This reverts the revert commit bc67fc97c39628c76a4dbca411b0e8a9bfaf726a,
except for the changes in BaseConfigLoader.cpp, which caused the bug
that made us revert 72cf2bdb87f09deff22e1085de3290126aa4ad05. PR 12917
contains an improved change to BaseConfigLoader.cpp, which can be merged
(or rejected) independently.
A few changes have also been made based on review comments.
There were three distinct mechanisms for signaling breakpoint changes in DolphinQt, and the wiring had room for improvement. The behavior of these signals has been consolidated into the new `Host::PPCBreakpointsChanged` signal, which can be emitted from anywhere in DolphinQt to properly update breakpoints everywhere in DolphinQt.
This improves a few things:
- For the `CodeViewWidget` and `MemoryViewWidget`, signals no longer need to propagate through the `CodeWidget` and `MemoryWidget` (respectively) to reach their destination (incoming or outgoing).
- For the `BreakpointWidget`, by self-triggering from its own signal, it no longer must manually call `Update()` after all of the emission sites.
- For the `BranchWatchDialog`, it now has one less thing it must go through the `CodeWidget` for, which is a plus.
Before:
1. In theory there could be multiple, but in practice they were (manually) cleared before creating one
2. (Some of) the conditions to clear one were either to reach it, to create a new one (due to the point above), or to step. This created weird behavior: let's say you Step Over a `bl` (thus creating a temporary breakpoint on `pc+4`), and you reached a regular breakpoint inside the `bl`. The temporary one would still be there: if you resumed, the emulation would still stop there, as a sort of Step Out. But, if before resuming, you made a Step, then it wouldn't do that.
3. The breakpoint widget had no idea concept of them, and will treat them as regular breakpoints. Also, they'll be shown only when the widget is updated in some other way, leading to more confusion.
4. Because only one breakpoint could exist per address, the creation of a temporary breakpoint on a top of a regular one would delete it and inherit its properties (e.g. being log-only). This could happen, for instance, if you Stepped Over a `bl` specifically, and pc+4 had a regular breakpoint.
Now there can only be one temporary breakpoint, which is automatically cleared whenever emulation is paused. So, removing some manual clearing from 1., and removing the weird behavior of 2. As it is stored in a separate variable, it won't be seen at all depending on the function used (fixing 3., and removing some checks in other places), and it won't replace a regular breakpoint, instead simply having priority (fixing 4.).
This reverts commit 72cf2bdb87f09deff22e1085de3290126aa4ad05.
SYSCONF settings are getting cleared when they shouldn't be. Let's
revert the change until I get proper time to figure out why it's broken.
Some pieces of code are calling IsRunning because there's some
particular action that only makes sense when emulation is running, for
instance showing the state of the emulated CPU. IsRunning is appropriate
to use for this. Then there are pieces of code that are calling
IsRunning because there's some particular thing they must avoid doing
e.g. when the CPU thread is running or IOS is running. IsRunning isn't
quite appropriate for this. Such code should also be checking for the
states Starting and Stopping. Keep in mind that:
* When the state is Starting, the state can asynchronously change to
Running at any time.
* When we try to stop the core, the state gets set to Stopping before we
take any action to actually stop things.
This commit adds a new method Core::IsUninitialized, and changes all
callers of IsRunning and GetState that look to me like they should be
changed.
Fixes dynamically changing dpi scaling.
Load resources from svg if possible.
Currently svg support is not in Qt build in Externals,
and image files need to be added later.
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
QStringLiterals generate a buffer so that during runtime there's very
little cost to constructing a QString. However, this also means that
duplicated strings cannot be optimized out into a single entry that gets
referenced everywhere, taking up space in the binary.
Rather than use QStringLiteral(""), we can just use QString{} (the
default constructor) to signify the empty string. This gets rid of an
unnecessary string buffer from being created, saving a tiny bit of
space.
While we're at it, we can just use the character overloads of particular
functions when they're available instead of using a QString overload.
The characters in this case are Latin-1 to begin with, so we can just
specify the characters as QLatin1Char instances to use those overloads.
These will automatically convert to QChar if needed, so this is safe.