This allows avoiding two copies of the executable data being created in
the following scenario (using pseudocode):
some_function()
{
std::vector<u8> data = ...;
DolReader reader{data};
...
}
In this scenario, if we only use the data for passing it to DolReader,
then we have to perform a copy, as the constructor takes the std::vector
as a constant reference -- you cannot move from a constant reference,
and so we copy data into the DolReader, and perform another copy in the
constructor itself when assigning the data to the m_bytes member
variable. However, we can do better.
Now, the following is allowable as well:
some_function()
{
std::vector<u8> data = ...;
DolReader reader{std::move(data)};
...
}
and now we perform no copy at any point in the reader's construction, as
we just std::move the data all the way through to m_bytes.
In the case where we *do* want to keep the executable data around after
constructing the reader, then we can just pass the vector without
std::move-ing it, and we only perform a copy once (as we'll std::move
said copy into m_bytes). Therefore, we get a more flexible interface
resource-wise out of it.
This makes it possible to use enums as the config type.
Default values are now clearer and there's no need for casts
when calling Config::Get/Set anymore.
In order to add support for enums, the common code was updated to
handle enums by using the underlying type when loading/saving settings.
A copy constructor is also provided for conversions from
`ConfigInfo<Enum>` to `ConfigInfo<underlying_type<Enum>>`
so that enum settings can still easily work with code that doesn't care
about the actual enum values (like Graphics{Choice,Radio} in DolphinQt2
which only treat the setting as an integer).
Dolphin doesn't use any of the WC24 files, so this can be done when
actually starting emulation in WiiRoot. The benefit of moving the
copy is that we don't need to handle temporary NANDs in a special way.
{Initialize,Shutdown}WiiRoot should only be responsible for setting the
SESSION_WII_ROOT or managing the temporary NAND directory.
Move all the content manipulation out of these functions to ensure
separation of concerns and call them after/before WiiRoot init/shutdown
to make sure they operate on the correct root.
If we don't flush the values, they persist in the register cache,
potentially resulting in the values being out of sync with PPCSTATE.
This was causing random crashes in games, mainly booting, when certain
JIT instructions were disabled, or forced to fall back to interpreter.
This excludes the second argument from template deduction.
Otherwise, it is required to manually cast the second argument to
the ConfigInfo type (because implicit conversions won't work).
e.g. to set the value for a ConfigInfo<std::string> from a string
literal, you'd need a ugly `std::string("yourstring")`.
This can be considered a hack, but it essentially neuter the bias applied on boot for both console on the RTC. This avoids having the time on boot be changes significantly while the user would want a specific RTC and it also avoids possible underflow of the RTC if it is near the epoch.
Also move it to MathUtils where it belongs with the rest of the
power-of-two functions. This gets rid of pollution of the current scope
of any translation unit with b<value> macros that aren't intended to be
used directly.
Change SettingsHandler to take a buffer instead of assuming that the
setting file to read is always on the host filesystem for more
flexibility and make it possible to use the new filesystem interface.
Keeps them all next to each other and deduplicates a few constants,
notably the PPC UIDs. Apparently I forgot that I already added them
for SetupStreamKey.
It was off by about 8 years because it was actually the same as the GC epoch, however, the reason it worked all this time was because the default RTC counter bias of the Wii was not 0, but a value that is about 8 years in seconds. This broke custom RTC as a custom RTC of the gc epoch was underflowing b ecause the wii epoch was thought to be much later.
The existing backend did not handle cases where the target exists
correctly.
This is a bug that has been around forever but was only recently
exposed when ES started to use our FS code.
Also adds some unit tests to make sure this won't get broken again.
Creating a file then opening it in read write mode is a pretty common
operation. This commit adds a helper function that makes it easier
to read and clearer.
Keeps all of the floating-point utility functions in their own file to
keep them all together. This also provides a place for other
general-purpose floating-point functions to be added in the future,
which will be necessary when improving the flag-setting within the
interpreter.
FPSCR.FEX is supposed to be a logical OR of all floating-point exception
bits masked by their respective enable bits.
Currently UpdateFPSCR() isn't called by anything in the interpreter
except for mcrfs and mffs, so this doesn't alter existing behavior that much.
However, this will be necessary in future PRs when making the interpreter more
accurate in how it sets flags.
Prevent implicit conversions to UReg_FPSCR. Given the semantics of a
random magic value and the FPSCR are different, make explicit
conversions a requirement to signify intent.