
{29, &JitIL::fmaddXX}, //"fmaddx", OPTYPE_FPU, FL_RC_BIT_F}}, {29, &JitIL::fmaddXX}, //"fmaddx", OPTYPE_FPU, FL_RC_BIT_F}},
{30, &JitIL::fmaddXX}, //"fnmsubx", OPTYPE_FPU, FL_RC_BIT_F}}, {30, &JitIL::fmaddXX}, //"fnmsubx", OPTYPE_FPU, FL_RC_BIT_F}},

View File

@ -394,7 +394,6 @@ static void DoWriteCode(IRBuilder* ibuild, JitArmIL* Jit, u32 exitAddress) {
case FSMul: case FSMul:
case FSAdd: case FSAdd:
case FSSub: case FSSub:
case FSRSqrt:
case FDMul: case FDMul:
case FDAdd: case FDAdd:
case FDSub: case FDSub:

View File

@ -1128,7 +1128,7 @@ unsigned IRBuilder::getNumberOfOperands(InstLoc I) const {
numberOfOperands[CInt32] = 0; numberOfOperands[CInt32] = 0;
static unsigned ZeroOp[] = {LoadCR, LoadLink, LoadMSR, LoadGReg, LoadCTR, InterpreterBranch, LoadCarry, RFIExit, LoadFReg, LoadFRegDENToZero, LoadGQR, Int3, }; static unsigned ZeroOp[] = {LoadCR, LoadLink, LoadMSR, LoadGReg, LoadCTR, InterpreterBranch, LoadCarry, RFIExit, LoadFReg, LoadFRegDENToZero, LoadGQR, Int3, };
static unsigned UOp[] = {StoreLink, BranchUncond, StoreCR, StoreMSR, StoreFPRF, StoreGReg, StoreCTR, Load8, Load16, Load32, SExt16, SExt8, Cntlzw, Not, StoreCarry, SystemCall, ShortIdleLoop, LoadSingle, LoadDouble, LoadPaired, StoreFReg, DupSingleToMReg, DupSingleToPacked, ExpandPackedToMReg, CompactMRegToPacked, FSNeg, FSRSqrt, FDNeg, FPDup0, FPDup1, FPNeg, DoubleToSingle, StoreGQR, StoreSRR, }; static unsigned UOp[] = {StoreLink, BranchUncond, StoreCR, StoreMSR, StoreFPRF, StoreGReg, StoreCTR, Load8, Load16, Load32, SExt16, SExt8, Cntlzw, Not, StoreCarry, SystemCall, ShortIdleLoop, LoadSingle, LoadDouble, LoadPaired, StoreFReg, DupSingleToMReg, DupSingleToPacked, ExpandPackedToMReg, CompactMRegToPacked, FSNeg, FDNeg, FPDup0, FPDup1, FPNeg, DoubleToSingle, StoreGQR, StoreSRR, };
static unsigned BiOp[] = {BranchCond, IdleBranch, And, Xor, Sub, Or, Add, Mul, Rol, Shl, Shrl, Sarl, ICmpEq, ICmpNe, ICmpUgt, ICmpUlt, ICmpSgt, ICmpSlt, ICmpSge, ICmpSle, Store8, Store16, Store32, ICmpCRSigned, ICmpCRUnsigned, FallBackToInterpreter, StoreSingle, StoreDouble, StorePaired, InsertDoubleInMReg, FSMul, FSAdd, FSSub, FDMul, FDAdd, FDSub, FPAdd, FPMul, FPSub, FPMerge00, FPMerge01, FPMerge10, FPMerge11, FDCmpCR, }; static unsigned BiOp[] = {BranchCond, IdleBranch, And, Xor, Sub, Or, Add, Mul, Rol, Shl, Shrl, Sarl, ICmpEq, ICmpNe, ICmpUgt, ICmpUlt, ICmpSgt, ICmpSlt, ICmpSge, ICmpSle, Store8, Store16, Store32, ICmpCRSigned, ICmpCRUnsigned, FallBackToInterpreter, StoreSingle, StoreDouble, StorePaired, InsertDoubleInMReg, FSMul, FSAdd, FSSub, FDMul, FDAdd, FDSub, FPAdd, FPMul, FPSub, FPMerge00, FPMerge01, FPMerge10, FPMerge11, FDCmpCR, };
for (auto& op : ZeroOp) { for (auto& op : ZeroOp) {
numberOfOperands[op] = 0; numberOfOperands[op] = 0;

View File

@ -113,7 +113,6 @@ enum Opcode {
FSAdd, FSAdd,
FSSub, FSSub,
FSNeg, FSNeg,
FSRSqrt,
FPAdd, FPAdd,
FPMul, FPMul,
FPSub, FPSub,
@ -464,9 +463,6 @@ public:
InstLoc EmitFSNeg(InstLoc op1) { InstLoc EmitFSNeg(InstLoc op1) {
return FoldUOp(FSNeg, op1); return FoldUOp(FSNeg, op1);
} }
InstLoc EmitFSRSqrt(InstLoc op1) {
return FoldUOp(FSRSqrt, op1);
}
InstLoc EmitFDMul(InstLoc op1, InstLoc op2) { InstLoc EmitFDMul(InstLoc op1, InstLoc op2) {
return FoldBiOp(FDMul, op1, op2); return FoldBiOp(FDMul, op1, op2);
} }

View File

@ -9,8 +9,7 @@ void JitILBase::fp_arith_s(UGeckoInstruction inst)
{ {
INSTRUCTION_START INSTRUCTION_START
JITDISABLE(bJITFloatingPointOff) JITDISABLE(bJITFloatingPointOff)
if (inst.Rc || (inst.SUBOP5 != 25 && inst.SUBOP5 != 20 && if (inst.Rc || (inst.SUBOP5 != 25 && inst.SUBOP5 != 20 && inst.SUBOP5 != 21))
inst.SUBOP5 != 21 && inst.SUBOP5 != 26))
{ {
FallBackToInterpreter(inst); FallBackToInterpreter(inst);
return; return;
@ -35,12 +34,6 @@ void JitILBase::fp_arith_s(UGeckoInstruction inst)
case 25: //mul case 25: //mul
val = ibuild.EmitFDMul(val, ibuild.EmitLoadFReg(inst.FC)); val = ibuild.EmitFDMul(val, ibuild.EmitLoadFReg(inst.FC));
break; break;
case 26: //rsqrte
val = ibuild.EmitLoadFReg(inst.FB);
val = ibuild.EmitDoubleToSingle(val);
val = ibuild.EmitFSRSqrt(val);
val = ibuild.EmitDupSingleToMReg(val);
break;
default: default:
_assert_msg_(DYNA_REC, 0, "fp_arith_s WTF!!!"); _assert_msg_(DYNA_REC, 0, "fp_arith_s WTF!!!");
} }