Added `ToggleBreakPoint` to both interface BreakPoints/MemChecks. this would allow us to toggle the state of the breakpoint.
Also the TMemCheck::is_ranged is not longer serialized to string, since can be deduce by comparing the TMemCheck::start_address and TMemCheck::end_address
DualShock UDP Client is the only place in the code that assumed OnConfigChanged()
is called at least once on startup or it won't load up the setting, so I took care of that
The main reason why I'm adding this isn't actually to allow
users to swipe down to refresh, it's to add a loading indicator.
Considering that the Storage Access Framework can be slow for
folders with many items (many subfolders?), not showing a
loading indicator might give users the impression that adding
a folder resulted in nothing happening even though Dolphin is
scanning for games in the background. But I suppose letting
users swipe down to refresh is a nice bonus with the change.
This was caused, because we were saving the `break_on_hit` flag with the letter `p`. Then while loading the breakpoints, we read the flag with the letter `b`, resulting in the `break_on_hit` flag being always false
Filesystem accesses aren't magically faster when they are done by ES,
so this commit changes our content wrapper IPC commands to take FS
access times and read operations into account.
This should make content read timings a lot more accurate and closer
to console. Note that the accuracy of the timings are limited to the
accuracy of the emulated FS timings, and currently performance
differences between IOS9-IOS28 and newer IOS versions are not emulated.
Part 1 of fixing https://bugs.dolphin-emu.org/issues/11346
(part 2 will involve emulating those differences)
This makes it more convenient to emulate timings for IPC commands that
perform internal IOS <-> IOS IPC, for example ES relying on FS
for filesystem access.
According to hwtests, older versions of IOS are slower at performing
various filesystem operations:
https://docs.google.com/spreadsheets/d/1OKo9IUuKCrniz4m0kYIaMP_qFtOCmAzHZ_zAmobvBcc/edit
(courtesy of JMC)
A quick glance at IOS9 reveals that older versions of IOS have a
simplistic implementation of memcpy that does not optimize large copies
by copying 16 bytes or 32 bytes per chunk, which makes cached reads
and writes noticeably slower -- the difference was significant enough
that the OoT speedrunning community noticed that IOS9 (the IOS that
is used for the OoT VC title) was slower.