DiscIO: Parallelize the re-encryption code

This commit is contained in:
JosJuice 2020-01-25 14:03:11 +01:00
parent 319c508978
commit da9e0fb598

View File

@ -8,16 +8,19 @@
#include <array> #include <array>
#include <cstddef> #include <cstddef>
#include <cstring> #include <cstring>
#include <future>
#include <map> #include <map>
#include <memory> #include <memory>
#include <optional> #include <optional>
#include <string> #include <string>
#include <thread>
#include <utility> #include <utility>
#include <vector> #include <vector>
#include <mbedtls/aes.h> #include <mbedtls/aes.h>
#include <mbedtls/sha1.h> #include <mbedtls/sha1.h>
#include "Common/Align.h"
#include "Common/Assert.h" #include "Common/Assert.h"
#include "Common/CommonTypes.h" #include "Common/CommonTypes.h"
#include "Common/Logging/Log.h" #include "Common/Logging/Log.h"
@ -530,15 +533,21 @@ bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset,
std::array<u8, GROUP_TOTAL_SIZE>* out) std::array<u8, GROUP_TOTAL_SIZE>* out)
{ {
std::vector<std::array<u8, BLOCK_DATA_SIZE>> unencrypted_data(BLOCKS_PER_GROUP); std::vector<std::array<u8, BLOCK_DATA_SIZE>> unencrypted_data(BLOCKS_PER_GROUP);
std::vector<std::array<u8, BLOCK_HEADER_SIZE>> unencrypted_hashes(BLOCKS_PER_GROUP);
std::array<std::future<void>, BLOCKS_PER_GROUP> hash_futures;
bool error_occurred = false;
for (size_t i = 0; i < BLOCKS_PER_GROUP; ++i) for (size_t i = 0; i < BLOCKS_PER_GROUP; ++i)
{
if (!error_occurred)
{ {
if (offset + (i + 1) * BLOCK_DATA_SIZE <= partition_data_decrypted_size) if (offset + (i + 1) * BLOCK_DATA_SIZE <= partition_data_decrypted_size)
{ {
if (!blob->ReadWiiDecrypted(offset + i * BLOCK_DATA_SIZE, BLOCK_DATA_SIZE, if (!blob->ReadWiiDecrypted(offset + i * BLOCK_DATA_SIZE, BLOCK_DATA_SIZE,
unencrypted_data[i].data(), partition_data_offset)) unencrypted_data[i].data(), partition_data_offset))
{ {
return false; error_occurred = true;
} }
} }
else else
@ -547,57 +556,91 @@ bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset,
} }
} }
std::vector<std::array<u8, BLOCK_HEADER_SIZE>> unencrypted_hashes(BLOCKS_PER_GROUP); hash_futures[i] = std::async(std::launch::async, [&unencrypted_data, &unencrypted_hashes,
&hash_futures, error_occurred, i]() {
const size_t h1_base = Common::AlignDown(i, 8);
// H0 hashes if (!error_occurred)
for (size_t i = 0; i < BLOCKS_PER_GROUP; ++i)
{ {
for (u32 j = 0; j < 31; ++j) // H0 hashes
for (size_t j = 0; j < 31; ++j)
{ {
mbedtls_sha1_ret(unencrypted_data[i].data() + j * 0x400, 0x400, mbedtls_sha1_ret(unencrypted_data[i].data() + j * 0x400, 0x400,
unencrypted_hashes[i].data() + j * SHA1_SIZE); unencrypted_hashes[i].data() + j * SHA1_SIZE);
} }
// H0 padding
std::memset(unencrypted_hashes[i].data() + 0x26C, 0, 0x14); std::memset(unencrypted_hashes[i].data() + 0x26C, 0, 0x14);
// H1 hash
mbedtls_sha1_ret(unencrypted_hashes[i].data(), 0x26C,
unencrypted_hashes[h1_base].data() + 0x280 + (i - h1_base) * SHA1_SIZE);
} }
// H1 hashes if (i % 8 == 7)
for (size_t i = 0; i < BLOCKS_PER_GROUP / 8; ++i)
{ {
for (u32 j = 0; j < 8; ++j) for (size_t j = 0; j < 7; ++j)
hash_futures[h1_base + j].get();
if (!error_occurred)
{ {
mbedtls_sha1_ret(unencrypted_hashes[i * 8 + j].data(), 0x26C, // H1 padding
unencrypted_hashes[i * 8].data() + 0x280 + j * SHA1_SIZE); std::memset(unencrypted_hashes[h1_base].data() + 0x320, 0, 0x20);
// H1 copies
for (size_t j = 1; j < 8; ++j)
{
std::memcpy(unencrypted_hashes[h1_base + j].data() + 0x280,
unencrypted_hashes[h1_base].data() + 0x280, 0xC0);
} }
std::memset(unencrypted_hashes[i * 8].data() + 0x320, 0, 0x20); // H2 hash
mbedtls_sha1_ret(unencrypted_hashes[h1_base].data() + 0x280, 0xA0,
for (u32 j = 1; j < 8; ++j) unencrypted_hashes[0].data() + 0x340 + h1_base / 8 * SHA1_SIZE);
{
std::memcpy(unencrypted_hashes[i * 8 + j].data() + 0x280,
unencrypted_hashes[i * 8].data() + 0x280, 0xC0);
}
} }
// H2 hashes if (i == BLOCKS_PER_GROUP - 1)
{ {
for (u32 i = 0; i < BLOCKS_PER_GROUP / 8; ++i) for (size_t j = 0; j < 7; ++j)
{ hash_futures[j * 8 + 7].get();
mbedtls_sha1_ret(unencrypted_hashes[i * 8].data() + 0x280, 0xA0,
unencrypted_hashes[0].data() + 0x340 + i * SHA1_SIZE);
}
if (!error_occurred)
{
// H2 padding
std::memset(unencrypted_hashes[0].data() + 0x3E0, 0, 0x20); std::memset(unencrypted_hashes[0].data() + 0x3E0, 0, 0x20);
for (size_t i = 1; i < BLOCKS_PER_GROUP; ++i) // H2 copies
std::memcpy(unencrypted_hashes[i].data() + 0x340, unencrypted_hashes[0].data() + 0x340, 0xC0); for (size_t j = 1; j < BLOCKS_PER_GROUP; ++j)
{
std::memcpy(unencrypted_hashes[j].data() + 0x340,
unencrypted_hashes[0].data() + 0x340, 0xC0);
} }
}
}
}
});
}
// Wait for all the async tasks to finish
hash_futures.back().get();
if (error_occurred)
return false;
const unsigned int threads =
std::min(BLOCKS_PER_GROUP, std::max<unsigned int>(1, std::thread::hardware_concurrency()));
std::vector<std::future<void>> encryption_futures(threads);
mbedtls_aes_context aes_context; mbedtls_aes_context aes_context;
mbedtls_aes_setkey_enc(&aes_context, key.data(), 128); mbedtls_aes_setkey_enc(&aes_context, key.data(), 128);
// Encryption for (size_t i = 0; i < threads; ++i)
for (size_t i = 0; i < BLOCKS_PER_GROUP; ++i) {
encryption_futures[i] = std::async(
std::launch::async,
[&unencrypted_data, &unencrypted_hashes, &aes_context, &out](size_t start, size_t end) {
for (size_t i = start; i < end; ++i)
{ {
u8* out_ptr = out->data() + i * BLOCK_TOTAL_SIZE; u8* out_ptr = out->data() + i * BLOCK_TOTAL_SIZE;
@ -609,6 +652,12 @@ bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset,
mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_DATA_SIZE, iv, mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_DATA_SIZE, iv,
unencrypted_data[i].data(), out_ptr + BLOCK_HEADER_SIZE); unencrypted_data[i].data(), out_ptr + BLOCK_HEADER_SIZE);
} }
},
i * BLOCKS_PER_GROUP / threads, (i + 1) * BLOCKS_PER_GROUP / threads);
}
for (std::future<void>& future : encryption_futures)
future.get();
return true; return true;
} }